md5和sha1.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. #include <stdio.h>
  2. #include <stdint.h>
  3. #include <string.h>
  4. #include <assert.h>
  5. typedef unsigned int uint32_t;
  6. typedef unsigned long long uint64_t;
  7. //字节序的小头和大头的问题
  8. #define ZEN_LITTLE_ENDIAN 0x0123
  9. #define ZEN_BIG_ENDIAN 0x3210
  10. //目前所有的代码都是为了小头党服务的,不知道有生之年这套代码是否还会为大头党服务一次?
  11. #ifndef ZEN_BYTES_ORDER
  12. #define ZEN_BYTES_ORDER ZEN_LITTLE_ENDIAN
  13. #endif
  14. #ifndef ZEN_SWAP_UINT16
  15. #define ZEN_SWAP_UINT16(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
  16. #endif
  17. #ifndef ZEN_SWAP_UINT32
  18. #define ZEN_SWAP_UINT32(x) ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
  19. (((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
  20. #endif
  21. #ifndef ZEN_SWAP_UINT64
  22. #define ZEN_SWAP_UINT64(x) ((((x) & 0xff00000000000000) >> 56) | (((x) & 0x00ff000000000000) >> 40) | \
  23. (((x) & 0x0000ff0000000000) >> 24) | (((x) & 0x000000ff00000000) >> 8) | \
  24. (((x) & 0x00000000ff000000) << 8 ) | (((x) & 0x0000000000ff0000) << 24) | \
  25. (((x) & 0x000000000000ff00) << 40 ) | (((x) & 0x00000000000000ff) << 56))
  26. #endif
  27. //将一个(字符串)数组,拷贝到另外一个uint32_t数组,同时每个uint32_t反字节序
  28. void *swap_uint32_memcpy(void *to, const void *from, size_t length)
  29. {
  30. memcpy(to, from, length);
  31. size_t remain_len = (4 - (length & 3)) & 3;
  32. //数据不是4字节的倍数,补充0
  33. if (remain_len)
  34. {
  35. for (size_t i = 0; i < remain_len; ++i)
  36. {
  37. *((char *)(to) + length + i) = 0;
  38. }
  39. //调整成4的倍数
  40. length += remain_len;
  41. }
  42. //所有的数据反转
  43. for (size_t i = 0; i < length / 4; ++i)
  44. {
  45. ((uint32_t *)to)[i] = ZEN_SWAP_UINT32(((uint32_t *)to)[i]);
  46. }
  47. return to;
  48. }
  49. ///MD5的结果数据长度
  50. static const size_t ZEN_MD5_HASH_SIZE = 16;
  51. ///SHA1的结果数据长度
  52. static const size_t ZEN_SHA1_HASH_SIZE = 20;
  53. namespace ZEN_LIB
  54. {
  55. /*!
  56. @brief 求某个内存块的MD5,
  57. @return unsigned char* 返回的的结果,
  58. @param[in] buf 求MD5的内存BUFFER指针
  59. @param[in] size BUFFER长度
  60. @param[out] result 结果
  61. */
  62. unsigned char *md5(const unsigned char *buf,
  63. size_t size,
  64. unsigned char result[ZEN_MD5_HASH_SIZE]);
  65. /*!
  66. @brief 求内存块BUFFER的SHA1值
  67. @return unsigned char* 返回的的结果
  68. @param[in] buf 求SHA1的内存BUFFER指针
  69. @param[in] size BUFFER长度
  70. @param[out] result 结果
  71. */
  72. unsigned char *sha1(const unsigned char *buf,
  73. size_t size,
  74. unsigned char result[ZEN_SHA1_HASH_SIZE]);
  75. };
  76. //================================================================================================
  77. //MD5的算法
  78. //每次处理的BLOCK的大小
  79. static const size_t ZEN_MD5_BLOCK_SIZE = 64;
  80. //md5算法的上下文,保存一些状态,中间数据,结果
  81. typedef struct md5_ctx
  82. {
  83. //处理的数据的长度
  84. uint64_t length_;
  85. //还没有处理的数据长度
  86. uint64_t unprocessed_;
  87. //取得的HASH结果(中间数据)
  88. uint32_t hash_[4];
  89. } md5_ctx;
  90. #define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n))))
  91. #define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
  92. #define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
  93. #define ROTR64(qword, n) ((qword) >> (n) ^ ((qword) << (64 - (n))))
  94. /*!
  95. @brief 内部函数,初始化MD5的context,内容
  96. @param ctx
  97. */
  98. static void zen_md5_init(md5_ctx *ctx)
  99. {
  100. ctx->length_ = 0;
  101. ctx->unprocessed_ = 0;
  102. /* initialize state */
  103. ctx->hash_[0] = 0x67452301;
  104. ctx->hash_[1] = 0xefcdab89;
  105. ctx->hash_[2] = 0x98badcfe;
  106. ctx->hash_[3] = 0x10325476;
  107. }
  108. /* First, define four auxiliary functions that each take as input
  109. * three 32-bit words and returns a 32-bit word.*/
  110. /* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */
  111. #define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
  112. #define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z)))
  113. #define MD5_H(x, y, z) ((x) ^ (y) ^ (z))
  114. #define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))
  115. /* transformations for rounds 1, 2, 3, and 4. */
  116. #define MD5_ROUND1(a, b, c, d, x, s, ac) { \
  117. (a) += MD5_F((b), (c), (d)) + (x) + (ac); \
  118. (a) = ROTL32((a), (s)); \
  119. (a) += (b); \
  120. }
  121. #define MD5_ROUND2(a, b, c, d, x, s, ac) { \
  122. (a) += MD5_G((b), (c), (d)) + (x) + (ac); \
  123. (a) = ROTL32((a), (s)); \
  124. (a) += (b); \
  125. }
  126. #define MD5_ROUND3(a, b, c, d, x, s, ac) { \
  127. (a) += MD5_H((b), (c), (d)) + (x) + (ac); \
  128. (a) = ROTL32((a), (s)); \
  129. (a) += (b); \
  130. }
  131. #define MD5_ROUND4(a, b, c, d, x, s, ac) { \
  132. (a) += MD5_I((b), (c), (d)) + (x) + (ac); \
  133. (a) = ROTL32((a), (s)); \
  134. (a) += (b); \
  135. }
  136. /*!
  137. @brief 内部函数,将64个字节,16个uint32_t的数组进行摘要(杂凑)处理,处理的数据自己序是小头数据
  138. @param state 存放处理的hash数据结果
  139. @param block 要处理的block,64个字节,16个uint32_t的数组
  140. */
  141. static void zen_md5_process_block(uint32_t state[4], const uint32_t block[ZEN_MD5_BLOCK_SIZE / 4])
  142. {
  143. register unsigned a, b, c, d;
  144. a = state[0];
  145. b = state[1];
  146. c = state[2];
  147. d = state[3];
  148. const uint32_t *x = NULL;
  149. //MD5里面计算的数据都是小头数据.大头党的数据要处理
  150. #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
  151. x = block;
  152. #else
  153. uint32_t swap_block[ZEN_MD5_BLOCK_SIZE / 4];
  154. swap_uint32_memcpy(swap_block, block, 64);
  155. x = swap_block;
  156. #endif
  157. MD5_ROUND1(a, b, c, d, x[ 0], 7, 0xd76aa478);
  158. MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756);
  159. MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db);
  160. MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee);
  161. MD5_ROUND1(a, b, c, d, x[ 4], 7, 0xf57c0faf);
  162. MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a);
  163. MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613);
  164. MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501);
  165. MD5_ROUND1(a, b, c, d, x[ 8], 7, 0x698098d8);
  166. MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af);
  167. MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1);
  168. MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be);
  169. MD5_ROUND1(a, b, c, d, x[12], 7, 0x6b901122);
  170. MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193);
  171. MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e);
  172. MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);
  173. MD5_ROUND2(a, b, c, d, x[ 1], 5, 0xf61e2562);
  174. MD5_ROUND2(d, a, b, c, x[ 6], 9, 0xc040b340);
  175. MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51);
  176. MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa);
  177. MD5_ROUND2(a, b, c, d, x[ 5], 5, 0xd62f105d);
  178. MD5_ROUND2(d, a, b, c, x[10], 9, 0x2441453);
  179. MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681);
  180. MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8);
  181. MD5_ROUND2(a, b, c, d, x[ 9], 5, 0x21e1cde6);
  182. MD5_ROUND2(d, a, b, c, x[14], 9, 0xc33707d6);
  183. MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87);
  184. MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed);
  185. MD5_ROUND2(a, b, c, d, x[13], 5, 0xa9e3e905);
  186. MD5_ROUND2(d, a, b, c, x[ 2], 9, 0xfcefa3f8);
  187. MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9);
  188. MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
  189. MD5_ROUND3(a, b, c, d, x[ 5], 4, 0xfffa3942);
  190. MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681);
  191. MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122);
  192. MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c);
  193. MD5_ROUND3(a, b, c, d, x[ 1], 4, 0xa4beea44);
  194. MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9);
  195. MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60);
  196. MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70);
  197. MD5_ROUND3(a, b, c, d, x[13], 4, 0x289b7ec6);
  198. MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa);
  199. MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085);
  200. MD5_ROUND3(b, c, d, a, x[ 6], 23, 0x4881d05);
  201. MD5_ROUND3(a, b, c, d, x[ 9], 4, 0xd9d4d039);
  202. MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5);
  203. MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8);
  204. MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);
  205. MD5_ROUND4(a, b, c, d, x[ 0], 6, 0xf4292244);
  206. MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97);
  207. MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7);
  208. MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039);
  209. MD5_ROUND4(a, b, c, d, x[12], 6, 0x655b59c3);
  210. MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92);
  211. MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d);
  212. MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1);
  213. MD5_ROUND4(a, b, c, d, x[ 8], 6, 0x6fa87e4f);
  214. MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
  215. MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314);
  216. MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1);
  217. MD5_ROUND4(a, b, c, d, x[ 4], 6, 0xf7537e82);
  218. MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235);
  219. MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb);
  220. MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);
  221. state[0] += a;
  222. state[1] += b;
  223. state[2] += c;
  224. state[3] += d;
  225. }
  226. /*!
  227. @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
  228. @param[out] ctx 算法的context,用于记录一些处理的上下文和结果
  229. @param[in] buf 处理的数据,
  230. @param[in] size 处理的数据长度
  231. */
  232. static void zen_md5_update(md5_ctx *ctx, const unsigned char *buf, size_t size)
  233. {
  234. //为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed_
  235. ctx->length_ += size;
  236. //每个处理的块都是64字节
  237. while (size >= ZEN_MD5_BLOCK_SIZE)
  238. {
  239. zen_md5_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
  240. buf += ZEN_MD5_BLOCK_SIZE;
  241. size -= ZEN_MD5_BLOCK_SIZE;
  242. }
  243. ctx->unprocessed_ = size;
  244. }
  245. /*!
  246. @brief 内部函数,处理数据的末尾部分,我们要拼出最后1个(或者两个)要处理的BLOCK,加上0x80,加上长度进行处理
  247. @param[in] ctx 算法的context,用于记录一些处理的上下文和结果
  248. @param[in] buf 处理的数据
  249. @param[in] size 处理buffer的长度
  250. @param[out] result 返回的结果,
  251. */
  252. static void zen_md5_final(md5_ctx *ctx, const unsigned char *buf, size_t size, unsigned char *result)
  253. {
  254. uint32_t message[ZEN_MD5_BLOCK_SIZE / 4];
  255. //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
  256. if (ctx->unprocessed_)
  257. {
  258. memcpy(message, buf + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
  259. }
  260. //得到0x80要添加在的位置(在uint32_t 数组中),
  261. uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
  262. uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
  263. //添加0x80进去,并且把余下的空间补充0
  264. message[index] &= ~(0xFFFFFFFF << shift);
  265. message[index++] ^= 0x80 << shift;
  266. //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
  267. if (index > 14)
  268. {
  269. while (index < 16)
  270. {
  271. message[index++] = 0;
  272. }
  273. zen_md5_process_block(ctx->hash_, message);
  274. index = 0;
  275. }
  276. //补0
  277. while (index < 14)
  278. {
  279. message[index++] = 0;
  280. }
  281. //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
  282. uint64_t data_len = (ctx->length_) << 3;
  283. //注意MD5算法要求的64bit的长度是小头LITTLE-ENDIAN编码,注意下面的比较是!=
  284. #if ZEN_BYTES_ORDER != ZEN_LITTLE_ENDIAN
  285. data_len = ZEN_SWAP_UINT64(data_len);
  286. #endif
  287. message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
  288. message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
  289. zen_md5_process_block(ctx->hash_, message);
  290. //注意结果是小头党的,在大头的世界要进行转换
  291. #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
  292. memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
  293. #else
  294. swap_uint32_memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
  295. #endif
  296. }
  297. //计算一个内存数据的MD5值
  298. unsigned char *ZEN_LIB::md5(const unsigned char *buf,
  299. size_t size,
  300. unsigned char result[ZEN_MD5_HASH_SIZE])
  301. {
  302. assert(result != NULL);
  303. md5_ctx ctx;
  304. zen_md5_init(&ctx);
  305. zen_md5_update(&ctx, buf, size);
  306. zen_md5_final(&ctx, buf, size, result);
  307. return result;
  308. }
  309. //================================================================================================
  310. //SHA1的算法
  311. //每次处理的BLOCK的大小
  312. static const size_t ZEN_SHA1_BLOCK_SIZE = 64;
  313. //SHA1算法的上下文,保存一些状态,中间数据,结果
  314. typedef struct sha1_ctx
  315. {
  316. //处理的数据的长度
  317. uint64_t length_;
  318. //还没有处理的数据长度
  319. uint64_t unprocessed_;
  320. /* 160-bit algorithm internal hashing state */
  321. uint32_t hash_[5];
  322. } sha1_ctx;
  323. //内部函数,SHA1算法的上下文的初始化
  324. static void zen_sha1_init(sha1_ctx *ctx)
  325. {
  326. ctx->length_ = 0;
  327. ctx->unprocessed_ = 0;
  328. // 初始化算法的几个常量,魔术数
  329. ctx->hash_[0] = 0x67452301;
  330. ctx->hash_[1] = 0xefcdab89;
  331. ctx->hash_[2] = 0x98badcfe;
  332. ctx->hash_[3] = 0x10325476;
  333. ctx->hash_[4] = 0xc3d2e1f0;
  334. }
  335. /*!
  336. @brief 内部函数,对一个64bit内存块进行摘要(杂凑)处理,
  337. @param hash 存放计算hash结果的的数组
  338. @param block 要计算的处理得内存块
  339. */
  340. static void zen_sha1_process_block(uint32_t hash[5],
  341. const uint32_t block[ZEN_SHA1_BLOCK_SIZE / 4])
  342. {
  343. size_t t;
  344. uint32_t wblock[80];
  345. register uint32_t a, b, c, d, e, temp;
  346. //SHA1算法处理的内部数据要求是大头党的,在小头的环境转换
  347. #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
  348. swap_uint32_memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
  349. #else
  350. ::memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
  351. #endif
  352. //处理
  353. for (t = 16; t < 80; t++)
  354. {
  355. wblock[t] = ROTL32(wblock[t - 3] ^ wblock[t - 8] ^ wblock[t - 14] ^ wblock[t - 16], 1);
  356. }
  357. a = hash[0];
  358. b = hash[1];
  359. c = hash[2];
  360. d = hash[3];
  361. e = hash[4];
  362. for (t = 0; t < 20; t++)
  363. {
  364. /* the following is faster than ((B & C) | ((~B) & D)) */
  365. temp = ROTL32(a, 5) + (((c ^ d) & b) ^ d)
  366. + e + wblock[t] + 0x5A827999;
  367. e = d;
  368. d = c;
  369. c = ROTL32(b, 30);
  370. b = a;
  371. a = temp;
  372. }
  373. for (t = 20; t < 40; t++)
  374. {
  375. temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0x6ED9EBA1;
  376. e = d;
  377. d = c;
  378. c = ROTL32(b, 30);
  379. b = a;
  380. a = temp;
  381. }
  382. for (t = 40; t < 60; t++)
  383. {
  384. temp = ROTL32(a, 5) + ((b & c) | (b & d) | (c & d))
  385. + e + wblock[t] + 0x8F1BBCDC;
  386. e = d;
  387. d = c;
  388. c = ROTL32(b, 30);
  389. b = a;
  390. a = temp;
  391. }
  392. for (t = 60; t < 80; t++)
  393. {
  394. temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0xCA62C1D6;
  395. e = d;
  396. d = c;
  397. c = ROTL32(b, 30);
  398. b = a;
  399. a = temp;
  400. }
  401. hash[0] += a;
  402. hash[1] += b;
  403. hash[2] += c;
  404. hash[3] += d;
  405. hash[4] += e;
  406. }
  407. /*!
  408. @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
  409. @param ctx 算法的上下文,记录中间数据,结果等
  410. @param msg 要进行计算的数据buffer
  411. @param size 长度
  412. */
  413. static void zen_sha1_update(sha1_ctx *ctx,
  414. const unsigned char *buf,
  415. size_t size)
  416. {
  417. //为了让zen_sha1_update可以多次进入,长度可以累计
  418. ctx->length_ += size;
  419. //每个处理的块都是64字节
  420. while (size >= ZEN_SHA1_BLOCK_SIZE)
  421. {
  422. zen_sha1_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
  423. buf += ZEN_SHA1_BLOCK_SIZE;
  424. size -= ZEN_SHA1_BLOCK_SIZE;
  425. }
  426. ctx->unprocessed_ = size;
  427. }
  428. /*!
  429. @brief 内部函数,处理数据的最后部分,添加0x80,补0,增加长度信息
  430. @param ctx 算法的上下文,记录中间数据,结果等
  431. @param msg 要进行计算的数据buffer
  432. @param result 返回的结果
  433. */
  434. static void zen_sha1_final(sha1_ctx *ctx,
  435. const unsigned char *msg,
  436. size_t size,
  437. unsigned char *result)
  438. {
  439. uint32_t message[ZEN_SHA1_BLOCK_SIZE / 4];
  440. //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
  441. if (ctx->unprocessed_)
  442. {
  443. memcpy(message, msg + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
  444. }
  445. //得到0x80要添加在的位置(在uint32_t 数组中),
  446. uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
  447. uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
  448. //添加0x80进去,并且把余下的空间补充0
  449. message[index] &= ~(0xFFFFFFFF << shift);
  450. message[index++] ^= 0x80 << shift;
  451. //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
  452. if (index > 14)
  453. {
  454. while (index < 16)
  455. {
  456. message[index++] = 0;
  457. }
  458. zen_sha1_process_block(ctx->hash_, message);
  459. index = 0;
  460. }
  461. //补0
  462. while (index < 14)
  463. {
  464. message[index++] = 0;
  465. }
  466. //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
  467. uint64_t data_len = (ctx->length_) << 3;
  468. //注意SHA1算法要求的64bit的长度是大头BIG-ENDIAN,在小头的世界要进行转换
  469. #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
  470. data_len = ZEN_SWAP_UINT64(data_len);
  471. #endif
  472. message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
  473. message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
  474. zen_sha1_process_block(ctx->hash_, message);
  475. //注意结果是大头党的,在小头的世界要进行转换
  476. #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
  477. swap_uint32_memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
  478. #else
  479. memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
  480. #endif
  481. }
  482. //计算一个内存数据的SHA1值
  483. unsigned char *ZEN_LIB::sha1(const unsigned char *msg,
  484. size_t size,
  485. unsigned char result[ZEN_SHA1_HASH_SIZE])
  486. {
  487. assert(result != NULL);
  488. sha1_ctx ctx;
  489. zen_sha1_init(&ctx);
  490. zen_sha1_update(&ctx, msg, size);
  491. zen_sha1_final(&ctx, msg, size, result);
  492. return result;
  493. }
  494. int main(int /*argc*/, char * /*argv*/[])
  495. {
  496. int ret = 0;
  497. static unsigned char test_buf[7][81] =
  498. {
  499. { "" },
  500. { "a" },
  501. { "abc" },
  502. { "message digest" },
  503. { "abcdefghijklmnopqrstuvwxyz" },
  504. { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
  505. { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" }
  506. };
  507. static const size_t test_buflen[7] =
  508. {
  509. 0, 1, 3, 14, 26, 62, 80
  510. };
  511. static const unsigned char md5_test_sum[7][16] =
  512. {
  513. { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04, 0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
  514. { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8, 0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
  515. { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0, 0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
  516. { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D, 0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
  517. { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00, 0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
  518. { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5, 0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
  519. { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55, 0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A }
  520. };
  521. unsigned char result[32] ={0};
  522. for(size_t i=0;i<7;++i)
  523. {
  524. ZEN_LIB::md5(test_buf[i],test_buflen[i],result);
  525. ret = memcmp(result,md5_test_sum[i],16);
  526. if (ret != 0)
  527. {
  528. assert(false);
  529. }
  530. }
  531. static const unsigned char sha1_test_sum[7][20] =
  532. {
  533. { 0xda,0x39,0xa3,0xee,0x5e,0x6b,0x4b,0x0d,0x32,0x55,0xbf,0xef,0x95,0x60,0x18,0x90,0xaf,0xd8,0x07,0x09 },
  534. { 0x86,0xf7,0xe4,0x37,0xfa,0xa5,0xa7,0xfc,0xe1,0x5d,0x1d,0xdc,0xb9,0xea,0xea,0xea,0x37,0x76,0x67,0xb8 },
  535. { 0xa9,0x99,0x3e,0x36,0x47,0x06,0x81,0x6a,0xba,0x3e,0x25,0x71,0x78,0x50,0xc2,0x6c,0x9c,0xd0,0xd8,0x9d },
  536. { 0xc1,0x22,0x52,0xce,0xda,0x8b,0xe8,0x99,0x4d,0x5f,0xa0,0x29,0x0a,0x47,0x23,0x1c,0x1d,0x16,0xaa,0xe3 },
  537. { 0x32,0xd1,0x0c,0x7b,0x8c,0xf9,0x65,0x70,0xca,0x04,0xce,0x37,0xf2,0xa1,0x9d,0x84,0x24,0x0d,0x3a,0x89 },
  538. { 0x76,0x1c,0x45,0x7b,0xf7,0x3b,0x14,0xd2,0x7e,0x9e,0x92,0x65,0xc4,0x6f,0x4b,0x4d,0xda,0x11,0xf9,0x40 },
  539. { 0x50,0xab,0xf5,0x70,0x6a,0x15,0x09,0x90,0xa0,0x8b,0x2c,0x5e,0xa4,0x0f,0xa0,0xe5,0x85,0x55,0x47,0x32 },
  540. };
  541. for(size_t i=0;i<7;++i)
  542. {
  543. ZEN_LIB::sha1(test_buf[i],test_buflen[i],result);
  544. ret = memcmp(result,sha1_test_sum[i],20);
  545. if (ret != 0)
  546. {
  547. assert(false);
  548. }
  549. }
  550. return 0;
  551. }