ISO/IEC JTC 1/SC 29

Date: 2011-07-22

ISO/IEC FDIS 23001-7:2011(E)

ISO/IEC JTC 1/SC 29/WG 11

Secretariat:

Information technolog — MPEG systems technologies — Part 7: Common encryption in ISO base media file format files

Élément introductif — Élément central — Partie 7: Titre de la partie

Document type: International Standard Document subtype: Document stage: (50) Approval Document language: E

STD Version 2.1c2

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Contents

Forewordiv		
Introdu	iction	.v
1	Scope	.1
2	Normative references	.1
3 3.1 3.2	Definitions Terms and definitions Abbreviated terms	.1
4	Scheme Signalling	.2
5	Overview of Encryption Metadata	.2
6	Encryption Parameters shared by groups of samples	.2
7	Common Encryption Sample Auxiliary Information	.3
8 8.1 8.1.1 8.1.2 8.1.3 8.2 8.2.1 8.2.2 8.2.3	Box Definitions Protection System Specific Header Box Definition Syntax Semantics Track Encryption Box Definition Syntax Syntax Semantics	.4 .5 .5 .5 .5 .5 .5
9 9.1 9.2 9.3 9.4 9.5 9.6 9.6.1 9.6.2	Encryption of Media Data Encryption Schemes Field semantics Initialization Vectors Counter Operation Full Sample Encryption Subsample Encryption Definition Encryption of AVC tracks	.5 .6 .7 .7 .8

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 23001-7 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 23001 consists of the following parts, under the general title *Information technolog — MPEG systems technologies*:

- Part 1: Binary MPEG format for XML
- Part 2: Fragment Request Units
- Part 3: XML IPMP messages
- Part 4: Codec configuration representation
- Part 5: Bitstream Syntax Description Language (BSDL)
- Part 7: Common encryption in ISO base media file format files

Introduction

The 'cenc' Common Encryption protection scheme specifies standard encryption and key mapping methods that may be utilized by one or more digital rights and key management systems (DRM systems) to enable decryption of the same file using different DRM systems. The scheme operates by defining a common format for the encryption related metadata necessary to decrypt the protected streams, yet leaves the details of rights mappings, key acquisition and storage, DRM compliance rules, etc up the DRM system or systems supporting the 'cenc' scheme. For instance, DRM systems supporting the 'cenc' protection scheme must support identifying the decryption key via 'cenc' KID (key identifier) but how the DRM system locates the identified decryption key is left to a DRM-specific method. DRM specific information such as licenses or rights and license/rights acquisition information may be stored in an ISO Base Media file using a Protection System Specific Header box ('pssh'), using one for each DRM system applied. DRM licenses/rights need not be stored in the file in order to look up a key using KID values stored in the file and decrypt media samples using the encryption parameters stored in each track.

Information technolog — MPEG systems technologies — Part 7: Common encryption in ISO base media file format files

1 Scope

This part of ISO/IEC 23001 specifies a common encryption format for use in any file format based on ISO/IEC 14496-12, The ISO Base Media File Format.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ITU-T Rec. X.667 (09/2004) | ISO/IEC 9834-8:2005, Information technology — Open Systems Interconnection — Procedures for the operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

ISO/IEC 14496-10, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding

ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format

ISO/IEC 14496-15, Information technology — Coding of audio-visual objects — Part 15: Advanced Video Coding (AVC) file format

Advanced Encryption Standard, Federal Information Processing Standards Publication 197, FIPS-197, http://www.nist.gov/

Recommendation of Block Cipher Modes of Operation, NIST, NIST Special Publication 800-38A, <u>http://www.nist.gov/</u>

3 Definitions

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1

ISO Base Media File

name of a file conforming to ISO/IEC 14496-12 in which the techniques in this specification may be used

3.2 Abbreviated terms

For the purposes of this International Standard, the following abbreviated terms apply.

- AES Advanced Encryption Standard as specified in Federal Information Processing Standards Publication 197, FIPS-197
- AES-CTR AES Counter Mode as specified in *Recommendation of Block Cipher Modes of Operation*, NIST, NIST Special Publication 800-38A
- AVC Advanced Video Compression as specified in ISO/IEC 14496-10
- **ISOAVC** An ISO Base Media File containing AVC media tracks as specified in ISO/IEC 14496-15
- **NAL** Network Abstraction Layer as specified in ISO/IEC 14496-10

4 Scheme Signalling

Scheme signaling shall conform to ISO/IEC 14496-12:2008, including amendment three. As defined in ISO/IEC 14496-12:2008, , the sample entry is transformed and a Protection Scheme Information Box ('sinf') is added to the standard sample entry in the Sample Description Box to denote that a stream is encrypted. The Protection Scheme Information Box shall contain a Scheme Type Box ('schm') so that the scheme is identifiable. The Scheme Type Box has the following additional constraints:

- The scheme type field is set to a value of `cenc' (Common Encryption).
- The scheme version field is set to 0x00010000 (Major version 1, Minor version 0).

The Protection Scheme Information Box shall also contain a Scheme Information Box ('schi'). The Scheme Information Box has the following additional constraint:

• The Scheme Information Box shall contain a Track Encryption Box ('tenc'), describing the default encryption parameters for the track.

5 Overview of Encryption Metadata

The encryption metadata defined by the 'cenc' Common Encryption Scheme can be categorized as follows:

- Protection System Specific Data this data is opaque to the 'cenc' Common Encryption Scheme. This gives protection systems a place to store their own data using a common mechanism. This data is contained in the ProtectionSystemSpecificHeaderBox described in 8.1.
- Common encryption information for a media track this includes default values for the key identifier (KID), initialization vector size, and encryption flag. This data is contained in the TrackEncryptionBox described in 8.2.
- Common encryption information for groups of media samples this includes overrides to the track level defaults for key identifier (KID), initialization vector size, and encryption flag. This allows groups of samples within the track to use different keys, a mix of clear and encrypted content, etc. This data is contained in a SampleGroupDescriptionBox ('sgpd') that is referenced by a SampleToGroupBox ('sbgp'). See 6 for further details.
- Encryption information for individual media samples this includes initialization vectors and, if required, sub sample encryption data. This data is sample auxiliary information, referenced by using a SampleAuxiliaryInformationSizesBox ('saiz') and a SampleAuxiliaryInformationOffsetsBox ('saio'). See 7 for further details.

6 Encryption Parameters shared by groups of samples

Each sample in a protected track shall be associated with an IsEncrypted flag, IV_Size, and KID. This can be accomplished by (a) relying on the default values in the TrackEncryptionBox (see 8.2), or (b) specifying the parameters by sample group, or (c) using a combination of these two techniques.

When specifying the parameters by sample group, the <code>SampleToGroupBox</code> in the sample table or track fragment specifies which samples use which sample group description from the

SampleGroupDescriptionBox. The format of the sample group description is based on the handler type for the track.

Tracks with a handler type of 'vide' shall use the CencSampleEncryptionInformationVideoGroupEntry sample group description structure, which has the following syntax:

```
aligned(8) class CencSampleEncryptionInformationVideoGroupEntry
   extends VisualSampleGroupDescriptionEntry( 'seig')
{
    unsigned int(24) IsEncrypted;
    unsigned int(8) IV_size;
    unsigned int(8)[16] KID;
}
```

Similarly, tracks with a handler type of 'soun' shall use the CencSampleEncryptionInformationAudioGroupEntry sample group description structure, which has the following syntax:

```
aligned(8) class CencSampleEncryptionInformationAudioGroupEntry
   extends AudioSampleGroupDescriptionEntry( 'seig')
{
    unsigned int(24) IsEncrypted;
    unsigned int(8) IV_size;
    unsigned int(8)[16] KID;
}
```

NOTE Groups with identical structure should be defined if protection of other media types is needed.

These structures use a common semantic for their fields as follows:

- IsEncrypted is the flag which indicates the encryption state of the samples in the sample group. See the IsEncrypted field in 9.2 for further details.
- IV_size is the Initialization Vector size in bytes for samples in the sample group. See the IV_size field in 9.2 for further details.

KID is the key identifier used for samples in the sample group. See the KID field in 9.2 for further details.

In order to facilitate the addition of future optional fields, clients shall ignore additional bytes after the fields defined in the CencSampleEncryption group entry structures.

7 Common Encryption Sample Auxiliary Information

Each encrypted sample in a protected track shall have an Initialization Vector associated with it. Further, each encrypted sample in protected AVC video tracks shall conform to ISO/IEC 14496-10 and ISO/IEC 14496-15 and shall use the subsample encryption scheme specified in 9.6.2, which requires subsample encryption data. Both initialization vectors and subsample encryption data are provided as Sample Auxiliary Information with aux_info_type equal to 'cenc' and aux_info_type_parameter equal to 0. For tracks protected using the 'cenc' scheme, the default value for aux_info_type is equal to 'cenc' and the default value for the aux_info_type_parameter is 0 so content may be created omitting these optional fields. Storage of sample auxiliary information shall conform to ISO/IEC 14496-12.

The format of the sample auxiliary information for samples with this type shall be:

```
aligned(8) class CencSampleAuxiliaryDataFormat
{
    unsigned int(IV_size*8) InitializationVector;
    if ( sample_info_size > IV_size )
    {
        unsigned int(16) subsample_count;
        {
            unsigned int(16) BytesOfClearData;
            unsigned int(32) BytesOfEncryptedData;
        } [ subsample_count ]
    }
}
```

Where:

- InitializationVector is the initialization vector for the sample. See the InitializationVector field in 9.2 for further details.
- subsample_count is the count of subsamples for this sample. See the subsample_count field in 9.2
 for further details.
- BytesOfClearData is the number of bytes of clear data in this subsample. See the BytesofClearData field in 9.2 for further details.
- BytesOfEncryptedData is the number of bytes of encrypted data in this subsample. See the BytesofEncryptedData field in 9.2 for further details.

If sub-sample encryption is not used (sample_info_size equals IV_size), then the entire sample is encrypted (see 9.5 for further details). In this case, all auxiliary information will have the same size and hence the default_sample_info_size of the SampleAuxiliaryInformationSizes box will be equal to the IV_Size of the initialization vectors.

Note, however, that even if subsample encryption is used, the size of the sample auxiliary information may be the same for all of the samples (if all of the samples have the same number of subsamples) and the default_sample_info_size used.

8 Box Definitions

8.1 Protection System Specific Header Box

8.1.1 Definition

Box Type:`pssh'Container:Movie ('moov') or Movie Fragment ('moof')Mandatory:NoQuantity:Zero or more

This box contains information needed by a Content Protection System to play back the content. The data format is specified by the system identified by the 'pssh' parameter SystemID, and is considered opaque for the purposes of this specification.

The data encapsulated in the Data field may be read by the identified Content Protection System to enable decryption key acquisition and decryption of media data. For license/rights-based systems, the header information may include data such as the URL of license server(s) or rights issuer(s) used, embedded licenses/rights, and/or other protection system specific metadata.

A single file may be constructed to be playable by multiple key and digital rights management (DRM) systems, by including one Protection System Specific Header box for each system supported. Readers that process such presentations shall match the SystemID field in this box to the SystemID(s) of the DRM System(s) they support, and select the matching Protection System Specific Header box(es) for retrieval of Protection System Specific information interpreted or created by that DRM system.

8.1.2 Syntax

```
aligned(8) class ProtectionSystemSpecificHeaderBox extends FullBox('pssh',
version=0, flags=0)
{
    unsigned int(8)[16] SystemID;
    unsigned int(32) DataSize;
    unsigned int(8)[DataSize] Data;
}
```

8.1.3 Semantics

SystemID specifies a UUID that uniquely identifies the content protection system that this header belongs to.

DataSize specifies the size in bytes of the Data member. Data holds the content protection system specific data.

8.2 Track Encryption Box

8.2.1 Definition

Box Type:`tenc'Container:Scheme Information Box ('schi')Mandatory:No (Yes, for encrypted tracks)Quantity:Zero or one

The TrackEncryptionBox contains default values for the IsEncrypted flag, IV_size, and KID for the entire track These values are used as the encryption parameters for the samples in this track unless overridden by the sample group description associated with a group of samples. For files with only one key per track, this box allows the basic encryption parameters to be specified once per track instead of being repeated per sample.

8.2.2 Syntax

```
aligned(8) class TrackEncryptionBox extends FullBox(`tenc', version=0, flags=0)
{
    unsigned int(24) default_IsEncrypted;
    unsigned int(8) default_IV_size;
    unsigned int(8)[16] default_KID;
}
```

8.2.3 Semantics

- default_IsEncypted is the encryption flag which indicates the default encryption state of the samples in the track. See the IsEncrypted field in 9.2 for further details.
- default_KID is the default key identifier used for samples in this track. See the KID field in 9.2 for further details.

9 Encryption of Media Data

9.1 Encryption Schemes

Media data using the 'cenc' Protection Scheme shall use the Advanced Encryption Standard, Federal Information Processing Standards Publication 197, FIPS-197 published by the United States National Institute of Standards and Technology (NIST) using 128-bit keys in Counter Mode (AES-CTR), as specified in Recommendation of Block Cipher Modes of Operation, NIST, NIST Special Publication 800-38A. The scheme

defines two elementary stream encryption formats, full sample encryption and subsample encryption. Full sample encryption is where the entire sample is encrypted as a single encryption unit whereas subsample encryption is where the sample is broken into smaller units each containing a clear area and an encrypted area. Encrypted AVC Video Tracks shall follow the subsample encryption scheme specified in 9.6.2 which defines a NAL unit based encryption scheme to allow access to NAL units and unencrypted NAL unit headers in an encrypted AVC stream. All other types of tracks shall follow the scheme specified in 9.5, which defines a simple sample-based encryption scheme.

9.2 Field semantics

Within the sample groups and sample auxiliary information used by the common encryption scheme, the fields have the following semantics:

- IsEncrypted is the identifier of the encryption state of the samples in the track or group of samples. This flag takes the following values:
 - 0x0: Not encrypted

0x1: Encrypted using AES 128-bit in CTR mode

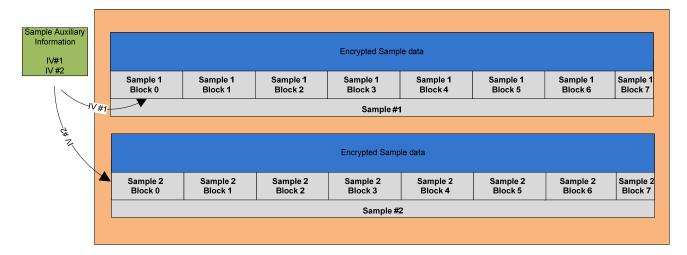
0x000002 - 0xFFFFFF: Reserved

- IV_size is the size in bytes of the InitializationVector field. Supported values:
 - 0 If the IsEncrypted flag is 0x0 (Not Encrypted).
 - 8 Specifies 64-bit initialization vectors.
 - 16 Specifies 128-bit initialization vectors.
- KID is a key identifier that uniquely identifies the key needed to decrypt the associated samples. This allows the identification of multiple encryption keys per file or track. Unencrypted samples in an encrypted track shall be identified by having an IsEncrypted flag of 0x0, an IV_size of 0x0, and a KID value of 0x0.
- InitializationVector specifies the initialization vector (IV) needed for decryption of a sample. For an IsEncrypted flag of 0x0, no initialization vectors are needed and the auxiliary information should have a size of 0, i.e. not be present.
 - For an IsEncrypted flag of 0x1 (AES-CTR), if the IV_size field is 16 then InitializationVector specifies the entire 128-bit IV value used as the counter value. If the IV_size field is 8, then its value is copied to bytes 0 to 7 of the counter value and bytes 8 to 15 of the counter value are set to zero. The IV_size field shall not be 0 when the IsEncrypted flag is 0x1 (AES-CTR).
 - For an IsEncrypted flag of 0x1 (AES-CTR), counter values shall be unique per KID. If an IV_size of 8 is used, then the InitializationVector values for a given KID shall be unique for each sample in all tracks and samples shall be less than 2⁶⁴ blocks in length. If an IV_size of 16 is used, then initialization vectors shall have large enough numeric differences to prevent duplicate counter values for any encrypted block using the same KID.
- subsample_count specifies the number of subsample encryption entries present for this sample. If
 present this field shall be greater than 0.
- BytesOfClearData specifies the number of bytes of clear data at the beginning of this subsample encryption entry. (Note: this value may be zero if no clear bytes exist for this entry.)
- BytesOfEncryptedData specifies the number of bytes of encrypted data following the clear data. (Note: this value may be zero if no encrypted bytes exist for this entry.) The subsample encryption entries shall not include an entry with a zero value in both the BytesOfClearData field and in the BytesOfEncryptedData field unless the sample is zero bytes in length. The total length of all BytesOfClearData and BytesOfEncryptedData for a sample shall equal the length of the sample. Further, it is recommended that the subsample encryption entries be as compactly represented as possible. For example, instead of two entries with {15 clear, 0 encrypted}, {17 clear, 500 encrypted} use one entry of {32 clear, 500 encrypted}

9.3 Initialization Vectors

The initialization vector (IV) values for each sample are located in the Sample Auxiliary Information associated with the encrypted samples. See 9.2 for details on how initialization vectors are formed and stored.

It is recommended that applications applying encryption randomly generate the initialization vector for the first sample in the track using a cryptographically sound random number generator.


- For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples can be created by
 incrementing the initialization vector of the previous sample. Using a random starting value introduces
 entropy into the initialization vector values and incrementing for each sample processed ensures that
 each IV value is unique. The 64-bit initialization vector should be allowed to roll over from the
 maximum value (0xFFFFFFFFFFFFFFFF) to the minimum value (0x0) if the random starting position
 is close to the maximum value.
- For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent samples should be created by adding the block count of the previous sample to the initialization vector of the previous sample. Using a random starting value introduces entropy into the initialization vector values and incrementing by the block count of the previous sample ensures that each IV value is unique. Even though the block counter portion of the counter (bytes 8 to 15) is treated as an unsigned 64-bit number by the client as described in 9.4, it is recommended that the initialization vector is treated as a 128-bit number when calculating the next initialization vector from the previous one.

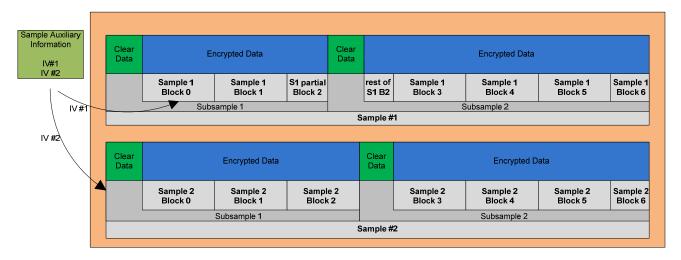
9.4 Counter Operation

AES-CTR mode is a block cipher that can encrypt arbitrary length data without need for padding. It operates by encrypting a counter block with the AES algorithm and then XOR-ing the output of AES with the data to encrypt or decrypt. The counter block used is constructed as described in 9.2. Of the 16 byte counter block, bytes 8 to 15 (i.e. the least significant bytes) are used as a simple 64 bit unsigned integer that is incremented by one for each subsequent block of sample data processed and is kept in network byte order. Note that if this integer reaches the maximum value (0xFFFFFFFFFFFFFFFF) in the case where a 128-bit (16-byte) IV_size is used, then incrementing it resets the block counter to zero (bytes 8 to 15) without affecting the other 64 bits of the counter (i.e. bytes 0 to 7).

9.5 Full Sample Encryption

In full sample encryption, the entire sample is encrypted. Figure 1 shows sample-based encryption using AES-CTR mode.

Figure 1 — Sample-based encryption for AES-CTR


Note that AES-CTR mode is a block cipher mode that acts like a stream cipher. Blocks are shown to illustrate the underlying cipher blocks used in generating the stream cipher (this is why Block 7 is shown as only partially used, as the unused bytes of the stream cipher are discarded during the encryption process).

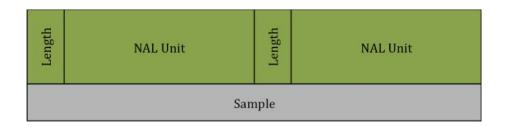
9.6 Subsample Encryption

9.6.1 Definition

In subsample encryption, the sample is divided into one or more subsamples. Each subsample may have an unencrypted part followed by an encrypted part. The total length of all of the subsamples (BytesOfClearData + BytesOfEncryptedData for each subsample) that make up a sample shall be equal to the size of the sample itself.

The encrypted regions of a sample are treated as a logically contiguous block, even though they are broken up by areas of clear data. In other words, the block counter is not arbitrarily incremented between NAL units. Figure 2 shows Subsample based encryption using AES-CTR.

Figure 2 — Subsample-based encryption scheme for AES-CTR with IVs shown


Note that AES-CTR mode is a block cipher mode that acts like a stream cipher. Blocks are shown to illustrate the underlying blocks used in generating the stream cipher. This is why Block 6 in both Sample #1 and Sample #2 are not shown as full 16 byte blocks, the unused bytes of the stream cipher are discarded during the encryption process. Also note that Block 2 of Sample #1 is used to encrypt the end of the first subsample and the beginning of the second subsample.

9.6.2 Encryption of AVC tracks

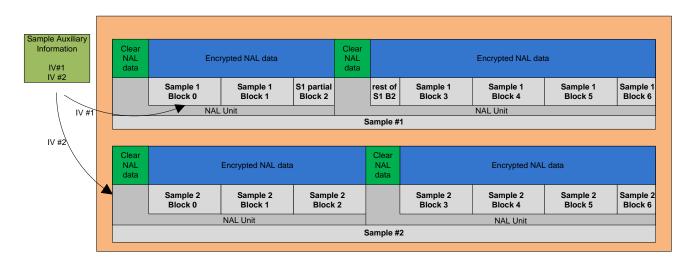
Encrypted AVC tracks shall use subsample encryption as specified in the following Subclauses.

9.6.2.1 Structure of AVC video tracks

AVC specifies the building blocks of the AVC elementary stream to be Network Abstraction Layer (NAL) units. These units can be used to build AVC elementary streams for various different applications. ISO/IEC 14496-15 shall be used to define how the AVC elementary stream data is to be laid out in an ISO base media file format container. In the ISOAVC layout, the container level samples are composed of multiple NAL units, each separated by a Length field stating the length of the NAL. Figure 3 shows an AVC video sample distributed over several NAL units.

Figure 3 — AVC Video sample distributed over several NAL units

Not all decoders are designed to deal with ISOAVC formatted streams. Some decoders are designed to handle a different AVC elementary stream format: for example, ISO/IEC 14496-10 Annex B. Further, it may be necessary to reformat the elementary stream in order to transmit the data using a network protocol like RTP that packetizes NAL Units. Full sample encryption prevents stream reformatting without first decrypting the samples to access NAL Units or their headers.


The stored bit-stream can be converted to Annex B byte stream format by adding start codes and PPS/SPS NAL units as *sequence headers*. To facilitate stream reformatting before decryption, it is required that at least the NAL length field and the nal_unit_type field (the first byte after the length) of each NAL unit is left unencrypted. In addition, it should be noted that:

- The length field is a variable length field. It can be 1, 2, or 4 bytes long and is specified in the Sample Entry for the track as the lengthSizeMinusOne field in the AVCDecoderConfigurationRecord
- There are multiple NAL units per sample, requiring multiple pieces of clear and encrypted data per sample.

9.6.2.2 Subsample Encryption Applied to AVC

For AVC samples, each NAL Unit shall be treated as a subsample. Further, the BytesOfClearData value for each subsample shall be large enough so that at least the header part of each NAL Unit (specifically the NAL Length field and the nal_unit_type field) is left in the clear.

Figure 4 illustrates Subsample Encryption Applied to AVC using AES-CTR. The figure details the IVs used, the areas of clear data, the areas of encrypted data, as well as the NAL unit and sample boundaries.

Figure 4 — Subsample Encryption Applied to AVC using AES-CTR

Note that AES-CTR mode is a block cipher mode that acts like a stream cipher. Blocks are shown to illustrate the underlying blocks used in generating the stream cipher. This is why Block 6 in both Sample #1 and Sample #2 are not

ISO/IEC FDIS 23001-7:2011(E)

shown as full 16 byte blocks, the unused bytes of the stream cipher are discarded during the encryption process. Also note that Block 2 of Sample #1 is used to encrypt the end of the first NAL and the beginning of the second NAL.