The InstaliShield
Developer Run-Time
Architecture

The last chapter provided a detailed description of the Windows Installer technology,
which provides the foundation of all InstallShield Developer installations. Chapters 1
and 2 explained that InstallShield Developer can be used to create either a Standard
project or a Basic MSI project. The Standard project uses InstallScript on top of the
Windows Installer database to create one type of installation program. The Basic MSI
project creates an installation that uses the Windows Installer with the ability to use
InstallScript in a limited way. In a Basic MSI project, you use InstallScript only to
extend the built-in Windows Installer functionality.

This chapter looks at how InstallShield Developer runs both installation types. We
look at the run-time functionality for the typical installation types with emphasis on

PART | THE FUNDAMENTALS

the differences between the two project types. We begin by discussing the run-time
architecture of Standard project installations created with InstallShield Developer.
This chapter covers only the basics. You are assumed to be running version 7.03 of
InstallShield Developer and that version 2.0 of the Windows Installer engine is
installed on your machine. Later versions of InstallShield Developer will probably
function differently in some areas but the general concepts provided will be the same.
Just like with Chapter 3 you will probably want to reread this chapter after you have
worked through some of the examples in this book. The information in this chapter
is not critical to learning how to use InstallShield Developer but it does provide
background that can be useful when trying to solve problems that arise in the normal
course of creating installations.

Fresh Install Run-Time
Architecture

An important difference between an installation created using a Standard project and
one created using a Basic MSI project is that it is necessary to launch the Standard
project installation using setup.exe. For a Basic MSI project, the only time it is
necessary to run setup.exe is when all the files are compressed inside. There are a
number of other differences, as you will see when we look at how each of the project
types implements an installation. We start our discussion with a look at the approach
used to implement a fresh install with a Standard project.

Fresh Install Using a Standard Project

When you run a fresh install of a Standard project on Windows N'T, Windows 2000,
or Windows XP, a minimum of four processes must run in order to implement the
installation program. On Windows 9x machines, three processes must run. There are
three executables that run in the processes that are used to implement an installation.
Setup.exe runs in one of the processes, IDriver.exe runs in another process, and
msiexec.exe runs in one or more processes depending on the operating system and
other factors.

CHAPTER 4 THE

INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Process 1
Setup.exe

Process 2
IDriver.exe
IScript7.dll, 1User7.dll, objps7.dll

Process 3
Msiexec.exe
I1SScriptBridge.dll, msi.dll

© Start the installation by launching
Setup.exe that will perform the
following actions.

© IDriver.exe controls the running of

the user interface and executes
=P any InstallScript function calls.

e

> Parse the command line and find
out where Setup.exe is located.

> Evaluate user privilege level.

© The Windows Installer engine in
the service process makes all the
changes to the target system so as
to take advantage of the special
privileges available to an NT

e

> If password protected then obtain
the correct password and compare
with value entered by the user.

> Open the MSI package, validate
that there is a ProductCode value
and extract files from the Binary
table and place them in

e

» Stream out any media files that
are compresssed inside Setup.exe
to a temporary location.

SUPPORTDIR.

service.

> Enable a connection between
IScript7.dll and msi.dll so as to be
able to call Windows Installer
functions from InstallScript.

N

> Enable the script based user
interface to be able to receive
progress messages from the

e

» Display splash screen if available
and also display the setup
initialization dialog.

Windows Installer engine.

NV

> Execute all the standard actions
and custom actions that have
been built in to the
InstallExecuteSequence table.

%

Process all the actions in the
InstallUISequence table skipping

Y

$

» Install the Windows Installer
engine if not already installed or
there is an earlier version on the
target machine.

any actions with negative
sequence numbers and skipping
the ExecuteAction action. This will
extract any setup files and any
billboards included in the
installation to SUPPORTDIR.

V

» Install IDriver.exe and the
InstallScript engine that are
required to implement the
Standard project installation.

$

» Launch the IDriver.exe process.

> Wait for the end of the
installation. Then clean up the
temporary files and possibly
launch a reboot of the machine
if one is required in the middle

> Perform the appropriate clean up
and return control back to the
|Driver.exe process.

\%

> |nitialize Setup.inx by loading it
into memory, setting system
constants, etc. Enable a
connection with the Msiexec

process.

» Run all pre component-move
dialogs and operations to collect
information necessary for
performing the installation.

%

» Close the open MSI pakcage and

Figure 4-1: Standard project fresh install run-time architecture on Windows N'T/ 2000/ XP.

launch the Msiexec service
process using a silent user
interface level.

» Reopen the MSI package and run
all post component-move dialogs
and operations required after the
target system has been modified.

%

Create the uninstallation log and
then return back to Setup.exe.

PART | THE FUNDAMENTALS

The best way to understand how a fresh install is implemented by a Standard project
is to look at a picture and then discuss the elements of the picture in detail. A diagram
of three of the four processes that are created when running a Standard project on
Windows NT, Windows 2000, or Windows XP is shown in Figure 4-1. The one
process that is not shown in Figure 4-1 is only used briefly as part of the initialization
of the installation. This fourth process gets generated when the IDriver.exe process
opens the database and runs the actions inserted in the InstallUISequence table.

It is assumed here that the Standard project has only an English user interface, that it
does not require a reboot in the middle of the installation, and that it is not
implementing a Web-based install. We will discuss the additional architectural
considerations for a multi-lingual installation later in this chapter. Everything starts
with setup.exe, which in turn launches IDriver.exe. IDriver.exe then launches
msiexec.exe in a client process and then IDriver.exe launches msiexec.exe in the
service process. In this overview, we can safely ignore the msiexec.exe client process
because it does not contribute to the actual operations that are being carried out.

The diagram in Figure 4-1 shows that, after execution has moved from process 1 to
process 3, it then moves back again from process 3 to process 2 and finally back to
process 1 before all operations are complete. For any Standard project installation,
setup.exe is the beginning and end of the installation process.

Setup.exe

Setup.exe has many responsibilities in a Standard project installation. Depending on
how the installation package is built, setup.exe can have no files streamed into it, a
few files streamed into it, or all files streamed into it. The only files that are never
streamed into setup.exe are autorun.inf and the SMS Package Definition File (PDF),
when the build is designed to include them. When a build is designed to compress all
files into setup.exe, it can be password protected. In this case, setup.exe must
compare the password entered by the end user to the correct password before

proceeding with the installation.
SETUP.INI

The initialization file Setup.ini provides setup.exe all the information it requires to
handle a particular installation. In a Standard installation where there are no files
compressed into setup.exe, Setup.ini is included in the media image. If you open the

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Setup.ini file for the Standard project that you created in Chapter 2, you will see what
is shown in Figure 4-2. In Figure 4-2, the contents of Setup.ini have been annotated.

Figure 4-2: Annotated Setup.ini file for the DeveloperArt_Std project.

PART | THE FUNDAMENTALS

Figure 4-2: Continued.

CHAPTER 4 THE

[WinNT4]
MajorVer=4
MinorVer=0
BuildNo=1381
MinorVerMax=1
PlatformId=2
ServicePack=1536

[Win2K]
MajorVer=5
MinorVer=0
MinorVerMax=1
BuildNo=2195
PlatformId=2

[Languages]
count=1
default=409

INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

;The attributes of Windows NT 4.0 required for
;installing the Windows Installer version
;included in this installation. Note that the
;version of the service pack number, as defined
;by the value of the ServicePack keyword, is the
;decimal equivalent of the service pack level in
;hexadecimal. The value of 1536 is the decimal
;equivalent of 0x600, which means service pack 6.

;The attributes of Windows 2000 required for
;installing the version of Windows Installer
;included in this installation.

;This section identifies the languages available
;in this installation that can be selected
;by the end user if the language dialog is

enabled.
key0=409

[Developer Art.msi]

Type=0

Location=Developer Art.msi

[Setup.bmp]

Type=0

;This section defines the location where
;the MSI package for this installation
;is located. The valid values for the

; Type keywords are as follows:

MSI package on distribution media
MSI package inside Setup.exe

MSI in CAB file downloaded from Web
MSI package installed from Web site
location keyword provides the

;URL if this is a Web-based installation,
;otherwise just the name of the package.

; 1

;This section defines the name and location for the

;file that will be shown as the splash screen at the

;installation’s start.

The valid values for

;the Type keywords are as follows:

; 0 The splash screen is on the source media
; 1 The splash screen is inside Setup.exe
;When a splash screen is included, the name is

;specified here.

If there is both a language-

;independent and a language-dependent splash screen
;specified, the language-dependent file will be
;displayed.

Figure 4-2: Continued

PART 1

[instmsiw.exe]

Type=0
Location=instmsiw.exe
CertKey=MSIEng.isc

[instmsia.exe]

Type=0
Location=instmsia.exe
CertKey=MSIEng.isc

[ISScript.msi]
Type=0
Location=isscript.msi

Figure 4-2: Continued.

THE FUNDAMENTALS

;This section identifies the location of the
;Unicode version of the Windows Installer
;engine. The valid values for the Type
;keyword are as follows:

; 0 Engine located on source media

;1 Engine located inside setup.exe

; 2 Engine located on Web site

;If version 2.0 of the Windows Installer
;engine is located on the Web site,

; the file identified by the CertKey
;keyword will be streamed into Setup.exe
;so it can be authenticated that

;the Windows Installer engine downloaded
;from the Web comes from Microsoft.

;This section identifies the location of the
;ANSI version of the Windows Installer
;engine. The valid values for the Type

; keyword are as follows:

; 0 Engine located on source media

;1 Engine located inside setup.exe

; 2 Engine located on Web site

;If version 2.0 of the Windows Installer
;engine is located on the Web site,

;the file identified by the CertKey
;keyword will be streamed into Setup.exe
;so 1t can be authenticated that

;the Windows Installer engine downloaded
;from the Web comes from Microsoft.

;This section identifies the location of the
;InstallScript engine. The valid values for
;the Type keyword are as follows:

;0 Engine located on source media

; 1 Engine located inside setup.exe

; 2 Engine located on Web site

When a password is used to protect the installation by having all files compressed
inside setup.exe, the password is added to the Setup.ini file. This entry would look like

the following:

[KEY]
Password=1953684598

The entry that is made in Setup.ini for the password is encrypted into a numerical
value. The above example shows how the password “password” is entered into

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Setup.ini. When a password-protected setup.exe is launched, it streams out Setup.ini,
gets the value of the Password keyword, and then immediately deletes the Setup.ini
file. The value held in Setup.ini is decrypted and placed in memory. It is compared
against the value that the end user enters in the password dialog box.

The only keyword that you should manually edit in Setup.ni is the CmdLine
keyword in the [StartUp] section. However, when any file is compressed into
setup.exe, then Setup.ini is also streamed into setup.exe and is no longer available for
post-build modification. The only way to add a value to the CmdLine keyword
when Setup.ini is to be streamed into setup.exe is to manipulate the Setup.ini template
that is used during the build process. The template used by the build process for
creating Setup.ini is found in the following location:

C:\Program Files\InstallShield\Developer\Support\Setup.ini

You can modify this file with the command line that you want to pass to setup.exe.
Then, when the setup is built, the value for the CmdLine keyword will be included
in the Setup.ini file that is streamed into setup.exe.

COMPRESSED MEDIA FILES

The term media files refers to those files that are required for the proper running of
the installation but are not part of the files that make up the application being
installed. Normally these files consist of the Windows Installer engine, the
InstallScript engine installation package, Setup.ini, billboards, splash screen bitmap,
etc. Typically these files all reside in the root location of the installation media.

When any of the files that reside on the root of the media are compressed into
setup.exe, they have to be streamed out to a temporary directory for use during the
installation and they have to be cleaned up after the installation is complete. setup.exe
is responsible for implementing both of these operations. These files typically include
Setup.ini, the MSI database, the InstallScript engine, the Windows Installer engine,
and the splash screen bitmap (if one is included in the installation). The files that are
compressed inside setup.exe are streamed out to a location that is uniquely named for
each installation that is run. The temporary location used is specified by the TMP or
the TEMP environment variable. If neither of these values exists then the temporary
location is the Windows folder on Windows NT, Windows 2000, or Windows XP.
For Windows 9.x machines the current directory is used if neither these two

PART | THE FUNDAMENTALS

environment variables are defined. Typically on Windows 2000 this temporary
location is as follows, where XXX is a hexadecimal number:

SUSERPROFILE%\Local Settings\Temp\ isXXX

In addition to the files that are streamed out of setup.exe to this temporary location, a
file named _ISMSIDEL.INI is created in this directory. This file lists all the files
streamed out of setup.exe that have to be deleted after the installation completes.
Note that this temporary location is not the one that is given in the SUPPORTDIR
system variable.

INITIALIZATION

The main work of setup.exe occurs when the initialization dialog is displayed at the
beginning of an installation.

InstallShield Wizard |

Preparing to Install...
Dreveloper Art Setup iz preparing the Installs hield Ywizard,

which will quide vou through the program setup process.
Please wait.

Checking Operating Systen Yerzion

I

Figure 4-3: I_age initialization dialog displayed by Setup.exe

10

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Two different initialization dialogs are included in setup.exe as resources. There is a
large dialog that is displayed in the center of the screen when no splash screen is
included in the installation (Figure 4-3). The product name displayed in this dialog
comes from the value of the Product keyword in Setup.ini. This dialog is not
displayed if the installation is run silently or if the following entry is made in Setup.ini
under the [Startup] section..

[Startup]

UI=0

A small initialization dialog is displayed in the lower-right corner of the screen when a
splash bitmap is included in the installation. The splash bitmap is displayed in the
center of the screen. This smaller initialization dialog is shown in Figure 4-4.

InstallShield Wizard |

Developer At Setup iz preparing the InstallShield Wizard, which wil
| guide pou through the program setup process. Please wait,

Configuring *indows [nstaller

I

Figure 4-4: Initialization dialog nsed when splash screen is displayed.

The splash screen and the initialization dialog shown in Figure 4-4 are not displayed
during a silent installation. The display of the splash screen and small initialization
dialog are not affected by the use of the UT=0 entry in Setup.ini.

The large initialization dialog or the small initialization dialog in conjunction with a
splash screen are displayed when an end user runs an installation for a product that is
already installed. This triggers the maintenance mode. If maintenance mode is
launched from the Add/Remove Programs applet, neither of these initialization

11

PART | THE FUNDAMENTALS

dialogs nor the splash screen is displayed. An initialization dialog launched from
IDriver.exe is displayed instead.

During the display of the initialization dialog and/or splash screen, three main
operations are carried out. These operations are the installation, if necessary, of the
Windows Installer engine, the installation of the InstallScript engine, and the
launching of IDriver.exe. The installation of the Windows Installer engine starts when
the setup program compatres the version on the target machine to the version that is
included in the installation package. The version included with the installation
package is specified by the value of the MsiVersion keyword in Setup.ini. If the
versions are different or the Windows Installer engine is not already installed on the
target machine, the setup program checks the target operating system and compares it
to the requirements specified in Setup.ini. If the target system meets the requirements,
the Windows Installer engine is installed from the location specified in Setup.ini. If
the target system does not meet the requirements for installing the Windows Installer
engine, the installation terminates with an error dialog,

Except in one special case, the InstallScript engine is always installed. This engine is
installed in such a manner that it cannot be easily uninstalled. The InstallScript engine
is installed using the isscript.msi package in silent mode. This chapter takes a closer
look at the installation of the InstallScript engine installation package at the end of
this chapter. The one exception to always installing the engine is when the
InstallScript engine is to be installed from the Web site. In this scenario, the
InstallScript engine version on the Web site is checked against the version on the
target system and is installed only if it is a later version.

The final operation carried out by setup.exe at the beginning of a Standard project
installation is to launch IDriver.exe in a new process. This is accomplished using
DCOM because IDriver.exe is a COM server. The IDriver process is created through
a call to the CoCreateInstance Windows APIL This makes the IDriver process
a client of the Setup.exe process, thus forcing setup.exe to stay active so that the
IDriver.exe process does not prematurely terminate. This second process is where the
functions in InstallScript are executed.

When IDriver.exe is launched and the Install method is called, setup.exe waits
for the installation to complete. When the installation completes, setup.exe has to
clean up the temporary directory where all the files were copied that were compressed
inside. In addition, setup.exe has to remain active to handle a reboot if one occurs as
part of the installation process.

12

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

IDriver.exe

All InstallScript code is executed within the IDriver.exe process. It is important to
remember this when you use InstallScript to implement program functionality.
InstallScript is used in a Standard project to implement the user interface and it can
also be wused to implement custom actions that are inserted into the
InstallExecuteSequence table of the MSI database.

When IDriver.exe starts, it goes through a number of initialization steps that include
executing the actions that are in the InstallUISequence table of the MSI database.
After initialization is complete, the InstallScript program..endprogram function
is executed. The program..endprogram function is responsible for the user
interface, as well as initiating the actions in the InstallExecuteSequence table. Before
the IDriver.exe process terminates at the end of an installation, it creates the uninstall
log and then passes control back to setup.exe.

INITIALIZATION

In the initialization process, IDriver.exe first checks if the installation has access to
write the uninstall information to the registry. The location to which a Standard
project writes the uninstall information is:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\InstallShield Uninstall Information

If this registry location is not accessible, the installation is aborted unless elevated
privileges have been granted or the installation is being performed for the current user
and not for all users of the machine. As soon as this check is completed successfully,
IDriver.exe sends initialization progress information to the initialization dialog
launched by setup.exe.

The next step in the initialization process is to open the MSI database to verify that a
value for the ProductCode property is available and, at the same time, stream out the
support files that are contained in the Binary table. The ProductCode is an important
entity in the architecture of a Standard project and if it does not exist, the installation
cannot continue. If the ProductCode property has no value, the installation aborts.

If you open up the Standard project MSI file that you created in Chapter 2 with Orca
and go to the Binary table, you will see what is shown in Figure 4-5.

13

PART | THE FUNDAMENTALS

~* Developer Art Standard.msi - Orca == x|

File Edit Tables Transform Tools View Help
DEH|L 2R %=. &

Tables [«] [Name | Data |
Binary InztallScript [Binary Data]
Bindimage |zConfig.IM| [Binary Data]
CCPSearch 1SS criptBridae. dil [Binary Data)

CheckBox String1 033, bt [Binary Data]
Clazz
ComboBox
CarnpLocatar
Compluz

Figure 4-5: The Binary table in the Developer Art.msi file

The identifiers used in the first column of the Binary table are not necessarily the
name of the file. The four files in this table are discussed below and referenced by
their identifier in the Binary table.

InstallScript: This identifier indicates that this file is the compiled InstallScript.
The name of this file when it is streamed out is setup . inx.

IsConfig. INI: This identifier indicates an initialization file that enables the
Windows Installer engine to call InstallScript custom actions from the
msiexec.exe service process that is running the actions in the
InstallExecuteSequence table. When streamed out, this file has the same name as
the identifier. How this works is discussed in more detail later in this chapter.

ISScriptBridge.dll: This identifier specifies the DLL through which InstallScript
custom actions are implemented. This particular file in the Binary table is not
streamed out during initialization. The Windows Installer will stream this file out
it it is needed.

String1033.txt: This identifier indicates a string table that can be accessed from
InstallScript. This string table contains all the pre-defined strings used in a
Standard project, as well as all the custom strings that are generated during the
authoring process. An example of a custom string is the description of a product
feature. This file is streamed out using the same name as the identifier.

Three of the four files in the Binary table are support files and they are streamed out
to a temporary folder that is created as part of this operation. The temporary location
used is specified by the TMP or the TEMP environment variable. If neither of these
values exists then the temporary location is the Windows folder on Windows NT,

14

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Windows 2000, or Windows XP. For Windows 9.x machines the current directory is
used if neither these two environment variables are defined. Typically on Windows
2000 this temporary location is as follows:

$USERPROFILE%\Local Settings\Temp\{ProductCode}

This location is the same as described eatlier for streaming out media files that are
compressed in setup.exe except the name of the folder under the Temp directory is
the product code and not a uniquely named folder that changes each time you run the
installation. When the system vatiables are initialized, this location is used to set the
value of the SUPPORTDIR system variable that can be accessed from InstallScript.

After the support files have been extracted from the Binary table, the initialization
process enables IDriver.exe to receive error messages from the Windows Installer.
This is necessary at this time because the next operation is to execute all the actions in
the InstallUISequence table. The execution of these actions can then pass back to the
initialization dialog any action messages that are produced.

Next in the initialization process, the actions in the InstallUISequence table are
executed. As explained in Chapter 3, a sequence table has three columns, the Action,
Condition, and Sequence columns. The first step in running the actions in the
InstallUISequence table is to perform a SQL query on this table to create a view if all
the rows in the table. The SQL query string to do this looks like the following:

“WSELECT * FROM InstallUISequence ORDER BY Sequence”

This SELECT statement obtains all the rows in the InstallUISequence table and the
view that is created will have these rows in ascending order of the sequence number
assigned to each of the actions in the table. The loop that cycles through each row of
the view that is created with the SQL query ignores any action that has a sequence
number equal to or less than 0. It also ignores the ExecuteAction action. All other
actions in the InstallUISequence table are executed using the Windows Installer
function MsiDoAction as long as the condition for the action evaluates to
TRUE. Chapter 3 provides the basis for understanding this process.

Standard Windows Installer actions and non-InstallScript custom actions can be
placed in the InstallUISequence table of a Standard project. You cannot use an
InstallScript custom action or place a dialog that has been defined inside the database
tables, in the InstallUISequence table. As discussed in Chapter 3, a true Windows

15

PART | THE FUNDAMENTALS

Installer operation executes all actions and dialogs in the InstallUISequence table until
it encounters the ExecuteAction action, and then it passes control to the service
process. After the service process is completed, the actions following the
ExecuteAction action are executed. In a Standard project, all actions before and after
the ExecuteAction action are executed as part of the IDriver.exe initialization process
before any actions are executed in the InstallExecuteSequence table.

When the actions in the InstallUISequence table are executed, any setup files that
have been included in the installation package are extracted. Setup files include
billboard bitmaps and dynamic link libraries that are needed during the installation.
ISSetupFile is a custom table that holds these setup files, and it is from this table that
these files are streamed. The files are extracted when the ISSetupFilesExtract custom
action is executed. This custom action is inserted in the InstallUISequence table when
setup files are included in the installation. The setup files are extracted to the same
folder as the support files discussed eatlier. This is the location that is used to define
the SUPPORTDIR system variable.

The final step in the initialization process is to load the compiled script into memory
and set the values of the system variables. Also in this final initialization step a
connection between the IDriver.exe process and the msiexec.exe process is enabled.
It is necessary to make this connection so that InstallScript custom actions can be run
from the InstallExecuteSequence table.

PROGRAM BLOCK EXECUTION

After all the initialization work is done, IDriver.exe launches the program
block/function. When you create a Standard project, you do not explicitly create the
program block. The program block is added to setup.inx at compile time. The
program block is covered in detail later in this chapter. The program block of code
consists of three separate sections, described below.

Pre-component-move operations: Before the installation makes changes to the
target system, pre-component-move operations display a user interface and
collect information required by the installation. During this phase, the installation
should make no attempt to change the target system.

Component-move operations: This section of the program..endprogram
block launches msiexec.exe in silent mode and initiates the running of the actions

16

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

in the InstallExecuteSequence table. This is covered in the section entitled
Msiexec.exe.

Post-component-move operations: After the target machine has been
modified, the installation process typically performs any necessary cleanup of
temporary files. One of the operations is the reopening of the MSI package and
the rerunning of the file costing actions to reinitialize the Property table. Doing
this ensures that property values are available for any InstallScript calls to the
MsiGetProperty Windows Installer function. Also a dialog must be
displayed to show the result of the installation process. There are three primary
results that can occur: the installation was completed successfully, the installation
was terminated because of an error, or the end user canceled the installation. It is
also possible to display a dialog if the installation is causing a reboot but this is not
a normal practice. If you want to allow the end user to register the product or
some other similar action, this section is where you would incorporate that
functionality into the installation.

The program..endprogram block is used to call functions, which in turn call the
event handlers that you see in the Script Editor and to which you add InstallScript
code to perform the actions that are needed in your installation. All changes to the
target system need to be implemented in the msiexec.exe process, and it is only in this
process that it is possible to roll back the installation. Trying to cancel the installation
after control has been returned to the IDriver.exe process should not be permitted.

UNINSTALLATION LOG

For a Standard project installation, all script-related changes to the system are logged
to a file called Setup.ilg. If you let the Windows Installer make all the changes to the
system, as you should, then the only file that will be logged as having been added to
the target system will be the compiled script setup.inx. The compiled script is copied
to the system in order to support maintenance operations. The registry entries that
are made typically consist of the information required to launch the maintenance
session, the location of the log file and the compiled script, and the entry that is made
by the InstallScript Set InstallationInfo built-in function.

When you let the Windows Installer engine make all the changes to the target system,
there are a total of three registry entries that are logged in Setup.ilg. The first of these
entries is the information provided under the following key. This information is used

17

PART | THE FUNDAMENTALS

by the Add/Remove Programs applet. The key shown here is for the Developer Art
installation that was created in Chapter 2.

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\InstallShield {38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

The GUID that is the last part of the last key is the value of the ProductCode
property. Of course the installation that you created for the Developer Art application
will have a different value for the ProductCode property. With a few differences, the
value names and values written under this key duplicate the values that the Windows
Installer writes in a different location in the registry. One of the values that is written
under this key is the location of the Setup.ilg file. The location where the log file is
placed on the target system can be controlled through the use of the
DISKITARGET system variable that is available from your script. You can use the
Log File Viewer to look inside the log file. The Log file Viewer is launched from the
Tools shortcut menu found under Start\Programs\InstallShield.

The second registry entry that is always placed in the log file relates to uninstallation
information. For the Developer Art installation, this entry is:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\InstallShield Uninstall Information\
{38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

The only value used that is written under this registry key is the text string that is
displayed in the initialization dialog when a maintenance operation is initiated. The
third registry entry that will be created by default is the application information key.
This key identifies the name of the company that produced the software, the name of
the application that is installed, and the software version. This location in the registry
is used to define other keys and values that are necessary for the application to
function propetly. For the Developer Art application, this entry is:

HKEY LOCAL MACHINE\SOFTWARE\InstallShield Software Corporation\
Developer Art\1.00.0000

Note that there are no values created under this key. To create values in this location,
you could use the Registry table in the MSI database and define the values under this
key.

There are four system variables that hold values that are written to the log file. You
can use three of these system variables in your script to modify the default values that

18

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

are written to the log file and to the registry. These system variables are discussed in
the following list:

UNINST: This system variable contains the command line required to launch
IDriver.exe to perform an uninstallation of the product. Even though this system
variable is given a default value it is not used. This variable is a hold over from
older versions of the InstallShield Professional product and is only provided for
the purpose of backward compatibility.

UNINSTALLKEY: This system variable contains the name of the registry key
under which all the uninstallation information will be written. For the Developer
Art application the default value of this system variable is as follows:

InstallShield {38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

UNINSTALL_DISPLAYNAME: This system variable holds the name to be
used in the Add/Remove Programs applet. For the Developer Art application
the default value of this vatiable is as follows:

Developer Art Standard

UNINSTALL_STRING: This system vatiable contains the command line
required to launch IDriver.exe to perform an uninstallation of the product. The
default value of this system variable for the Developer Art application is as
follows:

C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\IDriver.exe
/M{38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

You do not want to make any modifications to the UNISTALL system variable
because this value is not used. The other three system vatiables can be modified but
you want to make sure that you do not disable the uninstallation functionality for
your application.

Msiexec.exe

To make changes to the target system, the Windows Installer engine is launched in
silent mode. Chapter 3 explained that the Windows Installer engine runs only the
actions in the InstallExecuteSequence table when there is a silent install. On Windows
NT, 2000, or XP, the actions in the InstallExecuteSequence table are executed by an

19

PART | THE FUNDAMENTALS

NT service. This permits the administrator to grant elevated installation privileges in a
managed environment. In this scenario, a person without administrative privileges
can install an application when the system administrator has granted the privilege.

The IDriver.exe process uses the MsiInstallProduct function to launch the
Windows Installer engine in silent mode. The first two actions with positive
sequence numbers in the InstallExecuteSequence table are custom actions that are
used to initialize the environment for calling custom actions implemented using
InstallScript. A dynamic link library called ISScriptBridge.dll exports the targets of
these two custom actions. The first custom action, ISMsiServerStartup, is immediately
followed by the ISStartup custom action. These two custom actions work together
and need to be the first two actions in the InstallExecuteSequence that have positive
sequence numbers.

The ISScriptBridge.dll is streamed into the Binary table at build time and is streamed
out of this table by the Windows Installer when it executes the ISMsiServerStartup
custom action. This ISMsiServerStartup custom action performs a number of
initialization actions. The main purpose of the ISMsiServerStartup custom action is to
enable a connection between the msiexec.exe process and the IDriver.exe process.
Since all InstallScript code runs in the IDriver.exe process, this connection is
necessary whenever any InstallScript custom actions are run. Because of the
importance of this custom action and the ISStartup custom action you must not
make any changes in the location of these custom actions. They need to stay as the
first two custom actions in the InstallExecuteSequence table.

The two-way communication between the msiexec.exe process and the IDriver.exe
process is necessary so that you can call Windows Installer functions from within
your InstallScript custom actions. Remember that the script engine and the script are
running in the IDriver.exe process and the Windows Installer engine, msidl, is
loaded in the msiexec.exe process. The Windows Installer engine is what exports the
Windows Installer functions. Since the functions exported by msi.dll require a handle
to the currently running session of the Windows Installer, it is not possible to just
load msidll into the IDriver.exe process because there would be no valid handle
available. Therefore, in order to call Windows Installer functions from a script
running in the IDriver.exe process you need to have this two-way communication
between these two processes. A more complete discussion of this mechanism is given
at the end of this chapter.

20

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

When the two-way communication between the IDriver and the Msiexec processes is
established, the Windows Installer makes changes to the target system by running the
remaining actions, up to the clean-up custom actions. This is the standard approach,
discussed in detail in Chapter 3. The final custom action that is executed in the
msiexec.exe process is a clean-up custom action. The type of clean up that is
performed depends on what happened with the installation. There are four
possibilities; the installation was successful, the user terminated the installation before
it could finish, there was a Windows Installer error, or the installation was suspended.

In Figure 4-6 you can see that there are four custom actions in the
InstallExecuteSequence table that have negative sequence numbers. Part of the
functionality of the Windows Installer is to execute one of these actions depending
on the outcome of the installation. We have already discussed this mechanism in
Chapter 3 as it relates to the showing of the correct dialog at the end of an
installation. In the Chapter 3 discussion we were talking about the dialogs that have
negative sequence numbers in the InstallUISequence table. The functionality is the
same in the InstallExecuteSequence table and in this table this mechanism is used to
perform the proper clean up.

~*Developer Art Standard.msi - Orca 18 x|
File Edit Tables Transform Tools View Help

D 2R =B

Tables |:| Action | Condition | Sequence | -
InstallE xecuteS equence |5 CleanUpSuspend -4
InstallllSequence 15 Cleanl pF atalE =it -3
|zolatedComponent |SCleanpUserT erminate -2
LaunchCondition I15CleanUpSuccess -1
ListBox ISk ziServerStartup 1
Liztview 15 Startup 2
LockPermizssions ISR ollbackCleanup 3
MIME OnCheckSilentinstall Mot [nstalled 4
Media AppSearch 25 _

Figure 4-6: The clean up custom actions in the InstallExecuteSequence table.

It is clear from Figure 4-6 which negative sequence number comes into play for each
of the possible outcomes of the installation. Since clean up is so important you should
not change or remove any of these four custom actions that are associated with the
clean up operations.

This completes the overview of the fresh install run-time architecture of a Standard
project. We have gone into some detail here to provide a basis for understanding the
run-time architecture of other installation modes. Many of the mechanisms already

21

PART | THE FUNDAMENTALS

described will apply. The next section discusses how the run-time architecture of a
fresh install of a Basic MSI project differs from what we have just covered.

Fresh Install Using a Basic MSI Project

Unlike with a Standard installation project, you can launch a Basic MSI project two
different ways. You can use the traditional approach and use setup.exe to launch the
installation or you can launch the installation by double-clicking in Windows Explorer
on the .msi file. This second approach will only work if the Windows Installer is
already installed on the target machine. As you saw in the last section, launching a
Standard project installation must begin with running setup.exe.

With a Basic MSI project, there are two scenarios. The first scenario is where there
are InstallScript custom actions that have been implemented. The second scenario is
where there are no InstallScript custom actions incorporated into the MSI database.

Basic MSI Project With InstallScript Custom Actions

There are four processes involved in this particular scenario. The basic operations
that are carried out in these four processes are shown in Figure 4-7.

As with the previous discussion about the run-time architecture for a Standard
project, we are only talking about an installation as normally implemented with a full
user interface from media with no reboot of the system required during the
installation.

SETUP.EXE

There are a few differences in how the Setup.exe process works for a Basic MSI
project fresh install compared to how it works for a Standard project fresh install. The
entire up-front initialization operations are the same for the two installation types.
Any command line options passed to setup.exe with the /v switch are passed on to
msiexec.exe. When this operation is complete, the Setup.exe process terminates
unless it is required to clean up any media files that were compressed inside it. Media
files are compressed and streamed out of setup.exe in the same fashion as described
in the section on Standard project installs.

22

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Process 1 Process 2 Process 3 Process 4
Setup.exe Msiexec.exe |Driver.exe Msiexec.exe
I1SScriptBridge.dll, msi.dll I1Script7.dll, IUser7.dll, objps7.dlIl 1SScriptBridge.dll, msi.dll
© Start the installation by launching | © The Msiexec.exe client process © |Driver.exe executes any Q© The service process gets launched
Setup.exe that will perform the gets launched by Setup.exe. =) InstallScript function calls. by the execution of the
following actions. ExecuteAction action in the

InstallUlSequence table.

7

» Launch IDriver.exe and extract > Initialize Setup.inx by loading it
> Parse the command line and find the InstallScript related files from into memeory, setting system
: > it)
out where Setup.exe is located. the Binary table. constants, etc. :E\igahllléfieeilz c;(:g;:::g;dba\éveen
v v IDriver process so that InstallScript
> > Initialize the connection between > Enable a connection with the custom actions can be run out-of-

If password protected then obtain
the correct password and compare
with value entered by the user.

process and still be able to call
Windows Installer functions.

e —

> Perform the standard and custom

this Msiexec process and the
|Driver process so that
InstallScript custom actions can
v be run out-of-process and still be
able to call Windows Installer

Msiexec processes.

» This process will terminate when

» Install the Windows Installer the Msiexec.exe client process

functions. . X N > actions that are inserted in the
engine if not already installed or terminates since this process is a InstallExecuteSequence table.
there is an earlier version on the 7 client of that process.
target machine. » Msiexec.exe runs the actions in

the InstallUI_Sequence_table and » Based on the out come of the

then the Msiexec service process

N . installation perform the

» Display the splash screen if is launched using the i
IncIFL)JdZd andihen display the ExecuteAction action. fr?epr[))l:ir\l/?reoﬂjﬁ?_ up to shutdown
setup initialization dialog if not v
suppresssed or it is a silent install.

A

Execute actions that come after P . X

v the ExecuteAction action in the < Return control to the Msiexec
Ul sequence table and then client process.

display the finish dialog

\4

If necessary uncompress any

media files compressed inside . appropriate for the state of the
Setup.exe to a temporary location. ; .
installation.

V7 v

» Install IDriver.exe and the ceeeese

InstallScript engine that are
required to implement

InstallScript custom actions.

Launch Msiexec.exe with the
appropriate command line
arguments passed to Setup.exe.

A\

If there are any media files
compressed inside Setup.exe wait
for the end of the client Msiexec
process and thenclean up these
files. Otherwise terminate the
process as soon as the Msiexec
process is launched.

Figure 4-7: Basic MSI project run-time architecture on Windows N'T/2000/XP for a fresh
install nsing InstallScript custom actions.

MSIEXEC.EXE — CLIENT PROCESS

The operation of msiexec.exe in the client process is the standard Windows Installer
approach, as described in Chapter 3. The standard actions, custom actions, and
dialogs that are inserted in the InstallUISequence table are executed in ascending
order of the positive sequence numbers that were assigned during the installation
package’s build. The first action in the UI sequence table is the ISMsiServerStartup

23

PART | THE FUNDAMENTALS

custom action, with a sequence number of 1. This is a custom action that is
implemented in ISScriptBridge.dll and has as its main responsibility the starting of the
IDriver.exe process, the extraction of the InstallScript related files from the Binary
table, and the initiation of a connection with this process. The script-related files that
are streamed in the Binary table are streamed out to a temporary location. This
location is set as the value of the SUPPORTDIR InstallScript system variable. This is
the same location as described for the Standard project install.

As with a Standard project the purpose of making a two-way connection between the
msiexec.exe process and the IDriver.exe process is so that any InstallScript custom
actions can be executed in the IDriver.exe process. The connection is reference
counted so that IDriver.exe does not terminate prematurely when there are other
msiexec.exe processes that still need to run InstallScript custom actions. As already
described for a Standard project this two-way connection allows an InstallScript
custom action to be able to call Windows Installer functions and access the running
database even though they are running in different processes.

Once the two-way connection has been initialized, the Windows Installer processes
all the actions and dialogs in the InstallUISequence table, as described in Chapter 3.
When msiexec.exe reaches the ExecuteAction action, the running of the
InstallExecuteSequence table in the service process begins. When these actions are
completed, control returns to the client msiexec.exe process where any final actions
coming after the ExecuteAction action are executed and a dialog is displayed
indicating that the installation has been completed.

IDRIVER.EXE

The IDriver.exe process for a Basic MSI installation has only a few initialization
operations that is has to carry out before it is ready to start executing InstallScript
custom actions. The first initialization action is to load the compiled script into
memorty and to set the values of all the InstallScript system variables. The next and
final thing that it does before it is ready to start executing InstallScript custom actions
is to enable the connection between itself and the msiexec.exe process.

Once the IDriver.exe process completes the initialization, it waits to receive requests
to execute a particular function in the InstallScript code that is loaded into memory.
This process services both the client msiexec.exe process and the service msiexec .exe
process calls to an InstallScript custom action.

24

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

MSIEXEC.EXE — SERVICE PROCESS

When the Windows Installer engine is launched in the service process, it has only one
initialization step that has to be performed. The connection with the IDriver.exe
process has to be made so as to make Windows Installer functions available to the
running script. Since the InstallScript-related files have already been extracted from
the Binary table in the msiexec.exe client process, this does not have to be performed
here.

With the initialization operations complete, the msiexec.exe service process runs the
actions in the InstallExecuteSequence table, as described in Chapter 3. At the end of
the execute sequence table, a clean-up custom action runs to shut down the
connection to the IDriver.exe process. Once the shutdown is complete, the control
of the installation returns to the msiexec.exe client process and any actions that follow
the ExecuteAction action are executed. When these are completed, a dialog indicating
the results of the installation is displayed. When the end user clicks the Finish button,
the installation is over.

Basic MSI Project Without InstallScript Custom
Actions

In a Basic MSI project with no InstallScript custom actions, the InstallScript engine is
not included as part of the media files. Setup.ini will indicate that there is no script
involved with the installation when setup.exe is launched. Setup.exe still performs the
same functions described for a Basic MSI project that includes InstallScript custom
actions, with the exception of installing the InstallScript engine. The operations that
are carried out with this scenario are shown in Figure 4-8. The details of how the
Windows Installer implements an installation are discussed in Chapter 3.

PART 1

THE FUNDAMENTALS

Process 1
Setup.exe

Process 2
Msiexec.exe, msi.dll

Process 3
Msiexec.exe, msi.dll

© Start the installation by launching
Setup.exe that will perform the
following actions.

© The Msiexec.exe client process
gets launched by a call to
CreateProcess from Setup.exe.

\%

> Parse the command line and find
out where Setup.exe is located.

\%

» |f password protected then obtain
the correct password and compare
with value entered by the user.

%

> Msiexec.exe runs the actions
in the InstallUISequence table
and then the Msiexec service
process is launched using the
ExecuteAction action.

© The service process gets launched
by the execution of the
ExecuteAction action in the
InstallUlSequence table.

» Perform the standard and custom
actions that are inserted in the
InstallExecuteSequence table.

%

> Install the Windows Installer
engine if not already installed or
there is an earlier version on the
target machine.

> Execute actions that come after
the ExecuteAction action in the
Ul sequence table and then
display the finish dialog
appropriate for the state of the
installation.

> Return control to the Msiexec
client process.

<

4

» Display the splash screen if
included and then display the
setup initialization dialog if not
suppresssed or it is a silent install.

\%

» |f necessary uncompress any
media files compressed inside
Setup.exe to a temporary location.

» Launch Msiexec.exe with the
appropriate command line
arguments passed to Setup.exe
with the /v switch.

» If there are any media files
compressed inside Setup.exe
wait for the end of the client
Msiexec process and thenclean
up these files. Otherwise
terminate the process as soon as
the Msiexec process is launched.

Figure 4-8: Basic MSI project run-time architecture on Windows NT/2000/XP for a fresh

wnstall with no InstallSeript custom actions.

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Launching a Basic MSI Project From the MSI File

The architecture of a Basic MSI project allows for the launching of the installation by
directly launching the .msi file in Windows Explorer or from the command prompt
with a command similar to the following:

msiexec /i "Developer Art.msi"

When a Basic MSI project is launched in this fashion, none of the operations carried
out by setup.exe are performed. Such an approach works only if the Windows
Installer engine is already present on the target machine. If InstallScript custom
actions are used, the InstallScript engine must also be already installed. Without using
setup.exe, you cannot password protect your installation. The sole reason that a
custom action is used to launch IDriver.exe when InstallScript custom actions are
being used is to permit the launching of a Basic MSI project as discussed here.

Maintenance Install Run-Time
Architecture

As discussed eatlier in the book, when an application is installed for the first time, any
further install actions relative to the application come under the heading of
maintenance. Normally with either a Standard project or a Basic MSI project, there
are three types of possible maintenance operations. These are a Modify operation, a
Repair operation, or a Remove operation. These operations are fully discussed in
Chapter 1.

The end user can initiate a maintenance installation in two different ways. They can
try to run the installation again by running setup.exe or the .mst file if it is a Basic MSI
project, ot they can use the recommended method of using the Add/Remove
Programs applet to launch a maintenance installation.

There is a generic issue for both a Standard and a Basic MSI project when the MSI
database and the application files are compressed inside setup.exe. This issue atises
when an application is installed where all files are compressed and then the end user
tries to perform a maintenance operation that requires additional files to be copied to

27

PART | THE FUNDAMENTALS

the target machine. Additional files need to be copied when performing a Repair or a
Modify operation that adds a new feature to those that have already been installed.

When an end user tries to run this kind of maintenance operation, an error message is
displayed to tell the end user that the source is not available. This error occurs
because the maintenance operation is looking for the .msi file, which is compressed
inside setup.exe, and is not available. The .msi file is also not available for performing
maintenance operations, which require the copying of files when the initial installation
is performed from a Web site. This potential problem is handled by caching the .msi
file on the target system using the /b switch with setup.exe when the end user runs
the initial installation. This switch takes as its argument the location where the end
user wants the .msi file compressed inside setup.exe to be cached. An example of this
command line is as follows:

setup /b"C:\InstallCache\Developer Art"

When run from the command line like this, the .msi file is copied to the location that
is specified after the /b switch and then the installation is run from that location. This
will then make the registry entry for the source location be the cached location. With
this cached location as the source location, any maintenance operation that needs
source files can get them, and the maintenance operation will not fail. This command
line switch works for both Standard and Basic MSI projects.

Maintenance Install Using a Standard
Project

After an application is installed, the end user can access a maintenance mode by either
running setup.exe again or going to the Add/Remove Programs applet. When re-
running the installation package launches a maintenance operation, the run-time
architecture is as shown in Figure 4-9.

28

CHAPTER 4 THE

INSTALLSHIELD DEVELOPER RUN-TIME

ARCHITECTURE

Process 2 Process 3
F;L?ﬁ::(el |Driver.exe Msiexec.exe
IScript7.dll, IUser7.dll, objps7.dll 1SScriptBridge.dll, msi.dll
© Start the installation by launching | © IDriver.exe controls the running of | © The Windows Installer engine in
Setup.exe that will perform the the user interface and executes the service process makes all the
following actions. * anylnstallScript function calls. * changes to the target system so as
to take advantage of the special
v v privileges available to an NT
- service.
> Parse the command line and find » Evaluate the user privilege
out where Setup.exe is located. level, verify that the Setup.ilg
log file exists, and then extract .
the necessary files from the » Enable a connection between
. Binary table. IScript7.dll and msi.dll so as to be
> If password protected then obtain able to call Windows Installer
th.e correct password and compare functions from InstallScript.
with value entered by the user. > Enable the script based user
v interface to be able to receive v
L progress messages from the » Execute all the standard actions
» Stream out any media files that Windows Installer engine. and custom actions that have
are compresssed inside Setup.exe been built in to the
to a temporary location. v Instal ExecuteSequence table.
> Process all the actions in the v
InstallUISequence table skipping
any actions with negative ;
» Display splash screen if available seguence numbers gnd skipping g :ﬁg%ﬁr‘:igﬁfﬁiﬁféﬁg P
and also display the setup the ExecuteAction action. This IDriver.exe process
initialization dialog. will extract any setup files and eep ’
any billboards included in the
installation to SUPPORTDIR.
> Install the Windows Installer
engine if not already installed or
there is an earlier version on the > Initialize Setup.inx by loading it
target machine. into memory, setting system
constants, etc. Enable a
connection with the Msiexec
» Install IDriver.exe and the process.
InstallScript engine that are
required to implement the v
Standard project installation. > Run all pre maintenance dialogs
v and operations to collect
. information necessary for
» Launch |Driver.exe process. performing the maintenance
operation.
» Wait for the end of the
mstallatlon._Then clean up the & * Close the open MSI pakcage and
temporary files and possibly launch the Msiexec service
launch a reboot of the machine if process using a silent user
one is required in the middle of interface level.
the installation.
> Try to reopen MSI package and
run all post maintenance dialogs
and operations required after the
target system has been :
modified.
»

Make changes to target system
required by the log file and
modify or delete the
uninstallation log as appropriate
and then return back to
Setup.exe.

Figure 4-9: Standard project run-time architecture on Windows NT/2000/XP for a
maintenance installation initiated from setup.exe.

PART | THE FUNDAMENTALS

There are three processes that run in this type of maintenance scenatio. Setup.exe
runs just as if this were a fresh install. It displays a password dialog if necessary,
displays a splash screen if one is included, and installs the InstallScript engine. There is
no difference in the function of setup.exe from what was shown for a fresh install of
a Standard project (Figure 4-1).

Setup.exe instantiates the IDriver.exe process and this gets the IDriver.exe process
performing all the required initialization operations. Unlike with setup.exe, there are
some differences in the IDriver.exe process from what was shown in Figure 4-1 for
the fresh install of a Standard project.

The first operation is to obtain the product code from the database and then verify
that the Setup.ilg file exists. We have already discussed the installation information
registry entries made for a Standard project during a fresh install. These registry
entries are covered again below where we talk about initiating a maintenance
operation from the Add/Remove Programs applet. If the Setup.ilg file is missing, the
installation is treated like a fresh install instead of a maintenance operation except, of
course, the operation will be much faster because the files are already installed and do
not have to get copied again. The need for a maintenance operation is verified by
executing the MsiGetProductInfo Windows Installer API function to see that
the application has already been installed.

Once the IDriver.exe process has detected that the application is already installed, it
needs to determine if this is to be a standard maintenance installation where the end
user is offered the three options of Modify, Repair, and Remove, or whether the
project was created so that only an uninstallation is available. This option for Standard
projects is indicated by the DoMaintenance keyword in Setup.ini. If this keyword is
set to Y, the end user is offered the standard maintenance options. If this keyword is
set to N, the end user can only uninstall the application. This entry is created in the
Setup.ini file through the Enable Maintenance property in a Standard project. Chapter
5 covers this project property.

The second difference in how the IDriver.exe process operates for a maintenance
installation is instead of calling the MsiInstallProduct Windows Installer API
function; it calls the MsiConfigureProductEx API function instead. During a
fresh install of a Standard project, the MsiInstallProduct function was called
from within the program..endprogram block. For a maintenance install, this
operation is handled through a direct call by the IDriver.exe process to an event

30

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

handler function. When the DoMaintenance keyword in Setup.ini has a value of Y,
the OnMaintenance event handler is called. However, when the DoMaintenance
keyword has a value of N, the IDriver.exe process calls the OnUninstall event
handler. These event handlers in turn call the MsiConfigureProductEx
function with the appropriate command line. When the Windows Installer in the
msiexec.exe process has performed the requested maintenance changes to the system,
control is returned to the IDriver.exe process. The event handlers are covered in
more detail in Chapter 8.

The completion of the maintenance operation consists of the IDriver.exe process
performing any post-maintenance operations, as well as displaying any dialogs
required by the installation design. IDriver.exe also reads the log file that was created
during the initial application installation and performs any maintenance operations
mandated by this log file. In a Standard project, this normally consists of modifying or
removing the registry information that was written during the initial installation. The
location of the log file is written in the registry at install time. The location of this
entry in the registry is covered below in the discussion about launching a maintenance
operation from the Add/Remove Programs applet.

When you launch a maintenance operation from the Add/Remove Programs applet,
setup.exe is not involved and you have an environment like what is depicted in Figure
4-10.

The Add/Remove Programs applet launches IDriver.exe directly using a /M switch
to indicate that a maintenance operation is being initiated. The location of IDriver.exe
is obtained from the registry and the uninstall information that is written there when
an application is first installed. Using the Developer Art installation program created
in Chapter 2, the uninstallation information key created in the registry is as follows:

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\InstallShield {691BD8FA-BF60-4A36-8A0D-F02AB035193D}

Under this registry key, there is a value that provides the command line to the
Add/Remove Programs applet for running IDriver.exe in maintenance mode. For
the Developer Art application this value name and value data pair is:

UninstallString=C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\
IDriver.exe /M{691BD8FA-BF60-4A36-8A0D-FO02AB035193D}

31

PART 1

THE FUND

AMENTALS

Process 1
IDriver.exe
IScript7.dll, IUser7.dll, objps7.dll

Process 2
Msiexec.exe
I1SScriptBridge.dll, msi.dll

© |IDriver.exe is launched by the
Add/Remove Programs applet.
IDriver.exe controls the running of
the user interface and executes
any InstallScript function calls.

© The Windows Installer engine in
the service process makes all the
'* changes to the target system so as
to take advantage of the special
privileges available to an NT

%

Evaluate the user privilege level,
verify that the Setup.ilg log file
exists, and then extract the
necessary files from the Binary

A\

service.

Enable a connection between
IScript7.dll and msi.dll so as to be
able to call Windows Installer
functions from InstallScript.

A\

table.
Vv

» Enable the script based user
interface to be able to receive
progress messages from the
Windows Installer engine.

4

Execute all the standard actions
and custom actions that have
been built in to the
InstallExecuteSequence table.

A\

V

Process all the actions in the
InstallUISequence table skipping
any actions with negative
sequence numbers and skipping
the ExecuteAction action. This will
extract any setup files and any
billboards included in the
installation to SUPPORTDIR.

A\

%

Perform the appropriate clean up
and return control back to the
IDriver.exe process.

A\

Y4

» |nitialize Setup.inx by loading it
into memory, setting system
constants, etc. Enable a
connection with the Msiexec

process.

» Run all pre maintenance dialogs
and operations to collect
information necessary for
performing the maintenance
operation.

Y

» Close the open MSI pakcage and
launch the Msiexec service
process using a silent user
interface level.

» Try to reopen MSI package and
run all post maintenance dialogs
and operations required after the
target system has been

o
modified. -

%

» Make changes to target system
required by the log file and
modify or delete the
uninstallation log as appropriate
and then return back to
Setup.exe.

Figure 4-10: Standard project run-time architecture on Windows NT/2000/XP for a
maintenance installation initiated from the Add) Remove Programs applet.

32

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Using this command line the Add/Remove Programs applet launches IDriver.exe
and passes to it the ProductCode of the application with the /M switch that has the
ProductCode as its argument.

The IDriver.exe process then performs all the initialization operations, as it would do
if this were a fresh install of a Standard project. Once the initialization is complete,
then just as described above, the Msiexec process is launched using the
MsiConfigureProductEx Windows Installer API.

The Windows Installer performs all the target system modifications. Then, control
returns to the IDriver.exe process, where the final operations are performed and
dialogs are displayed. Part of these final operations consists of reading the Setup.ilg
file created during the initial installation and performing any actions indicated by this
file. The location and name of this file is found under the same uninstall key in the
registry as shown above. A value name value data pair under this key provides the
location of the log file. For the Developer Art application this value is:

LogFile=C:\Program Files\InstallShield Installation Information\
{691BD8FA-BF60-4A36-8A0D-F02AB035193D} \Setup.ilg

As already discussed earlier, using the DISKITARGET system variable you can
modify this location for the log file. Remember that all system changes should be
performed in the msiexec.exe process using the standard Windows Installer actions
and InstallScript or native custom actions. The only operations that should be carried
out in the IDriver.exe process during an installation are those related to gathering
information and displaying a user interface. When this process is followed, the
responsibility for modifying the target system rests with the Windows Installer. This
way, you gain all the benefits provided by this technology.

Maintenance Install Using a Basic MSI
Project

A maintenance operation on an application that was initially installed using a Basic
MSI project has the same run-time architecture as described above for the fresh
install of that application. The fresh install run-time architecture for a Basic MSI
project is shown in Figure 4-7 and in Figure 4-8. The reason that a maintenance
operation has the same run-time architecture is because the Windows Installer
handles everything,

33

PART | THE FUNDAMENTALS

If the end user launches a maintenance operation by running setup.exe on the original
package, all that happens is that setup.exe performs that same initialization operations
as for a fresh install and then launches the client Msiexec process. The Windows
Installer detects that the application is already installed and performs the appropriate
actions. The same thing is true if the end user launches the maintenance operation
from the Add/Remove Programs applet. The only thing that is different here is that
setup.exe is not involved. When InstallScript custom actions come into play in any
Basic MSI project, an IDriver.exe process is created to handle the calls to these
custom actions. The run-time architecture in this case is the same as shown in Figure
4-7.

Regardless of whether InstallScript custom actions are used in a Basic MSI project,
this installation type does not create a Setup.ilg file nor does it create any special
registry entries other than those that are created by the Windows Installer. When you
are working with a Basic MSI project, the uninstallation log is the registry itself. The
Windows Installer writes many entries to the registry and these entries are located
under many different keys.

There are many other installaion modes that are possible when using either a
Standard project or a Basic MSI project. The next section takes a look at a few of
these other installation modes.

Run-Time Architecture for Other
Install Modes

Up to this point we have covered the architecture for running fresh and maintenance
installs using both Standard projects and Basic MSI projects. There are two other top-
level actions recognized by the Windows Installer. This section takes a look at these
two other install modes and relates them to the fresh install and maintenance install
architectures already discussed. We also look at how localized installations are
managed.

We begin this discussion with the two other top-level actions defined by the
Windows Installer.

34

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

Administrative Installations

An administrative installation is not an installation in the true sense of the word. An
administrative installation is meant to target a network location to which people on
the network come and run the actual install of the application. During an
administrative installation, no registry entries are made, no shortcuts are created, and
the application cannot be launched. The only thing that takes place during an
administrative installation is that any application source files that are compressed in
cabinet files are uncompressed. The primary reason for uncompressing the source
files for the application is so that the administrative image can be upgraded using a
patch.

Standard Project

For a Standard project an administrative installation can be launched by simply
passing the /a switch on the command line to setup.exe. This command line would
look like the following:

setup /a

Basic MSI project

For a Basic MSI project, the end user can launch an administrative installation in one
of two ways. They can do what was described above for a Standard project and pass
the /a switch to setup.exe or they can pass the /a switch to the Windows Installer
engine. Running the Windows Installer engine at the command line would look like
the following:

msiexec /a <path to .msi file>

With a Basic MSI project, the Windows Installer engine does all the work similar to
what is shown in Figures 4-7 and 4-8. The difference from a fresh install is that it is
the actions in the AdminUISequence and AdminExecuteSequence tables that are
executed instead of the actions in the InstallUISequence and the
InstallExecuteSequence tables.

35

PART | THE FUNDAMENTALS

Application Advertisement

When you advertise an application, you are making it available to the end user
without actually placing the source files on his or her machine until they want to use
the application. An advertised application appears in the Add/Remove Programs
applet and also displays a shortcut icon on the Start\Programs menu. When an
application is advertised, all registry entries related to COM and file associations are
made on the target machine so that the only thing that is left to do is copy the
application’s source files and make the non-COM related registry entries. The copying
of files occurs when the end user attempts to run the application from the
Start\Programs menu or tries to open a file where the application executable is
registered as the extension server. Advertisement is a primary component of the

Windows 2000 deployment mechanism. Chapter 3 discusses advertisement in more
detail.

When an application is advertised, the actions in the AdvtExecuteSequence table are
executed. There are no user interface actions implemented during advertisement.
When an advertised application is first launched from the Start\Programs menu, the
Windows Installer runs the installation with a basic user interface level. This means
that only the actions in the InstallExecuteSequence table are executed, but the
Windows Installer engine displays a built-in progress dialog during this operation. At
the end of this operation, the application is launched.

Advertisement consists of two separate operations. First the application is advertised
so it is made available to the end user, but the application is not actually installed.
When the end user attempts to run the application that appears to be installed, the
installation runs, displaying only a small progress dialog. Then the application is
launched and the end user can use it. It is important to understand these two separate
operations that take place when we discuss how advertisement is implemented for
both Standard projects and Basic MSI projects.

Standard Project

You can advertise an uncompressed Standard project on a per-machine basis by
passing to setup.exe the /j switch. When you petform this operation, the run-time
architecture looks very much like what is shown in Figure 4-1 for a fresh install. The
main difference is that the IDriver.exe process runs all the actions that are in the
AdvtUISequence table instead of the actions in the InstallUISequence table. By

36

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

default, the AdvtUISequence table has no actions inserted in it and this is the way it
should remain.

After the script is initialized, the IDriver.exe process calls the undocumented event
handler named OnAdvertisement instead of running the program
..endprogram block as in a fresh install. The = OnAdvertisement event
handler in turn calls the documented OnAdvertisementBefore and
OnAdvertisementAfter event handlers. These two documented event
handlers are no-ops by default. Between these two event handlers, a function is called
that launches the msiexec.exe process to run the actions in the AdvtExecuteSequence
table. These actions make the registry entries for the application and place the
shortcut on the Start\Programs menu.

When the advertised application is run for the first time, the operation is completely
handled by the Windows Installer and no aspects of the Standard project come into
play. The Windows Installer runs the installation, as described above, with a basic
user interface level so only the actions in the InstallExecuteSequence table are
invoked. In the terms of a Standard project, this constitutes a silent install because the
user interface sequence is not run.

By default, an advertised Standard project application cannot be installed without
specific prior action by the setup developer. The InstallExecuteSequence table of a
Standard project contains the OnCheckSilentInstall custom action that is inserted just
prior to the LaunchConditions standard action. The OnCheckSilentInstall custom
action checks if the application installation has been launched in silent mode without
going through setup.exe. How this can be accomplished at the command line is
discussed in the next section on Basic MSI projects. This scenatio also occurs when
an advertised Standard project application is first launched from the Start\Programs
menu.

The OnCheckSilentInstall custom action runs only if the application has not already
been installed. When it runs, it checks if the setup is script driven. If the installation is
identified as script driven, the custom action returns control to the Windows Installer
and the installation proceeds. A Standard project installation is only identified as script
driven if it has been launched using setup.exe. If an advertised application is being
launched from the Start\Programs menu, the OnCheckSilentInstall custom action
sees that the installation is not script driven and calls the OnMsiSilentInstall
event handler.

37

PART | THE FUNDAMENTALS

The default implementation of the OnMsiSilentInstall event handler aborts
any attempt to run the installation of an advertised application. If you want your
application to be advertised propetly, you need to modify the default implementation
of the OnMsiSilentInstall event handler. The easiest thing that you can do is
to make the OnMsiSilentInstall event handler a no-op by removing all the
code in this function. This will have the effect of allowing an advertised application to
be fully installed.

If you have a Standard project where you do not want to support advertisement, then
it might be a good idea to place a custom action in the AdvtExecuteSequence table to
prevent the user from advertising the application. You could also place some code in
the OnAdvertisementBefore event handler to stop the advertisement of an
application, but this would be effective only if the advertisement was launched using
the /j switch with setup.exe. This would not prevent the end user from advertising
the application directly from the .msi file as described in the next section.

Currently, it is not possible to advertise a compressed Standard project without first
running an Administrative installation to uncompress the files. It is also not possible
to advertise a Standard project for the current user when you start with setup.exe. It is
only possible to advertise a Standard project for all users of the machine unless the
.mst file is run directly, as described in the next section.

Basic MSI Project

You can advertise an uncompressed Basic MSI project by passing the /j switch to
setup.exe, just as with a Standard project. For a Basic MSI project, this switch is
passed on to the Windows Installer so the architecture here looks very similar to that
shown in either Figure 4-7 or Figure 4-8, depending on whether InstallScript custom
actions are used. The only difference is that now the actions in the AdvtUISequence
and the AdvtExecuteSequence tables are run, instead of the actions in the
InstallUISequence and InstallExecuteSequence tables.

You can also advertise a Basic MSI project by passing the appropriate command line
to the Windows Installer engine. An example of such a command line is:

msiexec /j[ulm] <path to .msi file>

Here the optional arguments to the /j switch indicate whether you want to advertise
the application for the current user (u) or you want to advertise the application for all

38

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

usets of the machine (m). When you just use the /j switch without any arguments,
you advertise for all users of the machine.

If you take care to make changes to the OnMsiSilentInstall event handler in
a Standard project, you can advertise the .msi file created as part of the Standard
project using the above command line. Just as with a Standard project, you cannot
advertise a compressed Basic MSI project with out first performing an Administrative
install.

Localized Installations

InstallShield Developer has the ability to create installation projects where the end
user can select the language in which the user interface runs. It is also possible to
create installation projects that display the language of the target operating system
when the end user is not provided the opportunity to select the language used in the
installation.

The approach used to make a particular language available for a certain installation is
very different for a Standard project than it is for a Basic MSI project. However, the
mechanism for deciding which language to display in the user interface is the same
for both project types. This is because the multiple language functionality of
InstallShield Developer is handled by setup.exe and this executable is the same for
both Standard and Basic MSI projects.

If you decide at build time to offer a language selection dialog to the end user, the
installation will be run in the language that the end user selects. The only problem that
can arise here is if the target system does not support the selected language. In this
case, the user interface will contain garbage characters. If you choose to have a
language selection dialog and provide only one language, this dialog is not displayed
and the installation is run in the one language that is included in the installation
project. Whether a language selection dialog is to be displayed when more than one
language is available is indicated in Setup.ini, as described eatlier in this chapter. In
this instance the following keyword and value will be found under the [Startup]
section.

EnableLangDlg=Y

39

PART | THE FUNDAMENTALS

When you include a number of languages in your project but do not want the end
user to select the language for the user interface, simple logic is used to determine the
language to be displayed in the user interface. This logic is based on the system locale
of the target operating system. If one of the included languages is the same as the
system locale language, then this language will be used in the user interface. If there is
no match with an included language and the language of the system locale, the user
interface is displayed using the default language. There is always one language that is
selected as the default language when you build an installation project.

Once a language has been selected for display in the user interface, the mechanism
that is used to run the installation is as described earlier for the fresh or the
maintenance installation. The next section looks at how each of the two projects
makes a language available at run time.

Standard Project

In a Standard project, the user interface is implemented using InstallScript and does
not display any dialogs from the .msi file. This requires the presence of a language
initialization file, a resource dynamic link library, a string table, and a transform.
Chapter 3 discusses the use of transforms. The resource DLL contains all the dialog
templates and the default strings in the appropriate language. The string table contains
any of the custom strings that are to be displayed. Custom strings are displayed in the
installation user interface or are displayed on the desktop after the application is
installed. The strings in the string table can be accessed in the script that is driving the
user interface for a Standard project.

As an example, you can look at a multiple language build for the Developer Art
application. In this build, you should include seven languages: Danish, English,
French, German, Japanese, Spanish, and Swedish. Figure 4-11 shows the Disk1 image
that is created for such an uncompressed build. In this figure, there are seven
initialization files each named using the hexadecimal representation of language 1D
for each of the seven languages that have been included in this build. The strings in
these initialization files are used to display error messages and strings in the
initialization dialogs that are launched at the beginning of an installation. These are
the strings that might be needed before the installation’s user interface is displayed.
The strings from only one of these initialization files are used, and the particular one
that is used is based on the language chosen by the end user in the language selection
dialog,.

40

INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

CHAPTER 4 THE

In Figure 4-11 you also see seven transforms each named using the language ID for
the language that is represented. The transforms contain the strings that are displayed
by the Windows Installer while changes are made to the target system. In addition, it
makes changes to the shortcuts that are to be installed so the correct language is used
on the desktop for the shortcut. The tables that are modified by the transform are the
ActionText, Error, Property, Shortcut, and UI'Text tables

Figure 4-11 shows only the language initialization files and the language transforms,
but not the resource DILs or the string tables. The resource DLLs and the string
tables for each of the included languages are streamed into the Binary table at build
time. The one exception is that the English resource DLL is installed along with the
InstallScript engine and is not included in the Binary table.

When the end user launches the installation from setup.exe, the first thing that is
done after the end user selects the language to be used is for setup.exe to apply the
transform for the selected language to the database.

Figure 4-11: T)e Disk1 folder for a Standard multiple language installation project.

& C:\MySetups:DeveloperArt_LocalStd\Product Configuration 1'Release 1'Disklimages:bl ===l
File Edit View Favorites Tools Help ﬁ
‘= Back v = '|@Search L Felders ®|" g x @|'

Address I@ C:AMySetupsiDeveloperdnt_LocalStdyProduct Configuration 14Relzaze 14\Disklmages\DISK1 j @Go
1 el = Mame + | Size | Tupe | Modified |
ﬁ L [program files File: Folder 3472002 612 PM

2 00408, ini BKBE Configuration Settings 2/26/2002 7:53 PM
DISK1 00407 iri 5KE Configuration Settings 2/26/2002 7:53 PM
00409 ini 4KB Configuration Settings 2/26/2002 B:27 P

Salect an item to view its 0=040a.ini BKB Configuration Settings 2/26/2002 7:53 PM
description. 0040c.ini BKBE Configuration Settings 2/26/2002 7:53 PM
%] 0041 1ini SKB Configuration Settings 2/26/2002 7:54 PM

See also: E| 0x041dini 4KB Configuration Seftings 2/26/2002 7:54 PM
My Documents 1030, mzt 27KE MST File 3142002 612 PM
My Network Places 1031 mst 31KE MST File 3/14/2002 B:12 PM
My Computer 1033.mst ZEKE MST File 3/14/2002 B:12 PM
1034.mst 29KB MST File 3/14/2002 B:12 PM

1036.mst 30KE MST File 3/14/2002 B:12 PM

1041.mst 29KB MST File 3/14/2002 B:12 PM

1053.mst ZEKE MST File 3/14/2002 B:12 PM

ﬁl Developer &rt Sta F4E4 KB Windows Installer Pa.. 3/14/2002 B:12 P

@ instmzia. exe 1.BE8KE Application 9/26/2001 4:56 P

@ inztmsiv, exe 1.779KE Application 8272000 213 PM

ﬁl isscript.msi B20KE ‘windows Installer Pa.. 3/11/2002 4:03 &M

setup.exe 200KEB application 37142002 3:30 AW

Setup.ini 2KB Configuration Settings 3/14/2002 5:12 P

a1

PART | THE FUNDAMENTALS

Following this IDriver.exe opens the .msi file and the files are extracted from the
Binary table. For our example there are a number of files that have been streamed
into the Binary table. The Binary table for this example, as seen using the Orca
database editing utility, is shown in Figure 4-12. Figure 4-12 shows that there are
seven text files and six resource DLLs. The text files are the string tables and the one
that is streamed out into a temporary directory is the one that corresponds to the
language selected by the end user. The name of the text file is not changed during the
extraction process. As shown, part of the file naming is the decimal language 1D for
the contained language.

Almost the same thing occurs with the resource DLLs. The resource DLLs also have
the language ID of the supported language as part of the file name. The only resource
DLL that is not in the Binary table is the one for English. This particular resource file
is installed when the InstallScript engine is installed. This is discussed at the end of
this chapter. When the end user selects a language other than English the resource file
is streamed out of the Binary table and the name is changed to eliminate the language
ID. The name of the resource DLL after it is streamed out of the Binary table is
always ISRES.DLL.

~*Developer Art Standard.msi - Orca -8 x|
File Edit Tables Transform Tools View Help

DEH $2R =B

Tables |;| MName | Data |
Binary 1SS criptBridge. dil [Binary Data]
Bindimage InstallScript [Binary Data]
CLCPSearch |zConfig.IM| [Binary Data]
CheckBox String1 030, bt [Binary Data]
Clazs String1037. bt [Binary Data]
ComboBox String1 033, bt [Binary Data]
CompLocator String1034. bt [Binary Data]
Compluz String1036. bt [Binary Data]
Carmpanent String10471 tet [Binary Data)
Condition String1053. bt [Binary Data]
Cantrol _ISRES1030.0LL [Binary D ata)
ControlCondition _ISRES1031.0LL [Binary Data]
ControlE vent _ISRES1034.0LL [Binary D ata)
CreateFolder _ISRES1036.0LL [Binary Data]
Customéction _ISRES1041.0LL [Binary Data)
Diirectory _ISRES1083.0LL [Binary Data]
Drlocator
DuplicateFile
Ervironment

Figure 4-12: T')e Binary table for a Standard multiple langnage installation project.

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

As already explained for a fresh install of a Standard project, the files in the Binary
table are streamed out to a temporary location. This temporary location is the one
defined by the SUPPORTDIR system variable. On Windows 2000 this location
typically has the following format:

$USERPROFILE%\Local Settings\Temp\{ProductCode}

Two other files are streamed out of the Binary table: setup.inx (called InstallScript in
the Binary table) and IsConfigINI. These files are streamed out to the same
temporary location as the other files in the Binary table.

During a fresh install, the language transform is cached on the target system in a
location that has the following format:

$SystemRoot%\Installer\{ProductCode}

The caching of this transform is required to make it available for maintenance
operations. You do not want to perform an installation in one language and a
maintenance operation in another language. The maintenance of a multiple language
project is just as described in Figures 4-9 and 4-10, with the exception that the
IDriver.exe process applies a language transform.

When you perform a multi-language install, the uninstall string that is written to the
registry includes an additional command line argument. This additional command line
argument is the language ID of the language used to perform the installation. If you
install this example using German as the user interface language, the uninstall string
written to the registry would have the following format:

UninstallString=C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\
IDriver.exe /M{ECA8C838-2A61-4956-83AF-4F3346C904C0} /11031

The additional argument is a "'/ 1" followed by the language ID of the language used
to perform the installation. In this example, the language 1D is 1031, which indicates
that German was used to perform the initial installation.

The only difference when the end user is not provided a dialog from which to select
the language to be used is that the language used is selected by the logic described
above. Otherwise, there is no difference in how a language is displayed in the user
interface.

43

PART | THE FUNDAMENTALS

Basic MSI Project

The main difference between a multi-language Standard project and a multi-language
Basic MSI project that does not include any InstallScript custom actions is that, for a
Basic MSI project, there is no resource DLL (_ISRES.DLL) and no string table text
file required. This is because this type of project does not display any user interface
that is not defined in the database tables.

For a Basic MSI project, there are still transforms for each included language that are
part of the media image as shown in Figure 4-11. The content of these transforms
includes the five tables described above for a Standard project and all the tables
required to define the user interface in the database tables. For the Developer Art
installation these additional tables are the Control, Dialog, and RadioButton tables.
Depending on the user interface created for an installation there could be additional
tables involved with a language transform.

When you have a Basic MSI project that uses InstallScript custom actions, you have
the same situation as with a Standard project. There is a resource DLL and a string
table text file for each language included in the build. These files are streamed into the
Binary table and the appropriate files are streamed out from the Binary table when
the end user selects the language to be displayed in the user interface. A resource
DLL is required so an external dialog can be called from an InstallScript custom
action.

With a multi-language Basic MSI project, the installation must be run using setup.exe.
If an end user ran this type of project by just running the .msi file, the transform
would not be applied and there would be no user interface for the installation. The
architecture of a Basic MSI project with and without InstallScript custom actions is
shown in Figures 4-7 and 4-8. The only thing that happens is that the command line
that setup.exe uses to launch the msiexec.exe process includes the TRANSFORMS
public property with the name of the transform to be applied. For this example, if
you select German as the user interface language, the command line would look as
follows:

TRANSFORMS=1031.mst

For maintenance operations, the Windows Installer automatically applies the cached
transform so the language used is the same as what was used for the initial
installation. If an end user accesses maintenance mode by running setup.exe again, a

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

language selection dialog is presented, but the selection here affects only the language
used in the initialization dialog. Once the maintenance operation begins, the end user
will see the language that was used in the initial installation. Running the maintenance
mode from the Add/Remove Programs applet avoids the language selection dialog
because setup.exe is not involved.

Run-Time Handling of
InstallScript

InstallScript plays a major role in running a Standard project and can also be used
quite heavily in a Basic MSI package if many custom actions are required. Since
InstallScript plays such an important role in running an installation, it is worth a little
time to understand more about how InstallScript is handled. This discussion starts
with an overview of the installation on the target system of the InstallScript engine.

Installing the InstallScript Engine

Every Standard project installs the InstallScript engine on the target machine and
every Basic MSI project installs the InstallScript engine if the project uses any
InstallScript custom actions. The installation of the InstallScript engine is performed
using a Basic MSI project that has been modified so that there is no registration
performed of the product code. This means that the InstallScript engine can be
installed over and over again without ever initiating a maintenance mode operation.
In fact, except for the installation of the engine from a Web site, there is no
mechanism to check if the engine has already been installed. The engine is always
installed from the source media. The file versioning rules of the Windows Installer
prevent an older version of the InstallScript engine from replacing a newer version
that may already be on the target machine.

The InstallScript engine installation package is named isscript.msi and its installation is
always run silently. The InstallScript engine consists of six files named IDriver.exe,
1User7.dll, iscript7.dll, objps7.dll, _ISRES1033.DLL, and ISRT.DLL. Six components
are used to install these six files and these components have NULL component codes

45

PART | THE FUNDAMENTALS

so the Windows Installer does not know about these files after they have been
installed. These files are installed to the following location:

C:\Program Files\Common Files\InstallShield\Driver\7\Intel 32

The first four of these files are COM servers and need to be registered. The
isscript.msi installation package contains a special custom action that is used to make
the registry entries. The built-in functionality of the Windows Installer is not used to
create the COM registry entries.

The InstallScript engine cannot be uninstalled from the Add/Remove Programs
applet since the Property table has set the ARPSYSTEMCOMPONENT property to
a value of 1. When this property is set in an installation package it will prevent the
product from being listed in the Add/Remove Programs applet. The only method for
uninstalling the InstallScript engine is to do it manually.

The purpose of the files _ISRES1033.DLL and ISRT.DLL is discussed below:

_ISRES1033.DLL: This file is an English resource DLL that is used to provide
the dialog template for all built-in dialogs available to a Standard project. This
DLL contains all the built-in text and error messages that can be displayed during
an installation. The number 1033 is the language 1D for English.

ISRT.DLL: This file is a DLL that implements the built-in functions that are
available in InstallScript.

After setup.exe installs the isscript.msi package it copies the above two files over to
the location specified by the SUPPORTDIR system variable. During the copy of the
file _ISRES1033.DLL the name is changed to _ISRES.DLL. As already discussed
there is a different functionality if the installation package or program contains more
than English and the end user selects a language other than English for the user
interface of the installation. In the case of a multi-language install package where the
end user selects a language other than English the resource DLL for the selected
language is streamed out of the Binary table to the temporary location.

The Program Block and Event Handlers

The program block has already been discussed when covering the implementation
of a fresh install with a Standard project. It is now time to take a look at the program

46

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

block to better understand what actions are included (Figure 4-13). The information
provided in Figure 4-13 is for background purposes only and you should not be
creating your own version of the program..endprogram block. One reason is
that this could change in later versions of the product. Also, if you were to create your
own program..endprogram block and start placing additional functions in
between the event handlers shown in this figure you would not have the advantage of
all the exception handling that is incorporated in these event handlers. Remember
that the program block is only used for the fresh install of a Standard project.

L1171 770 77777007777 777 7777777770777 7777777777777777777777777777777777
//
// IIIIIII SSSSSS

// II SS InstallShield (R)

// II SSSSSS (c) 1996-2000, InstallShield Software Corporation
// IT SS (c) 1990-1996, InstallShield Corporation
// IIIIIII SSSSSS All Rights Reserved.

//

//

// File Name: Setup.rul

//

// Description: InstallShield script

//

// Comments: This is the default program block.

//

L1171 777 77777077777 777/7777777
#include "ifx.h"
#include "EventsConv.rul"

//Default program/endprogram block
program

Enable (DIALOGCACHE) ;

//Initialize PC Restore variables
bIfxPCHOn = TRUE;
bIfxPCHInitialized = FALSE;
nIfxPCHType = REPAIR;
ISWIPCRestoreBefore () ;

ISWIOnInitInstall () ;

ISWIOnCCPSearch () ;
ISWIOnAppSearch();

Figure 4-13: The program block as used in all Standard projects where no explicit program block
15 defined.

47

PART | THE FUNDAMENTALS

ISWIOnFirstUIBefore() ;
ISWIOnMoveData () ;
ISWIOnFirstUIAfter();
ISWIOnExitInstall () ;
ISWIPCRestoreAfter () ;

endprogram

Figure 4-13: Continued.

In the following list each of the functions that are called in the default
program..endprogram block are briefly discussed.

ISWIPCRestoreBefore: This function handles the setting of a restore point on
Windows ME and Windows XP. Restore points are created to allow end-users a
choice of previous system states. Each restore point contains the necessary
information needed to restore the system to the chosen state. Restore points are
created before changes are made to the system in a System Restore compliant
installation program.

ISWIOnInitInstall: This function initializes default installation settings. It sets
the exit and help handler functions and then it calls the OnBegin event handler.
By default the OnBegin event handler is a no-op. When you add code to this
event handler in your script, the linking process replaces the default
implementation.

ISWIOnCCPSearch: This function calls the OnCCPSearch event handler. By
default, the OnCCPSearch event handler is a no-op. When you add code to
this event handler in your script, the linking process replaces the default
implementation.

ISWIOnAppSearch: This function calls the OnAppSearch event handler. By
default, the OnAppSearch event handler is a no-op. When you add code to
this event handler in your script, the linking process replaces the default
implementation.

ISWIOnFirstUIBefore: This function calls the OnFirstUIBefore event
handler. This event handler runs the user interface for the installation. When you

48

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

add code to this event handler, the modified code is linked instead of the default
implementation.

ISWIOnMoveData: This function calls the ComponentTransferData
function. Its purpose is to copy files to the system and perform any other changes
that have been defined such a making registry entries and creating shortcuts.
There is no event handler directly called by this function but the call to the
ComponentTransferData function brings into play all the before and after
data transfer event handlers. These event handlers are discussed in Chapter 8.

ISWIOnFirstUIAfter: This function calls the OnFirstUIAfter event
handler. This event handler runs the user interface after the installation is
complete. When you add code to this event handler, the modified code is linked
instead of the default implementation.

ISWIOnExitInstall: This function calls the OnEnd event handler. By default,
the OnEnd event handler is a no-op. When you add code to this event handler in
your script, the linking process replaces the default implementation.

ISWIPCRestoreAfter: This function marks the end of the end of the changes to
the system and sets another restore point.

All the above functions perform exception handling on errors that occur and are not
handled by some other means. A complete discussion of the documented event
handlers that can be used by setup developers is held in Chapter 8.

This discussion is only applicable to the implementation of fresh installs using a
Standard project. All other install operations have the applicable event handlers called
directly by IDriver.exe. The program..endprogram block does not come into
play with these other types of install operations.

InstallScript Custom Actions

This section examines the mechanism for running InstallScript custom actions. The
mechanism requires the implementation of cross-process communication because the
InstallScript engine is running in the IDriver.exe process and the custom actions are
called in the msiexec.exe process. It is necessary to get the call made to an
InstallScript function from the msiexec.exe process over to the IDriver.exe process so

49

PART | THE FUNDAMENTALS

the function can be executed, and then pass the results of the function call back to the

msiexec.exe Process.

Figure 4-14 diagrams the flow of communication that enables the calling of
InstallScript functions as custom actions. We will take a close look at this process,
starting with the call to the custom action by the Windows Installer.

IDriver Process Msiexec Process

© IDriver.exe © Iscript7.dil © msi.dil © ISScriptBridge.dil © Msiexec.exe

Execute a custom
action as defined in the
CustomAction table and
inserted in the
sequence table.

The Windows Installer
functions are exported
by msi.dll and are
accessed through the
connection between
IScript7.dll and msi.dll.
When the Windows
Installer function is
done it returns back to
the calling InstallScript
function.

Run the InstallScript
function which calls a
Windows Installer
function. The Windows
Installer function is
accessed through the
connection that has
been enabled between
IScript7.dll and msi.dll.

Find the actual name of
the script function from
IsConfig.ini and call the
script function in the
IDriver process.

Msiexec.exe continues
the insstallation by
executing the next
action or dialog that is
inserted into the
sequence table.

The InstallScript
function returns back to
the exported function in
ISScriptBridge.dII.

The exported function
in ISScriptBridge.dl|
returns back to
Msiexec.exe.

Figure 4-14: Te calling of an InstallScript custom action.

For purposes of discussion, we will assume that you have an InstallScript custom
action and the name of the InstallScript function that implements this custom action
is InstallNTServiceMsqg. We will also assume that this custom action makes a
call to one of the Windows Installer database functions. You do all the appropriate
things in order to export this function, define a custom action named Message where
the InstallNTServiceMsq function is the target, and then insert this custom

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

action into one of the sequence tables. We are not discussing here how to create an
InstallScript custom action. Chapter 11 provides a full discussion of how to create
InstallScript custom actions. When you build the project, entries are made in the
appropriate sequence table, in the CustomAction table, and in the Binary table.

The first thing to recognize is that the Windows Installer does not know anything
about InstallScript or the scripting engine. As far as the Windows Installer is
concerned, a custom action needs to be implemented using an executable, a DLL, or
implemented using VBScript or JScript. As far as the Windows Installer is concerned,
an InstallScript custom action is just a custom action implemented in a DLL and the
name of this DLL is ISScriptBridge.dll. You can see this if you look at the
CustomAction table where an InstallScript custom action is defined.

=&]

~* Developer Art Basic.msi - Orca
File Edit Tables Transform Tools View Help

DEH &+ 2| =B |

Tables | | Action | Type | Source | Target
Customéction CheckForProductl pdates 226 |15UpdateServiceFolder | [ISUpdateServiceFolderlagent. exe "/ aulProductC
Dialog CheckForProductUpdatesOnReboot | 226 |15UpdateServiceFolder [ISUpdateServiceF olderlagent. exe "/ aulProductC
Diirectory IS Cleanl) pF atalE xit 1 155criptBridge.dl CleanUp
DL ocator ISCleanlpSuccess 155criptBridge.dl CleanUp
DuplicateFile |5 CleanUpSuspend 155criptBridge.dl CleanUp
Enwironment ISCleanlpUserT erminate 155crniptBridge.dl Cleanlp
Error 1SInitall sers 307 ALLUSERS 2
Eventtd apping ISk ziServerStartup 193 155 criptBridge. dll M ziServerStartup
Extension 155tartup 1 155criptBridge.dl Startlp
Feature Meszage I'Ei" iptBridge.dll
FeatueComponents

Figure 4-15: T)he CustomAction table showing the definition of an InstallScript custom action.

Figure 4-15 shows the CustomAction table where the Message custom action is
defined. The Type column shows that this is a DLL that is streamed into the Binary
table. The Source column shows that the name of the DLL is ISScriptBridge.dll and
the Target column shows that the function that is to be called is named f1. You might
wonder how an InstallScript function named InstallNTServiceMsg became a
function named f1. ISScriptBridge.dll has no way of knowing the names of all the
possible InstallScript custom action functions that you might create. Therefore, there
is a mapping mechanism employed to match up the functions exported from
ISScriptBridge.dll and the InstallScript functions that are created by setup developers.
ISScriptBridge.dll exports 1000 functions named f1 through £1000 which means that
there is a limit in any one project of 1000 InstallScript functions that are the targets of
a custom action. Actually there are two versions of ISScriptBridge.dll where if you do
not have more than 50 InstallScript custom actions then the small version is used and

51

PART | THE FUNDAMENTALS

if you have more than 50 InstallScript custom actions then the version that allows
1000 custom actions is used. This is a space saving measure.

When an InstallScript custom action is defined, the build process also defines an
initialization file named IsConfig.INI that is streamed into the Binary table along with

ISScriptBridge.dll. For the example in this discussion, the IsConfig.INI file has the
entries as shown in Figure 4-16.

[£1]
Function=InstallNTServiceMsg
[0]
0=0

Figure 4-16: T')e contents of a typical IsConfig INI file.

When the Windows Installer calls the f1 function in ISScriptBridge.dll, the first thing
that is done is to read the IsConfig.INI file to determine the actual name of the
InstallScript function that is the real target of the custom action. The name of the
function is then passed to the InstallScript engine that is loaded in the IDriver.exe
process. The iscript7.dll executes the InstallScript function by accessing it in the
compiled script that is always named setup.inx.

When the call to the Windows Installer database function is reached in the
InstallScript code the connection that has been enabled between the IDriver.exe
process and the msiexec.exe process is used to send the function call to msi.dll that is
open in the msiexec.exe process. It is in the msiexec.exe process that msi.dll is loaded
and it is the msiexec.exe process where the installation database is open. To access the
running database, function calls have to be performed from within the msiexec.exe
process. You can see this mechanism in Figure 4-14.

The results of the Windows Installer function call are returned back to the
InstallScript engine in the IDriver.exe process. When the InstallScript function is
finished executing, it returns back to the function in ISScriptBridge.dll where
everything started. The function in ISScriptBridge.dll then returns a value to the
Windows Installer and, based on this return value, the Windows Installer either
executes the next action in the sequence table or it terminates the installation.

An important capability that InstallScript custom actions have that no other type of
custom actions have is the ability to access the running database even from deferred

CHAPTER 4 THE INSTALLSHIELD DEVELOPER RUN-TIME
ARCHITECTURE

mode. In Chapter 11 we will see more about what this special capability means and
how it can save you extra work.

Conclusion

This chapter’s main focus was how InstallShield Developer makes use of the
Windows Installer engine to make changes to the installation target. The fundamental
differences between a Standard project and a Basic MSI project were shown to be in
how the user interface for an installation is implemented. The differences between
running a Standard project and a Basic MSI project were discussed. Depending on
the type of installation that is being run, any where from two to four processes are
created.

The end of the chapter provided a detailed discussion of how InstallShield Developer
enables InstallScript to be used for custom actions. You also learned how an
InstallScript custom action, which is actually executed in a different process, can
access the running database.

53

