123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581 |
- #include <stdio.h>
- #include <stdint.h>
- #include <string.h>
- #include <assert.h>
- typedef unsigned int uint32_t;
- typedef unsigned long long uint64_t;
- //字节序的小头和大头的问题
- #define LITTLE_ENDIAN 0x0123
- #define BIG_ENDIAN 0x3210
- //目前所有的代码都是为了小头党服务的,不知道有生之年这套代码是否还会为大头党服务一次?
- #ifndef BYTES_ORDER
- #define BYTES_ORDER LITTLE_ENDIAN
- #endif
- #ifndef SWAP_UINT16
- #define SWAP_UINT16(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
- #endif
- #ifndef SWAP_UINT32
- #define SWAP_UINT32(x) ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
- (((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
- #endif
- #ifndef SWAP_UINT64
- #define SWAP_UINT64(x) ((((x) & 0xff00000000000000) >> 56) | (((x) & 0x00ff000000000000) >> 40) | \
- (((x) & 0x0000ff0000000000) >> 24) | (((x) & 0x000000ff00000000) >> 8) | \
- (((x) & 0x00000000ff000000) << 8 ) | (((x) & 0x0000000000ff0000) << 24) | \
- (((x) & 0x000000000000ff00) << 40 ) | (((x) & 0x00000000000000ff) << 56))
- #endif
- //将一个(字符串)数组,拷贝到另外一个uint32_t数组,同时每个uint32_t反字节序
- void *swap_uint32_memcpy(void *to, const void *from, size_t length)
- {
- memcpy(to, from, length);
- size_t remain_len = (4 - (length & 3)) & 3;
- //数据不是4字节的倍数,补充0
- if (remain_len)
- {
- for (size_t i = 0; i < remain_len; ++i)
- {
- *((char *)(to) + length + i) = 0;
- }
- //调整成4的倍数
- length += remain_len;
- }
- //所有的数据反转
- for (size_t i = 0; i < length / 4; ++i)
- {
- ((uint32_t *)to)[i] = SWAP_UINT32(((uint32_t *)to)[i]);
- }
- return to;
- }
- ///MD5的结果数据长度
- static const size_t MD5_HASH_SIZE = 16;
- ///SHA1的结果数据长度
- static const size_t SHA1_HASH_SIZE = 20;
- namespace uselib
- {
- /*!
- @brief 求某个内存块的MD5,
- @return unsigned char* 返回的的结果,
- @param[in] buf 求MD5的内存BUFFER指针
- @param[in] size BUFFER长度
- @param[out] result 结果
- */
- unsigned char *md5(const unsigned char *buf,
- size_t size,
- unsigned char result[MD5_HASH_SIZE]);
- /*!
- @brief 求内存块BUFFER的SHA1值
- @return unsigned char* 返回的的结果
- @param[in] buf 求SHA1的内存BUFFER指针
- @param[in] size BUFFER长度
- @param[out] result 结果
- */
- unsigned char *sha1(const unsigned char *buf,
- size_t size,
- unsigned char result[SHA1_HASH_SIZE]);
- };
- //================================================================================================
- //MD5的算法
- //每次处理的BLOCK的大小
- static const size_t MD5_BLOCK_SIZE = 64;
- //md5算法的上下文,保存一些状态,中间数据,结果
- typedef struct md5_ctx
- {
- //处理的数据的长度
- uint64_t length_;
- //还没有处理的数据长度
- uint64_t unprocessed_;
- //取得的HASH结果(中间数据)
- uint32_t hash_[4];
- } md5_ctx;
- #define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n))))
- #define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
- #define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
- #define ROTR64(qword, n) ((qword) >> (n) ^ ((qword) << (64 - (n))))
- /*!
- @brief 内部函数,初始化MD5的context,内容
- @param ctx
- */
- static void md5_init(md5_ctx *ctx)
- {
- ctx->length_ = 0;
- ctx->unprocessed_ = 0;
- /* initialize state */
- ctx->hash_[0] = 0x67452301;
- ctx->hash_[1] = 0xefcdab89;
- ctx->hash_[2] = 0x98badcfe;
- ctx->hash_[3] = 0x10325476;
- }
- /* First, define four auxiliary functions that each take as input
- * three 32-bit words and returns a 32-bit word.*/
- /* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */
- #define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
- #define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z)))
- #define MD5_H(x, y, z) ((x) ^ (y) ^ (z))
- #define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))
- /* transformations for rounds 1, 2, 3, and 4. */
- #define MD5_ROUND1(a, b, c, d, x, s, ac) { \
- (a) += MD5_F((b), (c), (d)) + (x) + (ac); \
- (a) = ROTL32((a), (s)); \
- (a) += (b); \
- }
- #define MD5_ROUND2(a, b, c, d, x, s, ac) { \
- (a) += MD5_G((b), (c), (d)) + (x) + (ac); \
- (a) = ROTL32((a), (s)); \
- (a) += (b); \
- }
- #define MD5_ROUND3(a, b, c, d, x, s, ac) { \
- (a) += MD5_H((b), (c), (d)) + (x) + (ac); \
- (a) = ROTL32((a), (s)); \
- (a) += (b); \
- }
- #define MD5_ROUND4(a, b, c, d, x, s, ac) { \
- (a) += MD5_I((b), (c), (d)) + (x) + (ac); \
- (a) = ROTL32((a), (s)); \
- (a) += (b); \
- }
- /*!
- @brief 内部函数,将64个字节,16个uint32_t的数组进行摘要(杂凑)处理,处理的数据自己序是小头数据
- @param state 存放处理的hash数据结果
- @param block 要处理的block,64个字节,16个uint32_t的数组
- */
- static void md5_process_block(uint32_t state[4], const uint32_t block[MD5_BLOCK_SIZE / 4])
- {
- register unsigned a, b, c, d;
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- const uint32_t *x = NULL;
- //MD5里面计算的数据都是小头数据.大头党的数据要处理
- #if BYTES_ORDER == LITTLE_ENDIAN
- x = block;
- #else
- uint32_t swap_block[MD5_BLOCK_SIZE / 4];
- swap_uint32_memcpy(swap_block, block, 64);
- x = swap_block;
- #endif
- MD5_ROUND1(a, b, c, d, x[ 0], 7, 0xd76aa478);
- MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756);
- MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db);
- MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee);
- MD5_ROUND1(a, b, c, d, x[ 4], 7, 0xf57c0faf);
- MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a);
- MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613);
- MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501);
- MD5_ROUND1(a, b, c, d, x[ 8], 7, 0x698098d8);
- MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af);
- MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1);
- MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be);
- MD5_ROUND1(a, b, c, d, x[12], 7, 0x6b901122);
- MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193);
- MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e);
- MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);
- MD5_ROUND2(a, b, c, d, x[ 1], 5, 0xf61e2562);
- MD5_ROUND2(d, a, b, c, x[ 6], 9, 0xc040b340);
- MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51);
- MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa);
- MD5_ROUND2(a, b, c, d, x[ 5], 5, 0xd62f105d);
- MD5_ROUND2(d, a, b, c, x[10], 9, 0x2441453);
- MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681);
- MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8);
- MD5_ROUND2(a, b, c, d, x[ 9], 5, 0x21e1cde6);
- MD5_ROUND2(d, a, b, c, x[14], 9, 0xc33707d6);
- MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87);
- MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed);
- MD5_ROUND2(a, b, c, d, x[13], 5, 0xa9e3e905);
- MD5_ROUND2(d, a, b, c, x[ 2], 9, 0xfcefa3f8);
- MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9);
- MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
- MD5_ROUND3(a, b, c, d, x[ 5], 4, 0xfffa3942);
- MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681);
- MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122);
- MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c);
- MD5_ROUND3(a, b, c, d, x[ 1], 4, 0xa4beea44);
- MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9);
- MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60);
- MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70);
- MD5_ROUND3(a, b, c, d, x[13], 4, 0x289b7ec6);
- MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa);
- MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085);
- MD5_ROUND3(b, c, d, a, x[ 6], 23, 0x4881d05);
- MD5_ROUND3(a, b, c, d, x[ 9], 4, 0xd9d4d039);
- MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5);
- MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8);
- MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);
- MD5_ROUND4(a, b, c, d, x[ 0], 6, 0xf4292244);
- MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97);
- MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7);
- MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039);
- MD5_ROUND4(a, b, c, d, x[12], 6, 0x655b59c3);
- MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92);
- MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d);
- MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1);
- MD5_ROUND4(a, b, c, d, x[ 8], 6, 0x6fa87e4f);
- MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
- MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314);
- MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1);
- MD5_ROUND4(a, b, c, d, x[ 4], 6, 0xf7537e82);
- MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235);
- MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb);
- MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);
- state[0] += a;
- state[1] += b;
- state[2] += c;
- state[3] += d;
- }
- /*!
- @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
- @param[out] ctx 算法的context,用于记录一些处理的上下文和结果
- @param[in] buf 处理的数据,
- @param[in] size 处理的数据长度
- */
- static void md5_update(md5_ctx *ctx, const unsigned char *buf, size_t size)
- {
- //为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed_
- ctx->length_ += size;
- //每个处理的块都是64字节
- while (size >= MD5_BLOCK_SIZE)
- {
- md5_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
- buf += MD5_BLOCK_SIZE;
- size -= MD5_BLOCK_SIZE;
- }
- ctx->unprocessed_ = size;
- }
- /*!
- @brief 内部函数,处理数据的末尾部分,我们要拼出最后1个(或者两个)要处理的BLOCK,加上0x80,加上长度进行处理
- @param[in] ctx 算法的context,用于记录一些处理的上下文和结果
- @param[in] buf 处理的数据
- @param[in] size 处理buffer的长度
- @param[out] result 返回的结果,
- */
- static void md5_final(md5_ctx *ctx, const unsigned char *buf, size_t size, unsigned char *result)
- {
- uint32_t message[MD5_BLOCK_SIZE / 4];
- //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
- if (ctx->unprocessed_)
- {
- memcpy(message, buf + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
- }
- //得到0x80要添加在的位置(在uint32_t 数组中),
- uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
- uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
- //添加0x80进去,并且把余下的空间补充0
- message[index] &= ~(0xFFFFFFFF << shift);
- message[index++] ^= 0x80 << shift;
- //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
- if (index > 14)
- {
- while (index < 16)
- {
- message[index++] = 0;
- }
- md5_process_block(ctx->hash_, message);
- index = 0;
- }
- //补0
- while (index < 14)
- {
- message[index++] = 0;
- }
- //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
- uint64_t data_len = (ctx->length_) << 3;
- //注意MD5算法要求的64bit的长度是小头LITTLE-ENDIAN编码,注意下面的比较是!=
- #if BYTES_ORDER != LITTLE_ENDIAN
- data_len = SWAP_UINT64(data_len);
- #endif
- message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
- message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
- md5_process_block(ctx->hash_, message);
- //注意结果是小头党的,在大头的世界要进行转换
- #if BYTES_ORDER == LITTLE_ENDIAN
- memcpy(result, &ctx->hash_, MD5_HASH_SIZE);
- #else
- swap_uint32_memcpy(result, &ctx->hash_, MD5_HASH_SIZE);
- #endif
- }
- //计算一个内存数据的MD5值
- unsigned char *uselib::md5(const unsigned char *buf,size_t size,unsigned char result[MD5_HASH_SIZE])
- {
- assert(result != NULL);
- md5_ctx ctx;
- md5_init(&ctx);
- md5_update(&ctx, buf, size);
- md5_final(&ctx, buf, size, result);
- return result;
- }
- //================================================================================================
- //SHA1的算法
- //每次处理的BLOCK的大小
- static const size_t SHA1_BLOCK_SIZE = 64;
- //SHA1算法的上下文,保存一些状态,中间数据,结果
- typedef struct sha1_ctx
- {
- //处理的数据的长度
- uint64_t length_;
- //还没有处理的数据长度
- uint64_t unprocessed_;
- /* 160-bit algorithm internal hashing state */
- uint32_t hash_[5];
- } sha1_ctx;
- //内部函数,SHA1算法的上下文的初始化
- static void sha1_init(sha1_ctx *ctx)
- {
- ctx->length_ = 0;
- ctx->unprocessed_ = 0;
- // 初始化算法的几个常量,魔术数
- ctx->hash_[0] = 0x67452301;
- ctx->hash_[1] = 0xefcdab89;
- ctx->hash_[2] = 0x98badcfe;
- ctx->hash_[3] = 0x10325476;
- ctx->hash_[4] = 0xc3d2e1f0;
- }
- /*!
- @brief 内部函数,对一个64bit内存块进行摘要(杂凑)处理,
- @param hash 存放计算hash结果的的数组
- @param block 要计算的处理得内存块
- */
- static void sha1_process_block(uint32_t hash[5],const uint32_t block[SHA1_BLOCK_SIZE / 4])
- {
- size_t t;
- uint32_t wblock[80];
- register uint32_t a, b, c, d, e, temp;
- //SHA1算法处理的内部数据要求是大头党的,在小头的环境转换
- #if BYTES_ORDER == LITTLE_ENDIAN
- swap_uint32_memcpy(wblock, block, SHA1_BLOCK_SIZE);
- #else
- ::memcpy(wblock, block, SHA1_BLOCK_SIZE);
- #endif
- //处理
- for (t = 16; t < 80; t++)
- {
- wblock[t] = ROTL32(wblock[t - 3] ^ wblock[t - 8] ^ wblock[t - 14] ^ wblock[t - 16], 1);
- }
- a = hash[0];
- b = hash[1];
- c = hash[2];
- d = hash[3];
- e = hash[4];
- for (t = 0; t < 20; t++)
- {
- /* the following is faster than ((B & C) | ((~B) & D)) */
- temp = ROTL32(a, 5) + (((c ^ d) & b) ^ d)
- + e + wblock[t] + 0x5A827999;
- e = d;
- d = c;
- c = ROTL32(b, 30);
- b = a;
- a = temp;
- }
- for (t = 20; t < 40; t++)
- {
- temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0x6ED9EBA1;
- e = d;
- d = c;
- c = ROTL32(b, 30);
- b = a;
- a = temp;
- }
- for (t = 40; t < 60; t++)
- {
- temp = ROTL32(a, 5) + ((b & c) | (b & d) | (c & d))
- + e + wblock[t] + 0x8F1BBCDC;
- e = d;
- d = c;
- c = ROTL32(b, 30);
- b = a;
- a = temp;
- }
- for (t = 60; t < 80; t++)
- {
- temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0xCA62C1D6;
- e = d;
- d = c;
- c = ROTL32(b, 30);
- b = a;
- a = temp;
- }
- hash[0] += a;
- hash[1] += b;
- hash[2] += c;
- hash[3] += d;
- hash[4] += e;
- }
- /*!
- @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
- @param ctx 算法的上下文,记录中间数据,结果等
- @param msg 要进行计算的数据buffer
- @param size 长度
- */
- static void sha1_update(sha1_ctx *ctx,const unsigned char *buf, size_t size)
- {
- //为了让zen_sha1_update可以多次进入,长度可以累计
- ctx->length_ += size;
- //每个处理的块都是64字节
- while (size >= SHA1_BLOCK_SIZE)
- {
- sha1_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
- buf += SHA1_BLOCK_SIZE;
- size -= SHA1_BLOCK_SIZE;
- }
- ctx->unprocessed_ = size;
- }
- /*!
- @brief 内部函数,处理数据的最后部分,添加0x80,补0,增加长度信息
- @param ctx 算法的上下文,记录中间数据,结果等
- @param msg 要进行计算的数据buffer
- @param result 返回的结果
- */
- static void sha1_final(sha1_ctx *ctx, const unsigned char *msg,size_t size, unsigned char *result)
- {
- uint32_t message[SHA1_BLOCK_SIZE / 4];
- //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
- if (ctx->unprocessed_)
- {
- memcpy(message, msg + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
- }
- //得到0x80要添加在的位置(在uint32_t 数组中),
- uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
- uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
- //添加0x80进去,并且把余下的空间补充0
- message[index] &= ~(0xFFFFFFFF << shift);
- message[index++] ^= 0x80 << shift;
- //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
- if (index > 14)
- {
- while (index < 16)
- {
- message[index++] = 0;
- }
- sha1_process_block(ctx->hash_, message);
- index = 0;
- }
- //补0
- while (index < 14)
- {
- message[index++] = 0;
- }
- //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
- uint64_t data_len = (ctx->length_) << 3;
- //注意SHA1算法要求的64bit的长度是大头BIG-ENDIAN,在小头的世界要进行转换
- #if BYTES_ORDER == LITTLE_ENDIAN
- data_len = SWAP_UINT64(data_len);
- #endif
- message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
- message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
- sha1_process_block(ctx->hash_, message);
- //注意结果是大头党的,在小头的世界要进行转换
- #if BYTES_ORDER == LITTLE_ENDIAN
- swap_uint32_memcpy(result, &ctx->hash_, SHA1_HASH_SIZE);
- #else
- memcpy(result, &ctx->hash_, SHA1_HASH_SIZE);
- #endif
- }
- //计算一个内存数据的SHA1值
- unsigned char *uselib::sha1(const unsigned char *msg,size_t size,unsigned char result[SHA1_HASH_SIZE])
- {
- assert(result != NULL);
- sha1_ctx ctx;
- sha1_init(&ctx);
- sha1_update(&ctx, msg, size);
- sha1_final(&ctx, msg, size, result);
- return result;
- }
|