// AutoRun.cpp : Defines the class behaviors for the application. // #include "stdafx.h" #include "AutoRun.h" #include "AutoRunDlg.h" #include #include // #include #include #include "DBConfig.h" #include "Lzari.h" #define MY_ENCODING_TYPE (PKCS_7_ASN_ENCODING | X509_ASN_ENCODING) #define KEYLENGTH 0x00800000 #define ENCRYPT_ALGORITHM CALG_RC4 #define ENCRYPT_BLOCK_SIZE 8 #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif CDatabase g_db; extern CDatabase *g_curdb; CString g_mainpath; CString g_server; CString g_server2; CString g_localip; CAutoRunDlg *g_pMainWnd = NULL; BOOL g_bSendOK = 0; SENDHEAD g_sendhead; CStringArray g_serverarray; #pragma comment(lib, "Shlwapi.lib") BOOL isInnerIP(DWORD a_ip) { BOOL bValid = 0; if ((a_ip >> 24 == 0xa) || (a_ip >> 16 == 0xc0a8) || (a_ip >> 22 == 0x2b0)) { bValid = 1; } return bValid; } void MyGetIPByName(CString &name) { CString strIP = name; name.Empty(); DWORD dwServerIP = 0; HOSTENT *host = gethostbyname(strIP); struct in_addr addr; if (host != NULL) { for (int i = 0; host->h_addr_list[i] != NULL; i++) { memset(&addr, 0, sizeof(addr)); memcpy(&addr.S_un.S_addr, host->h_addr_list[i], host->h_length); dwServerIP = ntohl(addr.S_un.S_addr); BYTE* pIP = (BYTE*)&dwServerIP; name.Format(_T("%d.%d.%d.%d"), pIP[3], pIP[2], pIP[1], pIP[0]); g_serverarray.Add(name); } } while (g_serverarray.GetSize() > 1) { CString name; BOOL bFind = 0; for (int i = 0; i < g_serverarray.GetSize(); i++) { DWORD dwServerIP = inet_addr(g_serverarray.ElementAt(i)); dwServerIP = htonl(dwServerIP); if (isInnerIP(dwServerIP) == 0) { g_serverarray.RemoveAt(i); bFind = 1; break; } } if (bFind == 0) { break; } } if (g_serverarray.GetSize()) name = g_serverarray.ElementAt(0); } ///////////////////////////////////////////////////////////////////////////// // CAutoRunApp BEGIN_MESSAGE_MAP(CAutoRunApp, CWinApp) //{{AFX_MSG_MAP(CAutoRunApp) // NOTE - the ClassWizard will add and remove mapping macros here. // DO NOT EDIT what you see in these blocks of generated code! //}}AFX_MSG ON_COMMAND(ID_HELP, CWinApp::OnHelp) END_MESSAGE_MAP() ///////////////////////////////////////////////////////////////////////////// // CAutoRunApp construction CAutoRunApp::CAutoRunApp() { // TODO: add construction code here, // Place all significant initialization in InitInstance } ///////////////////////////////////////////////////////////////////////////// // The one and only CAutoRunApp object CAutoRunApp theApp; ///////////////////////////////////////////////////////////////////////////// // CAutoRunApp initialization DWORD FindAppProcessID(CString path) { try { HANDLE handle = ::CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0); PROCESSENTRY32 Info; Info.dwSize = sizeof(PROCESSENTRY32); path.MakeLower(); if (::Process32First(handle, &Info)) { do { CString ss = Info.szExeFile; ss.MakeLower(); // if(ss.Find (path)!=-1 || (!ss.CompareNoCase(path)) ) if (ss == path) { ::CloseHandle(handle); return Info.th32ProcessID; } } while (::Process32Next(handle, &Info)); ::CloseHandle(handle); } return -1; } catch (...) { } } BOOL CAutoRunApp::InitInstance() { HANDLE hObject = CreateMutex(NULL, FALSE, _T("xdCAutoRunAppXiao")); if (GetLastError() == ERROR_ALREADY_EXISTS) { return false; } int nResult = Transport_Init(); if (TRANSPORT_OK != nResult) { return false; } Global::GetIniInfo(); char server[50]; DWORD leng = 50; ::GetComputerName(server, &leng); g_server2 = server; MyGetIPByName(g_server2); if (g_server2.GetLength() < 3) return false; // if(g_server2.Left (3)!="192" && g_server2.Left (3)!="127") // return false; // Standard initialization // If you are not using these features and wish to reduce the size // of your final executable, you should remove from the following // the specific initialization routines you do not need. CAutoRunDlg dlg; m_pMainWnd = &dlg; int nResponse = dlg.DoModal(); if (nResponse == IDOK) { // TODO: Place code here to handle when the dialog is // dismissed with OK } else if (nResponse == IDCANCEL) { // TODO: Place code here to handle when the dialog is // dismissed with Cancel } // Since the dialog has been closed, return FALSE so that we exit the // application, rather than start the application's message pump. return FALSE; } int CAutoRunApp::ExitInstance() { return CWinApp::ExitInstance(); } BOOL EncryptFile2(BYTE *buffer, DWORD leng, PCHAR szPassword) { try { HCRYPTPROV hCryptProv; HCRYPTKEY hKey; HCRYPTHASH hHash; PBYTE pbBuffer; DWORD dwBlockLen; DWORD dwBufferLen; DWORD dwCount; //以下获得一个CSP句柄 if (CryptAcquireContext( &hCryptProv, NULL, //NULL表示使用默认密钥容器,默认密钥容器名为用户登陆名 NULL, PROV_RSA_FULL, 0)) { printf("A cryptographic provider has been acquired. \n"); } else//密钥容器不存在 { if (CryptAcquireContext( &hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET))//创建密钥容器 { //创建密钥容器成功,并得到CSP句柄 printf("A new key container has been created.\n"); } else { return 0; } } //-------------------------------------------------------------------- // 创建一个会话密钥(session key) // 会话密钥也叫对称密钥,用于对称加密算法。 // (注: 一个Session是指从调用函数CryptAcquireContext到调用函数 // CryptReleaseContext 期间的阶段。) //-------------------------------------------------------------------- // Create a hash object. if (CryptCreateHash( hCryptProv, CALG_MD5, 0, 0, &hHash)) { printf("A hash object has been created. \n"); } else { return 0; } //-------------------------------------------------------------------- // 用输入的密码产生一个散列 if (CryptHashData( hHash, (BYTE *)szPassword, strlen(szPassword), 0)) { printf("The password has been added to the hash. \n"); } else { return 0; } //-------------------------------------------------------------------- // 通过散列生成会话密钥(session key) if (CryptDeriveKey( hCryptProv, ENCRYPT_ALGORITHM, hHash, KEYLENGTH, &hKey)) { printf("An encryption key is derived from the password hash. \n"); } else { return 0; } //-------------------------------------------------------------------- // Destroy the hash object. CryptDestroyHash(hHash); hHash = NULL; //-------------------------------------------------------------------- // The session key is now ready. //-------------------------------------------------------------------- // 因为加密算法是按ENCRYPT_BLOCK_SIZE 大小的块加密的,所以被加密的 // 数据长度必须是ENCRYPT_BLOCK_SIZE 的整数倍。下面计算一次加密的 // 数据长度。 dwBlockLen = 1000 - 1000 % ENCRYPT_BLOCK_SIZE; //-------------------------------------------------------------------- // Determine the block size. If a block cipher is used, // it must have room for an extra block. if (ENCRYPT_BLOCK_SIZE > 1) dwBufferLen = dwBlockLen + ENCRYPT_BLOCK_SIZE; else dwBufferLen = dwBlockLen; dwCount = dwBufferLen; //-------------------------------------------------------------------- // In a do loop, encrypt the source file and write to the source file. int count; // if(leng%dwBlockLen==0) count = leng / dwBufferLen; // else // count=leng/dwBlockLen+1; for (int i = 0; i < count; i++) { pbBuffer = buffer + i*dwBufferLen; // 加密数据 if (!CryptEncrypt( hKey, //密钥 0, //如果数据同时进行散列和加密,这里传入一个散列对象 0, //如果是最后一个被加密的块,输入TRUE.如果不是输入FALSE. //这里通过判断是否到文件尾来决定是否为最后一块。 0, //保留 pbBuffer, //输入被加密数据,输出加密后的数据 &dwCount, //输入被加密数据实际长度,输出加密后数据长度 dwBufferLen)) //pbBuffer的大小。 { return 0; } } if (leng%dwBlockLen) { pbBuffer = buffer + i*dwBufferLen; dwCount = leng - i*dwBufferLen; if (!CryptEncrypt( hKey, //密钥 0, //如果数据同时进行散列和加密,这里传入一个散列对象 TRUE, //如果是最后一个被加密的块,输入TRUE.如果不是输入FALSE. //这里通过判断是否到文件尾来决定是否为最后一块。 0, //保留 pbBuffer, //输入被加密数据,输出加密后的数据 &dwCount, //输入被加密数据实际长度,输出加密后数据长度 dwBufferLen)) //pbBuffer的大小。 { return 0; } } //-------------------------------------------------------------------- // Destroy session key. if (hKey) CryptDestroyKey(hKey); //-------------------------------------------------------------------- // Destroy hash object. if (hHash) CryptDestroyHash(hHash); //-------------------------------------------------------------------- // Release provider handle. if (hCryptProv) CryptReleaseContext(hCryptProv, 0); return(TRUE); } catch (...) { } } extern CArrayg_List1array; extern DWORD g_nLeng; extern BYTE *g_pData; extern CString g_str; void DataToArray(CArray*List1array) { List1array->RemoveAll(); if (g_nLeng == 0)return; if (g_sendhead.code[0]) { BYTE *lpszOut = NULL; int nOutSize = 0; LZARI Lzari; Lzari.UnCompress(g_pData, g_nLeng, lpszOut, nOutSize); CMemFile memfile; memfile.Attach(lpszOut, nOutSize); Lzari.Release(); CArchive ar(&memfile, CArchive::load); List1array->SetSize(g_sendhead.count[0]); for (int ii = 0; ii < List1array->GetSize(); ii++) { List1array->ElementAt(ii).Serialize(ar); } ar.Close(); memfile.Detach(); } else { CMemFile memfile; memfile.Attach(g_pData, g_nLeng); CArchive ar(&memfile, CArchive::load); List1array->SetSize(g_sendhead.count[0]); for (int ii = 0; ii < List1array->GetSize(); ii++) { List1array->ElementAt(ii).Serialize(ar); } ar.Close(); memfile.Detach(); } } void DataToArray(CArray*List1array, CArray*List2array) { CArray*parray[2] = { List1array, List2array }; DWORD bytereads = 0; for (int i = 0; i < 2; i++) { parray[i]->RemoveAll(); if (g_sendhead.length[i] == 0)continue; if (g_sendhead.code[i]) { BYTE *lpszOut = NULL; int nOutSize = 0; LZARI Lzari; Lzari.UnCompress(g_pData + bytereads, g_sendhead.length[i], lpszOut, nOutSize); CMemFile memfile; memfile.Attach(lpszOut, nOutSize); Lzari.Release(); bytereads += g_sendhead.length[i]; CArchive ar(&memfile, CArchive::load); parray[i]->SetSize(g_sendhead.count[i]); for (int ii = 0; ii < parray[i]->GetSize(); ii++) { parray[i]->ElementAt(ii).Serialize(ar); } ar.Close(); memfile.Detach(); } else { CMemFile memfile; memfile.Attach(g_pData + bytereads, g_sendhead.length[i]); bytereads += g_sendhead.length[i]; CArchive ar(&memfile, CArchive::load); parray[i]->SetSize(g_sendhead.count[i]); for (int ii = 0; ii < parray[i]->GetSize(); ii++) { parray[i]->ElementAt(ii).Serialize(ar); } ar.Close(); memfile.Detach(); } } }