/************************************************************** LZARI.C -- A Data Compression Program (tab = 4 spaces) *************************************************************** 4/7/1989 Haruhiko Okumura Use, distribute, and modify this program freely. Please send me your improved versions. PC-VAN SCIENCE NIFTY-Serve PAF01022 CompuServe 74050,1022 **************************************************************/ /******************************************************************** lzari.cpp -- A Data Compression Class created: 2004/10/04 created: 4:10:2004 16:44 file base: lzari file ext: cpp author: 阙荣文 (querw@sina.com) purpose: 如上所述,lzari.c提供了lzari压缩算法的实现,基于lzari.c我把它 做成了一个c++类方便使用 *********************************************************************/ #include "stdafx.h" //#include //#include //#include //#include #include "Lzari.h" LZARI::LZARI() { infile = NULL; outfile = NULL; textsize = 0; codesize = 0; printcount = 0; low = 0; high = Q4; value = 0; shifts = 0;/* counts for magnifying low and high around Q2 */ m_bMem = FALSE; m_pInBuffer = NULL; m_nInLength = 0; m_nInCur = 0; //m_pOutBuffer = NULL; m_nOutLength = 0; // m_nOutCur = 0; buffer_putbit = 0; mask_putbit = 128; buffer_getbit = 0; mask_getbit = 0; } LZARI::~LZARI() { Release(); } void LZARI::Error(char *message) { #ifdef _OUTPUT_STATUS printf("\n%s\n", message); #endif //exit(EXIT_FAILURE); int e = 1; throw e; } void LZARI::PutBit(int bit) /* Output one bit (bit = 0,1) */ { if (bit) buffer_putbit |= mask_putbit; if ((mask_putbit >>= 1) == 0) { if (!m_bMem) { if (putc(buffer_putbit, outfile) == EOF) Error("Write Error"); } else { //if (m_nOutCur == m_nOutLength) Error("Write Error"); //m_pOutBuffer[m_nOutCur++] = buffer; m_OutBuffer.push_back(buffer_putbit); //m_nOutCur++; } buffer_putbit = 0; mask_putbit = 128; codesize++; } } void LZARI::FlushBitBuffer(void) /* Send remaining bits */ { int i; for (i = 0; i < 7; i++) PutBit(0); } int LZARI::GetBit(void) /* Get one bit (0 or 1) */ { if ((mask_getbit >>= 1) == 0) { if (!m_bMem) buffer_getbit = getc(infile); else buffer_getbit = m_pInBuffer[m_nInCur++]; mask_getbit = 128; } return ((buffer_getbit & mask_getbit) != 0); } /********** LZSS with multiple binary trees **********/ void LZARI::InitTree(void) /* Initialize trees */ { int i; /* For i = 0 to N - 1, rson[i] and lson[i] will be the right and left children of node i. These nodes need not be initialized. Also, dad[i] is the parent of node i. These are initialized to NIL (= N), which stands for 'not used.' For i = 0 to 255, rson[N + i + 1] is the root of the tree for strings that begin with character i. These are initialized to NIL. Note there are 256 trees. */ for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; /* root */ for (i = 0; i < N; i++) dad[i] = NIL; /* node */ } void LZARI::InsertNode(int r) /* Inserts string of length F, text_buf[r..r+F-1], into one of the trees (text_buf[r]'th tree) and returns the longest-match position and length via the global variables match_position and match_length. If match_length = F, then removes the old node in favor of the new one, because the old one will be deleted sooner. Note r plays double role, as tree node and position in buffer. */ { int i, p, cmp, temp; unsigned char *key; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for ( ; ; ) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > THRESHOLD) { if (i > match_length) { match_position = (r - p) & (N - 1); if ((match_length = i) >= F) break; } else if (i == match_length) { if ((temp = (r - p) & (N - 1)) < match_position) match_position = temp; } } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; /* remove p */ } void LZARI::DeleteNode(int p) /* Delete node p from tree */ { int q; if (dad[p] == NIL) return; /* not in tree */ if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do { q = rson[q]; } while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } /********** Arithmetic Compression **********/ /* If you are not familiar with arithmetic compression, you should read I. E. Witten, R. M. Neal, and J. G. Cleary, Communications of the ACM, Vol. 30, pp. 520-540 (1987), from which much have been borrowed. */ /* character code = 0, 1, ..., N_CHAR - 1 */ void LZARI::StartModel(void) /* Initialize model */ { int ch, sym, i; sym_cum[N_CHAR] = 0; for (sym = N_CHAR; sym >= 1; sym--) { ch = sym - 1; char_to_sym[ch] = sym; sym_to_char[sym] = ch; sym_freq[sym] = 1; sym_cum[sym - 1] = sym_cum[sym] + sym_freq[sym]; } sym_freq[0] = 0; /* sentinel (!= sym_freq[1]) */ position_cum[N] = 0; for (i = N; i >= 1; i--) position_cum[i - 1] = position_cum[i] + 10000 / (i + 200); /* empirical distribution function (quite tentative) */ /* Please devise a better mechanism! */ } void LZARI::UpdateModel(int sym) { int i, c, ch_i, ch_sym; if (sym_cum[0] >= MAX_CUM) { c = 0; for (i = N_CHAR; i > 0; i--) { sym_cum[i] = c; c += (sym_freq[i] = (sym_freq[i] + 1) >> 1); } sym_cum[0] = c; } for (i = sym; sym_freq[i] == sym_freq[i - 1]; i--) ; if (i < sym) { ch_i = sym_to_char[i]; ch_sym = sym_to_char[sym]; sym_to_char[i] = ch_sym; sym_to_char[sym] = ch_i; char_to_sym[ch_i] = sym; char_to_sym[ch_sym] = i; } sym_freq[i]++; while (--i >= 0) sym_cum[i]++; } void LZARI::Output(int bit) /* Output 1 bit, followed by its complements */ { PutBit(bit); for ( ; shifts > 0; shifts--) PutBit(! bit); } void LZARI::EncodeChar(int ch) { int sym; unsigned long int range; sym = char_to_sym[ch]; range = high - low; high = low + (range * sym_cum[sym - 1]) / sym_cum[0]; low += (range * sym_cum[sym ]) / sym_cum[0]; for ( ; ; ) { if (high <= Q2) Output(0); else if (low >= Q2) { Output(1); low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { shifts++; low -= Q1; high -= Q1; } else break; low += low; high += high; } UpdateModel(sym); } void LZARI::EncodePosition(int position) { unsigned long int range; range = high - low; high = low + (range * position_cum[position ]) / position_cum[0]; low += (range * position_cum[position + 1]) / position_cum[0]; for ( ; ; ) { if (high <= Q2) Output(0); else if (low >= Q2) { Output(1); low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { shifts++; low -= Q1; high -= Q1; } else break; low += low; high += high; } } void LZARI::EncodeEnd(void) { shifts++; if (low < Q1) Output(0); else Output(1); FlushBitBuffer(); /* flush bits remaining in buffer */ } int LZARI::BinarySearchSym(unsigned int x) /* 1 if x >= sym_cum[1], N_CHAR if sym_cum[N_CHAR] > x, i such that sym_cum[i - 1] > x >= sym_cum[i] otherwise */ { int i, j, k; i = 1; j = N_CHAR; while (i < j) { k = (i + j) / 2; if (sym_cum[k] > x) i = k + 1; else j = k; } return i; } int LZARI::BinarySearchPos(unsigned int x) /* 0 if x >= position_cum[1], N - 1 if position_cum[N] > x, i such that position_cum[i] > x >= position_cum[i + 1] otherwise */ { int i, j, k; i = 1; j = N; while (i < j) { k = (i + j) / 2; if (position_cum[k] > x) i = k + 1; else j = k; } return i - 1; } void LZARI::StartDecode(void) { int i; for (i = 0; i < M + 2; i++) value = 2 * value + GetBit(); } int LZARI::DecodeChar(void) { int sym, ch; unsigned long int range; range = high - low; sym = BinarySearchSym((unsigned int) (((value - low + 1) * sym_cum[0] - 1) / range)); high = low + (range * sym_cum[sym - 1]) / sym_cum[0]; low += (range * sym_cum[sym ]) / sym_cum[0]; for ( ; ; ) { if (low >= Q2) { value -= Q2; low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { value -= Q1; low -= Q1; high -= Q1; } else if (high > Q2) break; low += low; high += high; value = 2 * value + GetBit(); } ch = sym_to_char[sym]; UpdateModel(sym); return ch; } int LZARI::DecodePosition(void) { int position; unsigned long int range; range = high - low; position = BinarySearchPos((unsigned int) (((value - low + 1) * position_cum[0] - 1) / range)); high = low + (range * position_cum[position ]) / position_cum[0]; low += (range * position_cum[position + 1]) / position_cum[0]; for ( ; ; ) { if (low >= Q2) { value -= Q2; low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { value -= Q1; low -= Q1; high -= Q1; } else if (high > Q2) break; low += low; high += high; value = 2 * value + GetBit(); } return position; } /********** Encode and Decode **********/ void LZARI::Encode(void) { int i, c, len, r, s, last_match_length; if(!m_bMem) { fseek(infile, 0L, SEEK_END); textsize = ftell(infile); if (fwrite(&textsize, sizeof textsize, 1, outfile) < 1) Error("Write Error"); /* output size of text */ codesize += sizeof textsize; if (textsize == 0) return; rewind(infile); textsize = 0; } else { textsize = m_nInLength; m_OutBuffer.resize(sizeof textsize); memcpy(&m_OutBuffer[0],&textsize,sizeof textsize); //m_nOutCur += sizeof textsize; codesize += sizeof textsize; if(textsize == 0) return; m_nInCur = 0; textsize = 0; } StartModel(); InitTree(); s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = ' '; if(!m_bMem) for (len = 0; len < F && (c = getc(infile)) != EOF; len++) text_buf[r + len] = c; else for (len = 0; len < F && m_nInCur < m_nInLength ; len++) { c = m_pInBuffer[m_nInCur++]; text_buf[r + len] = c; } textsize = len; for (i = 1; i <= F; i++) InsertNode(r - i); InsertNode(r); do { if (match_length > len) match_length = len; if (match_length <= THRESHOLD) { match_length = 1; EncodeChar(text_buf[r]); } else { EncodeChar(255 - THRESHOLD + match_length); EncodePosition(match_position - 1); } last_match_length = match_length; if(!m_bMem) { for (i = 0; i < last_match_length && (c = getc(infile)) != EOF; i++) { DeleteNode(s); text_buf[s] = c; if (s < F - 1) text_buf[s + N] = c; s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); InsertNode(r); } } else { for (i = 0; i < last_match_length && m_nInCur < m_nInLength ; i++) { c = m_pInBuffer[m_nInCur++]; DeleteNode(s); text_buf[s] = c; if (s < F - 1) text_buf[s + N] = c; s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); InsertNode(r); } } if ((textsize += i) > printcount) { #ifdef _OUTPUT_STATUS printf("%12ld\r", textsize); #endif printcount += 1024; } while (i++ < last_match_length) { DeleteNode(s); s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode(r); } } while (len > 0); EncodeEnd(); #ifdef _OUTPUT_STATUS printf("In : %lu bytes\n", textsize); printf("Out: %lu bytes\n", codesize); printf("Out/In: %.3f\n", (double)codesize / textsize); #endif } void LZARI::Decode(void) { int i, j, k, r, c; unsigned long int count; if (!m_bMem) { if (fread(&textsize, sizeof textsize, 1, infile) < 1) Error("Read Error"); /* read size of text */ } else { if(m_nInLength < sizeof textsize) Error("Read Error"); memcpy(&textsize,m_pInBuffer + m_nInCur,sizeof textsize); //m_OutBuffer.reserve(textsize); m_nOutLength = textsize; //m_nOutCur = 0; m_nInCur += sizeof textsize; } if (textsize == 0) return; StartDecode(); StartModel(); for (i = 0; i < N - F; i++) text_buf[i] = ' '; r = N - F; for (count = 0; count < textsize; ) { c = DecodeChar(); if (c < 256) { if(!m_bMem) putc(c, outfile); else { //m_OutBuffer[m_nOutCur++] = c; m_OutBuffer.push_back(c); //m_nOutCur++; } text_buf[r++] = c; r &= (N - 1); count++; } else { i = (r - DecodePosition() - 1) & (N - 1); j = c - 255 + THRESHOLD; for (k = 0; k < j; k++) { c = text_buf[(i + k) & (N - 1)]; if(!m_bMem) putc(c, outfile); else { // m_pOutBuffer[m_nOutCur++] = c; m_OutBuffer.push_back(c); //m_nOutCur ++; } text_buf[r++] = c; r &= (N - 1); count++; } } if (count > printcount) { #ifdef _OUTPUT_STATUS printf("%12lu\r", count); #endif printcount += 1024; } } #ifdef _OUTPUT_STATUS printf("%12lu\n", count); #endif } void LZARI::Compress(const char *lpszInfile,const char *lpszOutfile) { m_bMem = FALSE; infile = fopen(lpszInfile,"rb"); outfile = fopen(lpszOutfile,"wb"); if(infile && outfile) { Encode(); fclose(infile); fclose(outfile); infile = NULL; outfile = NULL; } } void LZARI::UnCompress(const char *lpszInfile,const char *lpszOutfile) { m_bMem = FALSE; infile = fopen(lpszInfile,"rb"); outfile = fopen(lpszOutfile,"wb"); if(infile && outfile) { Decode(); fclose(infile); fclose(outfile); infile = NULL; outfile = NULL; } } void LZARI::Compress(const BYTE *pInBuffer,int nInLength,const BYTE *&pOutBuffer ,int &nOutLength) { m_pInBuffer = pInBuffer; m_nInLength = nInLength; m_nInCur = 0; // m_nOutCur = 0; m_bMem = TRUE; Encode(); pOutBuffer = &m_OutBuffer[0]; nOutLength = m_OutBuffer.size(); } void LZARI::Release() { if(!m_OutBuffer.empty()) { infile = NULL; outfile = NULL; textsize = 0; codesize = 0; printcount = 0; low = 0; high = Q4; value = 0; shifts = 0; m_bMem = FALSE; m_pInBuffer = NULL; m_nInLength = 0; m_nInCur = 0; m_OutBuffer.clear(); m_nOutLength = 0; buffer_putbit = 0; mask_putbit = 128; buffer_getbit = 0; mask_getbit = 0; } } void LZARI::UnCompress(const BYTE *pInBuffer,int nInLength,const BYTE *&pOutBuffer ,int &nOutLength) { m_pInBuffer = pInBuffer; m_nInLength = nInLength; m_nInCur = 0; m_bMem = TRUE; Decode(); pOutBuffer = &m_OutBuffer[0]; nOutLength = m_OutBuffer.size(); m_OutBuffer.push_back(0); }