123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- /*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
- LICENSE TERMS
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 30/11/2002
- This is a byte oriented version of SHA1 that operates on arrays of bytes
- stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
- */
- #include <string.h> /* for memcpy() etc. */
- #include <stdlib.h> /* for _lrotl with VC++ */
- #if defined(__GNUC__) || defined(__GNU_LIBRARY__)
- #include <byteswap.h>
- #include <endian.h>
- #endif
- #include "sha1.h"
- /*
- To obtain the highest speed on processors with 32-bit words, this code
- needs to determine the order in which bytes are packed into such words.
- The following block of code is an attempt to capture the most obvious
- ways in which various environemnts specify their endian definitions.
- It may well fail, in which case the definitions will need to be set by
- editing at the points marked **** EDIT HERE IF NECESSARY **** below.
- */
- #define SHA_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
- #define SHA_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
- #if !defined(PLATFORM_BYTE_ORDER)
- #if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
- # if defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
- # if defined(BYTE_ORDER)
- # if (BYTE_ORDER == LITTLE_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- # elif (BYTE_ORDER == BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- # endif
- # endif
- # elif defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- # endif
- #elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
- # if defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
- # if defined(_BYTE_ORDER)
- # if (_BYTE_ORDER == _LITTLE_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- # elif (_BYTE_ORDER == _BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- # endif
- # endif
- # elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- # endif
- #elif 0 /* **** EDIT HERE IF NECESSARY **** */
- #define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- #elif 0 /* **** EDIT HERE IF NECESSARY **** */
- #define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- #elif (('1234' >> 24) == '1')
- # define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN
- #elif (('4321' >> 24) == '1')
- # define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN
- #endif
- #endif
- #if !defined(PLATFORM_BYTE_ORDER)
- # error Please set undetermined byte order (lines 87 or 89 of sha1.c).
- #endif
- #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
- #if (PLATFORM_BYTE_ORDER == SHA_BIG_ENDIAN)
- #define swap_b32(x) (x)
- #elif defined(bswap_32)
- #define swap_b32(x) bswap_32(x)
- #else
- #define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00))
- #endif
- #define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
- /* reverse byte order in 32-bit words */
- #define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
- #define parity(x,y,z) ((x) ^ (y) ^ (z))
- #define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
- /* A normal version as set out in the FIPS. This version uses */
- /* partial loop unrolling and is optimised for the Pentium 4 */
- #define rnd(f,k) \
- t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
- e = d; d = c; c = rotl32(b, 30); b = t
- void sha1_compile(sha1_ctx ctx[1])
- { sha1_32t w[80], i, a, b, c, d, e, t;
- /* note that words are compiled from the buffer into 32-bit */
- /* words in big-endian order so an order reversal is needed */
- /* here on little endian machines */
- for(i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
- w[i] = swap_b32(ctx->wbuf[i]);
- for(i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
- w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
- a = ctx->hash[0];
- b = ctx->hash[1];
- c = ctx->hash[2];
- d = ctx->hash[3];
- e = ctx->hash[4];
- for(i = 0; i < 20; ++i)
- {
- rnd(ch, 0x5a827999);
- }
- for(i = 20; i < 40; ++i)
- {
- rnd(parity, 0x6ed9eba1);
- }
- for(i = 40; i < 60; ++i)
- {
- rnd(maj, 0x8f1bbcdc);
- }
- for(i = 60; i < 80; ++i)
- {
- rnd(parity, 0xca62c1d6);
- }
- ctx->hash[0] += a;
- ctx->hash[1] += b;
- ctx->hash[2] += c;
- ctx->hash[3] += d;
- ctx->hash[4] += e;
- }
- void sha1_begin(sha1_ctx ctx[1])
- {
- ctx->count[0] = ctx->count[1] = 0;
- ctx->hash[0] = 0x67452301;
- ctx->hash[1] = 0xefcdab89;
- ctx->hash[2] = 0x98badcfe;
- ctx->hash[3] = 0x10325476;
- ctx->hash[4] = 0xc3d2e1f0;
- }
- /* SHA1 hash data in an array of bytes into hash buffer and call the */
- /* hash_compile function as required. */
- void sha1_hash(const unsigned char data[], unsigned int len, sha1_ctx ctx[1])
- {
- sha1_32t pos = (sha1_32t)(ctx->count[0] & SHA1_MASK),
- space = SHA1_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space;
- len -= space;
- space = SHA1_BLOCK_SIZE;
- pos = 0;
- sha1_compile(ctx);
- }
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
- }
- /* SHA1 final padding and digest calculation */
- #if (PLATFORM_BYTE_ORDER == SHA_LITTLE_ENDIAN)
- static sha1_32t mask[4] =
- { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
- static sha1_32t bits[4] =
- { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
- #else
- static sha1_32t mask[4] =
- { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
- static sha1_32t bits[4] =
- { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
- #endif
- void sha1_end(unsigned char hval[], sha1_ctx ctx[1])
- {
- sha1_32t i = (sha1_32t)(ctx->count[0] & SHA1_MASK);
- /* mask out the rest of any partial 32-bit word and then set */
- /* the next byte to 0x80. On big-endian machines any bytes in */
- /* the buffer will be at the top end of 32 bit words, on little */
- /* endian machines they will be at the bottom. Hence the AND */
- /* and OR masks above are reversed for little endian systems */
- /* Note that we can always add the first padding byte at this */
- /* because the buffer always contains at least one empty slot */
- ctx->wbuf[i >> 2] = (ctx->wbuf[i >> 2] & mask[i & 3]) | bits[i & 3];
- /* we need 9 or more empty positions, one for the padding byte */
- /* (above) and eight for the length count. If there is not */
- /* enough space pad and empty the buffer */
- if(i > SHA1_BLOCK_SIZE - 9)
- {
- if(i < 60) ctx->wbuf[15] = 0;
- sha1_compile(ctx);
- i = 0;
- }
- else /* compute a word index for the empty buffer positions */
- i = (i >> 2) + 1;
- while(i < 14) /* and zero pad all but last two positions */
- ctx->wbuf[i++] = 0;
-
- /* assemble the eight byte counter in in big-endian format */
- ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29));
- ctx->wbuf[15] = swap_b32(ctx->count[0] << 3);
- sha1_compile(ctx);
- /* extract the hash value as bytes in case the hash buffer is */
- /* misaligned for 32-bit words */
- for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 2] >> 8 * (~i & 3));
- }
- void sha1(unsigned char hval[], const unsigned char data[], unsigned int len)
- {
- sha1_ctx cx[1];
- sha1_begin(cx);
- sha1_hash(data, len, cx);
- sha1_end(hval, cx);
- }
|