浏览代码

Opencv3.3.1版本32位dll项目工程;

scbc.sat2 5 年之前
父节点
当前提交
b8f49380a0
共有 100 个文件被更改,包括 17501 次插入0 次删除
  1. 二进制
      cv/bin/opencv_annotation.exe
  2. 二进制
      cv/bin/opencv_aruco331.dll
  3. 二进制
      cv/bin/opencv_bgsegm331.dll
  4. 二进制
      cv/bin/opencv_bioinspired331.dll
  5. 二进制
      cv/bin/opencv_calib3d331.dll
  6. 二进制
      cv/bin/opencv_ccalib331.dll
  7. 二进制
      cv/bin/opencv_core331.dll
  8. 二进制
      cv/bin/opencv_createsamples.exe
  9. 二进制
      cv/bin/opencv_datasets331.dll
  10. 二进制
      cv/bin/opencv_dnn331.dll
  11. 二进制
      cv/bin/opencv_dpm331.dll
  12. 二进制
      cv/bin/opencv_face331.dll
  13. 二进制
      cv/bin/opencv_features2d331.dll
  14. 二进制
      cv/bin/opencv_ffmpeg331.dll
  15. 二进制
      cv/bin/opencv_flann331.dll
  16. 二进制
      cv/bin/opencv_fuzzy331.dll
  17. 二进制
      cv/bin/opencv_highgui331.dll
  18. 二进制
      cv/bin/opencv_img_hash331.dll
  19. 二进制
      cv/bin/opencv_imgcodecs331.dll
  20. 二进制
      cv/bin/opencv_imgproc331.dll
  21. 二进制
      cv/bin/opencv_interactive-calibration.exe
  22. 二进制
      cv/bin/opencv_line_descriptor331.dll
  23. 二进制
      cv/bin/opencv_ml331.dll
  24. 二进制
      cv/bin/opencv_objdetect331.dll
  25. 二进制
      cv/bin/opencv_optflow331.dll
  26. 二进制
      cv/bin/opencv_phase_unwrapping331.dll
  27. 二进制
      cv/bin/opencv_photo331.dll
  28. 二进制
      cv/bin/opencv_plot331.dll
  29. 二进制
      cv/bin/opencv_reg331.dll
  30. 二进制
      cv/bin/opencv_rgbd331.dll
  31. 二进制
      cv/bin/opencv_saliency331.dll
  32. 二进制
      cv/bin/opencv_shape331.dll
  33. 二进制
      cv/bin/opencv_stereo331.dll
  34. 二进制
      cv/bin/opencv_stitching331.dll
  35. 二进制
      cv/bin/opencv_structured_light331.dll
  36. 二进制
      cv/bin/opencv_superres331.dll
  37. 二进制
      cv/bin/opencv_surface_matching331.dll
  38. 二进制
      cv/bin/opencv_text331.dll
  39. 二进制
      cv/bin/opencv_tracking331.dll
  40. 二进制
      cv/bin/opencv_traincascade.exe
  41. 二进制
      cv/bin/opencv_version.exe
  42. 二进制
      cv/bin/opencv_video331.dll
  43. 二进制
      cv/bin/opencv_videoio331.dll
  44. 二进制
      cv/bin/opencv_videostab331.dll
  45. 二进制
      cv/bin/opencv_visualisation.exe
  46. 二进制
      cv/bin/opencv_waldboost_detector.exe
  47. 二进制
      cv/bin/opencv_xfeatures2d331.dll
  48. 二进制
      cv/bin/opencv_ximgproc331.dll
  49. 二进制
      cv/bin/opencv_xobjdetect331.dll
  50. 二进制
      cv/bin/opencv_xphoto331.dll
  51. 31 0
      cv/cv.sln
  52. 16 0
      cv/cv/Resource.h
  53. 47 0
      cv/cv/cv.cpp
  54. 22 0
      cv/cv/cv.h
  55. 二进制
      cv/cv/cv.rc
  56. 185 0
      cv/cv/cv.vcxproj
  57. 47 0
      cv/cv/cv.vcxproj.filters
  58. 24 0
      cv/cv/framework.h
  59. 5 0
      cv/cv/stdafx.cpp
  60. 14 0
      cv/cv/stdafx.h
  61. 6 0
      cv/cv/targetver.h
  62. 73 0
      cv/include/opencv/cv.h
  63. 60 0
      cv/include/opencv/cv.hpp
  64. 57 0
      cv/include/opencv/cvaux.h
  65. 52 0
      cv/include/opencv/cvaux.hpp
  66. 46 0
      cv/include/opencv/cvwimage.h
  67. 52 0
      cv/include/opencv/cxcore.h
  68. 53 0
      cv/include/opencv/cxcore.hpp
  69. 48 0
      cv/include/opencv/cxeigen.hpp
  70. 8 0
      cv/include/opencv/cxmisc.h
  71. 48 0
      cv/include/opencv/highgui.h
  72. 47 0
      cv/include/opencv/ml.h
  73. 566 0
      cv/include/opencv2/aruco.hpp
  74. 343 0
      cv/include/opencv2/aruco/charuco.hpp
  75. 205 0
      cv/include/opencv2/aruco/dictionary.hpp
  76. 251 0
      cv/include/opencv2/bgsegm.hpp
  77. 60 0
      cv/include/opencv2/bioinspired.hpp
  78. 48 0
      cv/include/opencv2/bioinspired/bioinspired.hpp
  79. 454 0
      cv/include/opencv2/bioinspired/retina.hpp
  80. 138 0
      cv/include/opencv2/bioinspired/retinafasttonemapping.hpp
  81. 204 0
      cv/include/opencv2/bioinspired/transientareassegmentationmodule.hpp
  82. 2247 0
      cv/include/opencv2/calib3d.hpp
  83. 48 0
      cv/include/opencv2/calib3d/calib3d.hpp
  84. 427 0
      cv/include/opencv2/calib3d/calib3d_c.h
  85. 157 0
      cv/include/opencv2/ccalib.hpp
  86. 212 0
      cv/include/opencv2/ccalib/multicalib.hpp
  87. 310 0
      cv/include/opencv2/ccalib/omnidir.hpp
  88. 177 0
      cv/include/opencv2/ccalib/randpattern.hpp
  89. 3280 0
      cv/include/opencv2/core.hpp
  90. 528 0
      cv/include/opencv2/core/affine.hpp
  91. 745 0
      cv/include/opencv2/core/base.hpp
  92. 40 0
      cv/include/opencv2/core/bufferpool.hpp
  93. 48 0
      cv/include/opencv2/core/core.hpp
  94. 3184 0
      cv/include/opencv2/core/core_c.h
  95. 906 0
      cv/include/opencv2/core/cuda.hpp
  96. 631 0
      cv/include/opencv2/core/cuda.inl.hpp
  97. 211 0
      cv/include/opencv2/core/cuda/block.hpp
  98. 722 0
      cv/include/opencv2/core/cuda/border_interpolate.hpp
  99. 309 0
      cv/include/opencv2/core/cuda/color.hpp
  100. 109 0
      cv/include/opencv2/core/cuda/common.hpp

二进制
cv/bin/opencv_annotation.exe


二进制
cv/bin/opencv_aruco331.dll


二进制
cv/bin/opencv_bgsegm331.dll


二进制
cv/bin/opencv_bioinspired331.dll


二进制
cv/bin/opencv_calib3d331.dll


二进制
cv/bin/opencv_ccalib331.dll


二进制
cv/bin/opencv_core331.dll


二进制
cv/bin/opencv_createsamples.exe


二进制
cv/bin/opencv_datasets331.dll


二进制
cv/bin/opencv_dnn331.dll


二进制
cv/bin/opencv_dpm331.dll


二进制
cv/bin/opencv_face331.dll


二进制
cv/bin/opencv_features2d331.dll


二进制
cv/bin/opencv_ffmpeg331.dll


二进制
cv/bin/opencv_flann331.dll


二进制
cv/bin/opencv_fuzzy331.dll


二进制
cv/bin/opencv_highgui331.dll


二进制
cv/bin/opencv_img_hash331.dll


二进制
cv/bin/opencv_imgcodecs331.dll


二进制
cv/bin/opencv_imgproc331.dll


二进制
cv/bin/opencv_interactive-calibration.exe


二进制
cv/bin/opencv_line_descriptor331.dll


二进制
cv/bin/opencv_ml331.dll


二进制
cv/bin/opencv_objdetect331.dll


二进制
cv/bin/opencv_optflow331.dll


二进制
cv/bin/opencv_phase_unwrapping331.dll


二进制
cv/bin/opencv_photo331.dll


二进制
cv/bin/opencv_plot331.dll


二进制
cv/bin/opencv_reg331.dll


二进制
cv/bin/opencv_rgbd331.dll


二进制
cv/bin/opencv_saliency331.dll


二进制
cv/bin/opencv_shape331.dll


二进制
cv/bin/opencv_stereo331.dll


二进制
cv/bin/opencv_stitching331.dll


二进制
cv/bin/opencv_structured_light331.dll


二进制
cv/bin/opencv_superres331.dll


二进制
cv/bin/opencv_surface_matching331.dll


二进制
cv/bin/opencv_text331.dll


二进制
cv/bin/opencv_tracking331.dll


二进制
cv/bin/opencv_traincascade.exe


二进制
cv/bin/opencv_version.exe


二进制
cv/bin/opencv_video331.dll


二进制
cv/bin/opencv_videoio331.dll


二进制
cv/bin/opencv_videostab331.dll


二进制
cv/bin/opencv_visualisation.exe


二进制
cv/bin/opencv_waldboost_detector.exe


二进制
cv/bin/opencv_xfeatures2d331.dll


二进制
cv/bin/opencv_ximgproc331.dll


二进制
cv/bin/opencv_xobjdetect331.dll


二进制
cv/bin/opencv_xphoto331.dll


+ 31 - 0
cv/cv.sln

@@ -0,0 +1,31 @@
+
+Microsoft Visual Studio Solution File, Format Version 12.00
+# Visual Studio Version 16
+VisualStudioVersion = 16.0.29613.14
+MinimumVisualStudioVersion = 10.0.40219.1
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "cv", "cv\cv.vcxproj", "{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}"
+EndProject
+Global
+	GlobalSection(SolutionConfigurationPlatforms) = preSolution
+		Debug|x64 = Debug|x64
+		Debug|x86 = Debug|x86
+		Release|x64 = Release|x64
+		Release|x86 = Release|x86
+	EndGlobalSection
+	GlobalSection(ProjectConfigurationPlatforms) = postSolution
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Debug|x64.ActiveCfg = Debug|x64
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Debug|x64.Build.0 = Debug|x64
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Debug|x86.ActiveCfg = Debug|Win32
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Debug|x86.Build.0 = Debug|Win32
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Release|x64.ActiveCfg = Release|x64
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Release|x64.Build.0 = Release|x64
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Release|x86.ActiveCfg = Release|Win32
+		{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}.Release|x86.Build.0 = Release|Win32
+	EndGlobalSection
+	GlobalSection(SolutionProperties) = preSolution
+		HideSolutionNode = FALSE
+	EndGlobalSection
+	GlobalSection(ExtensibilityGlobals) = postSolution
+		SolutionGuid = {1B0D4D77-7755-431D-8430-F9A8236D25E7}
+	EndGlobalSection
+EndGlobal

+ 16 - 0
cv/cv/Resource.h

@@ -0,0 +1,16 @@
+//{{NO_DEPENDENCIES}}
+// Microsoft Visual C++ 生成的包含文件。
+// 使用者 cv.rc
+
+#define IDS_APP_TITLE			103
+
+// 新对象的下一组默认值
+//
+#ifdef APSTUDIO_INVOKED
+#ifndef APSTUDIO_READONLY_SYMBOLS
+#define _APS_NEXT_RESOURCE_VALUE	101
+#define _APS_NEXT_COMMAND_VALUE		40001
+#define _APS_NEXT_CONTROL_VALUE		1000
+#define _APS_NEXT_SYMED_VALUE		101
+#endif
+#endif

+ 47 - 0
cv/cv/cv.cpp

@@ -0,0 +1,47 @@
+// cv.cpp : 定义 DLL 的导出函数。
+//
+
+#include "stdafx.h"
+#include "framework.h"
+#include "cv.h"
+
+#ifdef _DEBUG
+#define new DEBUG_NEW
+#endif
+
+
+// 唯一的应用程序对象
+
+CWinApp theApp;
+
+using namespace std;
+
+int main()
+{
+    int nRetCode = 0;
+
+    HMODULE hModule = ::GetModuleHandle(nullptr);
+
+    if (hModule != nullptr)
+    {
+        // 初始化 MFC 并在失败时显示错误
+        if (!AfxWinInit(hModule, nullptr, ::GetCommandLine(), 0))
+        {
+            // TODO: 在此处为应用程序的行为编写代码。
+            wprintf(L"错误: MFC 初始化失败\n");
+            nRetCode = 1;
+        }
+        else
+        {
+            // TODO: 在此处为应用程序的行为编写代码。
+        }
+    }
+    else
+    {
+        // TODO: 更改错误代码以符合需要
+        wprintf(L"错误: GetModuleHandle 失败\n");
+        nRetCode = 1;
+    }
+
+    return nRetCode;
+}

+ 22 - 0
cv/cv/cv.h

@@ -0,0 +1,22 @@
+// 下列 ifdef 块是创建使从 DLL 导出更简单的
+// 宏的标准方法。此 DLL 中的所有文件都是用命令行上定义的 {0}_EXPORTS
+// 符号编译的。在使用此 DLL 的
+// 任何项目上不应定义此符号。这样,源文件中包含此文件的任何其他项目都会将
+// {0}_API 函数视为是从 DLL 导入的,而此 DLL 则将用此宏定义的
+// 符号视为是被导出的。
+#ifdef CV_EXPORTS
+#define CV_API __declspec(dllexport)
+#else
+#define CV_API __declspec(dllimport)
+#endif
+
+// 此类是从 dll 导出的
+class CV_API Ccv {
+public:
+	Ccv(void);
+	// TODO: 在此处添加方法。
+};
+
+extern CV_API int ncv;
+
+CV_API int fncv(void);

二进制
cv/cv/cv.rc


+ 185 - 0
cv/cv/cv.vcxproj

@@ -0,0 +1,185 @@
+<?xml version="1.0" encoding="utf-8"?>
+<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+  <ItemGroup Label="ProjectConfigurations">
+    <ProjectConfiguration Include="Debug|Win32">
+      <Configuration>Debug</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|Win32">
+      <Configuration>Release</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Debug|x64">
+      <Configuration>Debug</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|x64">
+      <Configuration>Release</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+  </ItemGroup>
+  <PropertyGroup Label="Globals">
+    <VCProjectVersion>16.0</VCProjectVersion>
+    <ProjectGuid>{FC68AA3C-6DC3-465A-98B8-B28547BD5D3D}</ProjectGuid>
+    <Keyword>Win32Proj</Keyword>
+    <RootNamespace>cv</RootNamespace>
+    <WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
+    <ConfigurationType>DynamicLibrary</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v142</PlatformToolset>
+    <CharacterSet>Unicode</CharacterSet>
+    <UseOfMfc>Dynamic</UseOfMfc>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
+    <ConfigurationType>DynamicLibrary</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v142</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>Unicode</CharacterSet>
+    <UseOfMfc>Dynamic</UseOfMfc>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
+    <ConfigurationType>DynamicLibrary</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v142</PlatformToolset>
+    <CharacterSet>Unicode</CharacterSet>
+    <UseOfMfc>Dynamic</UseOfMfc>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
+    <ConfigurationType>DynamicLibrary</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v142</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>Unicode</CharacterSet>
+    <UseOfMfc>Dynamic</UseOfMfc>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
+  <ImportGroup Label="ExtensionSettings">
+  </ImportGroup>
+  <ImportGroup Label="Shared">
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <PropertyGroup Label="UserMacros" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <LinkIncremental>true</LinkIncremental>
+    <OutDir>..\..\..\bin\$(SolutionName)\</OutDir>
+    <IntDir>$(OutDir)$(Configuration)\</IntDir>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <LinkIncremental>true</LinkIncremental>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <LinkIncremental>false</LinkIncremental>
+    <OutDir>..\..\..\bin\$(SolutionName)\</OutDir>
+    <IntDir>$(OutDir)$(Configuration)\</IntDir>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <LinkIncremental>false</LinkIncremental>
+  </PropertyGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <ClCompile>
+      <PrecompiledHeader>Use</PrecompiledHeader>
+      <WarningLevel>Level3</WarningLevel>
+      <SDLCheck>true</SDLCheck>
+      <PreprocessorDefinitions>WIN32;_DEBUG;CV_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <PrecompiledHeaderFile>stdafx.h</PrecompiledHeaderFile>
+      <AdditionalIncludeDirectories>..\include</AdditionalIncludeDirectories>
+    </ClCompile>
+    <Link>
+      <SubSystem>Windows</SubSystem>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableUAC>false</EnableUAC>
+      <AdditionalDependencies>opencv_aruco331.lib;opencv_bgsegm331.lib;opencv_bioinspired331.lib;opencv_calib3d331.lib;opencv_ccalib331.lib;opencv_core331.lib;opencv_datasets331.lib;opencv_dnn331.lib;opencv_dpm331.lib;opencv_face331.lib;opencv_features2d331.lib;opencv_flann331.lib;opencv_fuzzy331.lib;opencv_highgui331.lib;opencv_imgcodecs331.lib;opencv_imgproc331.lib;opencv_img_hash331.lib;opencv_line_descriptor331.lib;opencv_ml331.lib;opencv_objdetect331.lib;opencv_optflow331.lib;opencv_phase_unwrapping331.lib;opencv_photo331.lib;opencv_plot331.lib;opencv_reg331.lib;opencv_rgbd331.lib;opencv_saliency331.lib;opencv_shape331.lib;opencv_stereo331.lib;opencv_stitching331.lib;opencv_structured_light331.lib;opencv_superres331.lib;opencv_surface_matching331.lib;opencv_text331.lib;opencv_tracking331.lib;opencv_video331.lib;opencv_videoio331.lib;opencv_videostab331.lib;opencv_xfeatures2d331.lib;opencv_ximgproc331.lib;opencv_xobjdetect331.lib;opencv_xphoto331.lib;%(AdditionalDependencies)</AdditionalDependencies>
+      <AdditionalLibraryDirectories>..\lib</AdditionalLibraryDirectories>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <ClCompile>
+      <PrecompiledHeader>Use</PrecompiledHeader>
+      <WarningLevel>Level3</WarningLevel>
+      <SDLCheck>true</SDLCheck>
+      <PreprocessorDefinitions>_DEBUG;CV_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
+    </ClCompile>
+    <Link>
+      <SubSystem>Windows</SubSystem>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableUAC>false</EnableUAC>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <ClCompile>
+      <PrecompiledHeader>Use</PrecompiledHeader>
+      <WarningLevel>Level3</WarningLevel>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <PreprocessorDefinitions>WIN32;NDEBUG;CV_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <PrecompiledHeaderFile>stdafx.h</PrecompiledHeaderFile>
+      <AdditionalIncludeDirectories>..\include</AdditionalIncludeDirectories>
+    </ClCompile>
+    <Link>
+      <SubSystem>Windows</SubSystem>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableUAC>false</EnableUAC>
+      <AdditionalDependencies>opencv_aruco331.lib;opencv_bgsegm331.lib;opencv_bioinspired331.lib;opencv_calib3d331.lib;opencv_ccalib331.lib;opencv_core331.lib;opencv_datasets331.lib;opencv_dnn331.lib;opencv_dpm331.lib;opencv_face331.lib;opencv_features2d331.lib;opencv_flann331.lib;opencv_fuzzy331.lib;opencv_highgui331.lib;opencv_imgcodecs331.lib;opencv_imgproc331.lib;opencv_img_hash331.lib;opencv_line_descriptor331.lib;opencv_ml331.lib;opencv_objdetect331.lib;opencv_optflow331.lib;opencv_phase_unwrapping331.lib;opencv_photo331.lib;opencv_plot331.lib;opencv_reg331.lib;opencv_rgbd331.lib;opencv_saliency331.lib;opencv_shape331.lib;opencv_stereo331.lib;opencv_stitching331.lib;opencv_structured_light331.lib;opencv_superres331.lib;opencv_surface_matching331.lib;opencv_text331.lib;opencv_tracking331.lib;opencv_video331.lib;opencv_videoio331.lib;opencv_videostab331.lib;opencv_xfeatures2d331.lib;opencv_ximgproc331.lib;opencv_xobjdetect331.lib;opencv_xphoto331.lib;%(AdditionalDependencies)</AdditionalDependencies>
+      <AdditionalLibraryDirectories>..\lib</AdditionalLibraryDirectories>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <ClCompile>
+      <PrecompiledHeader>Use</PrecompiledHeader>
+      <WarningLevel>Level3</WarningLevel>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <PreprocessorDefinitions>NDEBUG;CV_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
+    </ClCompile>
+    <Link>
+      <SubSystem>Windows</SubSystem>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableUAC>false</EnableUAC>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemGroup>
+    <ClInclude Include="cv.h" />
+    <ClInclude Include="framework.h" />
+    <ClInclude Include="stdafx.h" />
+    <ClInclude Include="Resource.h" />
+    <ClInclude Include="targetver.h" />
+  </ItemGroup>
+  <ItemGroup>
+    <ClCompile Include="cv.cpp" />
+    <ClCompile Include="stdafx.cpp">
+      <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Create</PrecompiledHeader>
+      <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">Create</PrecompiledHeader>
+      <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Create</PrecompiledHeader>
+      <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Release|x64'">Create</PrecompiledHeader>
+    </ClCompile>
+  </ItemGroup>
+  <ItemGroup>
+    <ResourceCompile Include="cv.rc" />
+  </ItemGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
+  <ImportGroup Label="ExtensionTargets">
+  </ImportGroup>
+</Project>

+ 47 - 0
cv/cv/cv.vcxproj.filters

@@ -0,0 +1,47 @@
+<?xml version="1.0" encoding="utf-8"?>
+<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+  <ItemGroup>
+    <Filter Include="源文件">
+      <UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
+      <Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
+    </Filter>
+    <Filter Include="头文件">
+      <UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
+      <Extensions>h;hh;hpp;hxx;hm;inl;inc;ipp;xsd</Extensions>
+    </Filter>
+    <Filter Include="资源文件">
+      <UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
+      <Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
+    </Filter>
+  </ItemGroup>
+  <ItemGroup>
+    <ClInclude Include="framework.h">
+      <Filter>头文件</Filter>
+    </ClInclude>
+    <ClInclude Include="targetver.h">
+      <Filter>头文件</Filter>
+    </ClInclude>
+    <ClInclude Include="Resource.h">
+      <Filter>头文件</Filter>
+    </ClInclude>
+    <ClInclude Include="cv.h">
+      <Filter>头文件</Filter>
+    </ClInclude>
+    <ClInclude Include="stdafx.h">
+      <Filter>头文件</Filter>
+    </ClInclude>
+  </ItemGroup>
+  <ItemGroup>
+    <ClCompile Include="cv.cpp">
+      <Filter>源文件</Filter>
+    </ClCompile>
+    <ClCompile Include="stdafx.cpp">
+      <Filter>源文件</Filter>
+    </ClCompile>
+  </ItemGroup>
+  <ItemGroup>
+    <ResourceCompile Include="cv.rc">
+      <Filter>资源文件</Filter>
+    </ResourceCompile>
+  </ItemGroup>
+</Project>

+ 24 - 0
cv/cv/framework.h

@@ -0,0 +1,24 @@
+#pragma once
+
+#include "targetver.h"
+#define WIN32_LEAN_AND_MEAN             // 从 Windows 头文件中排除极少使用的内容
+#define _ATL_CSTRING_EXPLICIT_CONSTRUCTORS      // 部分 CString 构造函数将是显式的
+#define _AFX_NO_MFC_CONTROLS_IN_DIALOGS         // 移除对话框中的 MFC 控件支持
+
+#ifndef VC_EXTRALEAN
+#define VC_EXTRALEAN            // 从 Windows 头文件中排除极少使用的内容
+#endif
+
+#include <afx.h>
+#include <afxwin.h>         // MFC 核心组件和标准组件
+#include <afxext.h>         // MFC 扩展
+#ifndef _AFX_NO_OLE_SUPPORT
+#include <afxdtctl.h>           // MFC 对 Internet Explorer 4 公共控件的支持
+#endif
+#ifndef _AFX_NO_AFXCMN_SUPPORT
+#include <afxcmn.h>                     // MFC 对 Windows 公共控件的支持
+#endif // _AFX_NO_AFXCMN_SUPPORT
+
+#include <iostream>
+// Windows 头文件
+#include <windows.h>

+ 5 - 0
cv/cv/stdafx.cpp

@@ -0,0 +1,5 @@
+// pch.cpp: 与预编译标头对应的源文件
+
+#include "stdafx.h"
+
+// 当使用预编译的头时,需要使用此源文件,编译才能成功。

+ 14 - 0
cv/cv/stdafx.h

@@ -0,0 +1,14 @@
+// pch.h: 这是预编译标头文件。
+// 下方列出的文件仅编译一次,提高了将来生成的生成性能。
+// 这还将影响 IntelliSense 性能,包括代码完成和许多代码浏览功能。
+// 但是,如果此处列出的文件中的任何一个在生成之间有更新,它们全部都将被重新编译。
+// 请勿在此处添加要频繁更新的文件,这将使得性能优势无效。
+
+#ifndef PCH_H
+#define PCH_H
+
+// 添加要在此处预编译的标头
+#include "framework.h"
+// 只需要包含一个头文件即可;
+#include "opencv2/opencv.hpp"
+#endif //PCH_H

+ 6 - 0
cv/cv/targetver.h

@@ -0,0 +1,6 @@
+#pragma once
+
+// // 包含 SDKDDKVer.h 可定义可用的最高版本的 Windows 平台。
+// 如果希望为之前的 Windows 平台构建应用程序,在包含 SDKDDKVer.h 之前请先包含 WinSDKVer.h 并
+// 将 _WIN32_WINNT 宏设置为想要支持的平台。
+#include <SDKDDKVer.h>

+ 73 - 0
cv/include/opencv/cv.h

@@ -0,0 +1,73 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_CV_H
+#define OPENCV_OLD_CV_H
+
+#if defined(_MSC_VER)
+    #define CV_DO_PRAGMA(x) __pragma(x)
+    #define __CVSTR2__(x) #x
+    #define __CVSTR1__(x) __CVSTR2__(x)
+    #define __CVMSVCLOC__ __FILE__ "("__CVSTR1__(__LINE__)") : "
+    #define CV_MSG_PRAGMA(_msg) CV_DO_PRAGMA(message (__CVMSVCLOC__ _msg))
+#elif defined(__GNUC__)
+    #define CV_DO_PRAGMA(x) _Pragma (#x)
+    #define CV_MSG_PRAGMA(_msg) CV_DO_PRAGMA(message (_msg))
+#else
+    #define CV_DO_PRAGMA(x)
+    #define CV_MSG_PRAGMA(_msg)
+#endif
+#define CV_WARNING(x) CV_MSG_PRAGMA("Warning: " #x)
+
+//CV_WARNING("This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module")
+
+#include "opencv2/core/core_c.h"
+#include "opencv2/imgproc/imgproc_c.h"
+#include "opencv2/photo/photo_c.h"
+#include "opencv2/video/tracking_c.h"
+#include "opencv2/objdetect/objdetect_c.h"
+
+#if !defined(CV_IMPL)
+#define CV_IMPL extern "C"
+#endif //CV_IMPL
+
+#endif // __OPENCV_OLD_CV_H_

+ 60 - 0
cv/include/opencv/cv.hpp

@@ -0,0 +1,60 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_CV_HPP
+#define OPENCV_OLD_CV_HPP
+
+//#if defined(__GNUC__)
+//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"
+//#endif
+
+#include "cv.h"
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc.hpp"
+#include "opencv2/photo.hpp"
+#include "opencv2/video.hpp"
+#include "opencv2/highgui.hpp"
+#include "opencv2/features2d.hpp"
+#include "opencv2/calib3d.hpp"
+#include "opencv2/objdetect.hpp"
+
+#endif

+ 57 - 0
cv/include/opencv/cvaux.h

@@ -0,0 +1,57 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_AUX_H
+#define OPENCV_OLD_AUX_H
+
+//#if defined(__GNUC__)
+//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"
+//#endif
+
+#include "opencv2/core/core_c.h"
+#include "opencv2/imgproc/imgproc_c.h"
+#include "opencv2/photo/photo_c.h"
+#include "opencv2/video/tracking_c.h"
+#include "opencv2/objdetect/objdetect_c.h"
+
+#endif
+
+/* End of file. */

+ 52 - 0
cv/include/opencv/cvaux.hpp

@@ -0,0 +1,52 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_AUX_HPP
+#define OPENCV_OLD_AUX_HPP
+
+//#if defined(__GNUC__)
+//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"
+//#endif
+
+#include "cvaux.h"
+#include "opencv2/core/utility.hpp"
+
+#endif

+ 46 - 0
cv/include/opencv/cvwimage.h

@@ -0,0 +1,46 @@
+///////////////////////////////////////////////////////////////////////////////
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to
+//  this license.  If you do not agree to this license, do not download,
+//  install, copy or use the software.
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2008, Google, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+//  * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//  * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//  * The name of Intel Corporation or contributors may not be used to endorse
+//     or promote products derived from this software without specific
+//     prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is"
+// and any express or implied warranties, including, but not limited to, the
+// implied warranties of merchantability and fitness for a particular purpose
+// are disclaimed. In no event shall the Intel Corporation or contributors be
+// liable for any direct, indirect, incidental, special, exemplary, or
+// consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+
+
+#ifndef OPENCV_OLD_WIMAGE_HPP
+#define OPENCV_OLD_WIMAGE_HPP
+
+#include "opencv2/core/wimage.hpp"
+
+#endif

+ 52 - 0
cv/include/opencv/cxcore.h

@@ -0,0 +1,52 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_CXCORE_H
+#define OPENCV_OLD_CXCORE_H
+
+//#if defined(__GNUC__)
+//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"
+//#endif
+
+#include "opencv2/core/core_c.h"
+
+#endif

+ 53 - 0
cv/include/opencv/cxcore.hpp

@@ -0,0 +1,53 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_CXCORE_HPP
+#define OPENCV_OLD_CXCORE_HPP
+
+//#if defined(__GNUC__)
+//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module"
+//#endif
+
+#include "cxcore.h"
+#include "opencv2/core.hpp"
+
+#endif

+ 48 - 0
cv/include/opencv/cxeigen.hpp

@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_EIGEN_HPP
+#define OPENCV_OLD_EIGEN_HPP
+
+#include "opencv2/core/eigen.hpp"
+
+#endif

+ 8 - 0
cv/include/opencv/cxmisc.h

@@ -0,0 +1,8 @@
+#ifndef OPENCV_OLD_CXMISC_H
+#define OPENCV_OLD_CXMISC_H
+
+#ifdef __cplusplus
+#  include "opencv2/core/utility.hpp"
+#endif
+
+#endif

+ 48 - 0
cv/include/opencv/highgui.h

@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_HIGHGUI_H
+#define OPENCV_OLD_HIGHGUI_H
+
+#include "opencv2/core/core_c.h"
+#include "opencv2/highgui/highgui_c.h"
+
+#endif

+ 47 - 0
cv/include/opencv/ml.h

@@ -0,0 +1,47 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                        Intel License Agreement
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of Intel Corporation may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_OLD_ML_H
+#define OPENCV_OLD_ML_H
+
+#include "opencv2/core/core_c.h"
+#include "opencv2/ml.hpp"
+
+#endif

+ 566 - 0
cv/include/opencv2/aruco.hpp

@@ -0,0 +1,566 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+                          License Agreement
+               For Open Source Computer Vision Library
+                       (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+  * Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+  * Redistributions in binary form must reproduce the above copyright notice,
+    this list of conditions and the following disclaimer in the documentation
+    and/or other materials provided with the distribution.
+
+  * Neither the names of the copyright holders nor the names of the contributors
+    may be used to endorse or promote products derived from this software
+    without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_ARUCO_HPP__
+#define __OPENCV_ARUCO_HPP__
+
+#include <opencv2/core.hpp>
+#include <vector>
+#include "opencv2/aruco/dictionary.hpp"
+
+/**
+ * @defgroup aruco ArUco Marker Detection
+ * This module is dedicated to square fiducial markers (also known as Augmented Reality Markers)
+ * These markers are useful for easy, fast and robust camera pose estimation.ç
+ *
+ * The main functionalities are:
+ * - Detection of markers in a image
+ * - Pose estimation from a single marker or from a board/set of markers
+ * - Detection of ChArUco board for high subpixel accuracy
+ * - Camera calibration from both, ArUco boards and ChArUco boards.
+ * - Detection of ChArUco diamond markers
+ * The samples directory includes easy examples of how to use the module.
+ *
+ * The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado.
+ *
+ * @sa S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. 2014.
+ * "Automatic generation and detection of highly reliable fiducial markers under occlusion".
+ * Pattern Recogn. 47, 6 (June 2014), 2280-2292. DOI=10.1016/j.patcog.2014.01.005
+ *
+ * @sa http://www.uco.es/investiga/grupos/ava/node/26
+ *
+ * This module has been originally developed by Sergio Garrido-Jurado as a project
+ * for Google Summer of Code 2015 (GSoC 15).
+ *
+ *
+*/
+
+namespace cv {
+namespace aruco {
+
+//! @addtogroup aruco
+//! @{
+
+enum CornerRefineMethod{
+	CORNER_REFINE_NONE,     // default corners
+	CORNER_REFINE_SUBPIX,   // refine the corners using subpix
+	CORNER_REFINE_CONTOUR   // refine the corners using the contour-points
+};
+
+/**
+ * @brief Parameters for the detectMarker process:
+ * - adaptiveThreshWinSizeMin: minimum window size for adaptive thresholding before finding
+ *   contours (default 3).
+ * - adaptiveThreshWinSizeMax: maximum window size for adaptive thresholding before finding
+ *   contours (default 23).
+ * - adaptiveThreshWinSizeStep: increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax
+ *   during the thresholding (default 10).
+ * - adaptiveThreshConstant: constant for adaptive thresholding before finding contours (default 7)
+ * - minMarkerPerimeterRate: determine minimum perimeter for marker contour to be detected. This
+ *   is defined as a rate respect to the maximum dimension of the input image (default 0.03).
+ * - maxMarkerPerimeterRate:  determine maximum perimeter for marker contour to be detected. This
+ *   is defined as a rate respect to the maximum dimension of the input image (default 4.0).
+ * - polygonalApproxAccuracyRate: minimum accuracy during the polygonal approximation process to
+ *   determine which contours are squares.
+ * - minCornerDistanceRate: minimum distance between corners for detected markers relative to its
+ *   perimeter (default 0.05)
+ * - minDistanceToBorder: minimum distance of any corner to the image border for detected markers
+ *   (in pixels) (default 3)
+ * - minMarkerDistanceRate: minimum mean distance beetween two marker corners to be considered
+ *   similar, so that the smaller one is removed. The rate is relative to the smaller perimeter
+ *   of the two markers (default 0.05).
+ * - cornerRefinementMethod: corner refinement method. (CORNER_REFINE_NONE, no refinement.
+ *   CORNER_REFINE_SUBPIX, do subpixel refinement. CORNER_REFINE_CONTOUR use contour-Points)
+ * - cornerRefinementWinSize: window size for the corner refinement process (in pixels) (default 5).
+ * - cornerRefinementMaxIterations: maximum number of iterations for stop criteria of the corner
+ *   refinement process (default 30).
+ * - cornerRefinementMinAccuracy: minimum error for the stop cristeria of the corner refinement
+ *   process (default: 0.1)
+ * - markerBorderBits: number of bits of the marker border, i.e. marker border width (default 1).
+ * - perpectiveRemovePixelPerCell: number of bits (per dimension) for each cell of the marker
+ *   when removing the perspective (default 8).
+ * - perspectiveRemoveIgnoredMarginPerCell: width of the margin of pixels on each cell not
+ *   considered for the determination of the cell bit. Represents the rate respect to the total
+ *   size of the cell, i.e. perpectiveRemovePixelPerCell (default 0.13)
+ * - maxErroneousBitsInBorderRate: maximum number of accepted erroneous bits in the border (i.e.
+ *   number of allowed white bits in the border). Represented as a rate respect to the total
+ *   number of bits per marker (default 0.35).
+ * - minOtsuStdDev: minimun standard deviation in pixels values during the decodification step to
+ *   apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher
+ *   than 128 or not) (default 5.0)
+ * - errorCorrectionRate error correction rate respect to the maximun error correction capability
+ *   for each dictionary. (default 0.6).
+ */
+struct CV_EXPORTS_W DetectorParameters {
+
+    DetectorParameters();
+
+    CV_WRAP static Ptr<DetectorParameters> create();
+
+    CV_PROP_RW int adaptiveThreshWinSizeMin;
+    CV_PROP_RW int adaptiveThreshWinSizeMax;
+    CV_PROP_RW int adaptiveThreshWinSizeStep;
+    CV_PROP_RW double adaptiveThreshConstant;
+    CV_PROP_RW double minMarkerPerimeterRate;
+    CV_PROP_RW double maxMarkerPerimeterRate;
+    CV_PROP_RW double polygonalApproxAccuracyRate;
+    CV_PROP_RW double minCornerDistanceRate;
+    CV_PROP_RW int minDistanceToBorder;
+    CV_PROP_RW double minMarkerDistanceRate;
+    CV_PROP_RW int cornerRefinementMethod;
+    CV_PROP_RW int cornerRefinementWinSize;
+    CV_PROP_RW int cornerRefinementMaxIterations;
+    CV_PROP_RW double cornerRefinementMinAccuracy;
+    CV_PROP_RW int markerBorderBits;
+    CV_PROP_RW int perspectiveRemovePixelPerCell;
+    CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell;
+    CV_PROP_RW double maxErroneousBitsInBorderRate;
+    CV_PROP_RW double minOtsuStdDev;
+    CV_PROP_RW double errorCorrectionRate;
+};
+
+
+
+/**
+ * @brief Basic marker detection
+ *
+ * @param image input image
+ * @param dictionary indicates the type of markers that will be searched
+ * @param corners vector of detected marker corners. For each marker, its four corners
+ * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
+ * the dimensions of this array is Nx4. The order of the corners is clockwise.
+ * @param ids vector of identifiers of the detected markers. The identifier is of type int
+ * (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
+ * The identifiers have the same order than the markers in the imgPoints array.
+ * @param parameters marker detection parameters
+ * @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a
+ * correct codification. Useful for debugging purposes.
+ * @param cameraMatrix optional input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeff optional vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ *
+ * Performs marker detection in the input image. Only markers included in the specific dictionary
+ * are searched. For each detected marker, it returns the 2D position of its corner in the image
+ * and its corresponding identifier.
+ * Note that this function does not perform pose estimation.
+ * @sa estimatePoseSingleMarkers,  estimatePoseBoard
+ *
+ */
+CV_EXPORTS_W void detectMarkers(InputArray image, const Ptr<Dictionary> &dictionary, OutputArrayOfArrays corners,
+                                OutputArray ids, const Ptr<DetectorParameters> &parameters = DetectorParameters::create(),
+                                OutputArrayOfArrays rejectedImgPoints = noArray(), InputArray cameraMatrix= noArray(), InputArray distCoeff= noArray());
+
+
+
+/**
+ * @brief Pose estimation for single markers
+ *
+ * @param corners vector of already detected markers corners. For each marker, its four corners
+ * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
+ * the dimensions of this array should be Nx4. The order of the corners should be clockwise.
+ * @sa detectMarkers
+ * @param markerLength the length of the markers' side. The returning translation vectors will
+ * be in the same unit. Normally, unit is meters.
+ * @param cameraMatrix input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvecs array of output rotation vectors (@sa Rodrigues) (e.g. std::vector<cv::Vec3d>).
+ * Each element in rvecs corresponds to the specific marker in imgPoints.
+ * @param tvecs array of output translation vectors (e.g. std::vector<cv::Vec3d>).
+ * Each element in tvecs corresponds to the specific marker in imgPoints.
+ * @param _objPoints array of object points of all the marker corners
+ *
+ * This function receives the detected markers and returns their pose estimation respect to
+ * the camera individually. So for each marker, one rotation and translation vector is returned.
+ * The returned transformation is the one that transforms points from each marker coordinate system
+ * to the camera coordinate system.
+ * The marker corrdinate system is centered on the middle of the marker, with the Z axis
+ * perpendicular to the marker plane.
+ * The coordinates of the four corners of the marker in its own coordinate system are:
+ * (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),
+ * (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0)
+ */
+CV_EXPORTS_W void estimatePoseSingleMarkers(InputArrayOfArrays corners, float markerLength,
+                                            InputArray cameraMatrix, InputArray distCoeffs,
+                                            OutputArray rvecs, OutputArray tvecs, OutputArray _objPoints = noArray());
+
+
+
+/**
+ * @brief Board of markers
+ *
+ * A board is a set of markers in the 3D space with a common cordinate system.
+ * The common form of a board of marker is a planar (2D) board, however any 3D layout can be used.
+ * A Board object is composed by:
+ * - The object points of the marker corners, i.e. their coordinates respect to the board system.
+ * - The dictionary which indicates the type of markers of the board
+ * - The identifier of all the markers in the board.
+ */
+class CV_EXPORTS_W Board {
+
+    public:
+    /**
+    * @brief Provide way to create Board by passing nessesary data. Specially needed in Python.
+    *
+    * @param objPoints array of object points of all the marker corners in the board
+    * @param dictionary the dictionary of markers employed for this board
+    * @param ids vector of the identifiers of the markers in the board
+    *
+    */
+    CV_WRAP static Ptr<Board> create(InputArrayOfArrays objPoints, const Ptr<Dictionary> &dictionary, InputArray ids);
+    /// array of object points of all the marker corners in the board
+    /// each marker include its 4 corners in CCW order. For M markers, the size is Mx4.
+    CV_PROP std::vector< std::vector< Point3f > > objPoints;
+
+    /// the dictionary of markers employed for this board
+    CV_PROP Ptr<Dictionary> dictionary;
+
+    /// vector of the identifiers of the markers in the board (same size than objPoints)
+    /// The identifiers refers to the board dictionary
+    CV_PROP std::vector< int > ids;
+};
+
+
+
+/**
+ * @brief Planar board with grid arrangement of markers
+ * More common type of board. All markers are placed in the same plane in a grid arrangment.
+ * The board can be drawn using drawPlanarBoard() function (@sa drawPlanarBoard)
+ */
+class CV_EXPORTS_W GridBoard : public Board {
+
+    public:
+    /**
+     * @brief Draw a GridBoard
+     *
+     * @param outSize size of the output image in pixels.
+     * @param img output image with the board. The size of this image will be outSize
+     * and the board will be on the center, keeping the board proportions.
+     * @param marginSize minimum margins (in pixels) of the board in the output image
+     * @param borderBits width of the marker borders.
+     *
+     * This function return the image of the GridBoard, ready to be printed.
+     */
+    CV_WRAP void draw(Size outSize, OutputArray img, int marginSize = 0, int borderBits = 1);
+
+
+    /**
+     * @brief Create a GridBoard object
+     *
+     * @param markersX number of markers in X direction
+     * @param markersY number of markers in Y direction
+     * @param markerLength marker side length (normally in meters)
+     * @param markerSeparation separation between two markers (same unit as markerLength)
+     * @param dictionary dictionary of markers indicating the type of markers
+     * @param firstMarker id of first marker in dictionary to use on board.
+     * @return the output GridBoard object
+     *
+     * This functions creates a GridBoard object given the number of markers in each direction and
+     * the marker size and marker separation.
+     */
+    CV_WRAP static Ptr<GridBoard> create(int markersX, int markersY, float markerLength,
+                                         float markerSeparation, const Ptr<Dictionary> &dictionary, int firstMarker = 0);
+
+    /**
+      *
+      */
+    CV_WRAP Size getGridSize() const { return Size(_markersX, _markersY); }
+
+    /**
+      *
+      */
+    CV_WRAP float getMarkerLength() const { return _markerLength; }
+
+    /**
+      *
+      */
+    CV_WRAP float getMarkerSeparation() const { return _markerSeparation; }
+
+
+    private:
+    // number of markers in X and Y directions
+    int _markersX, _markersY;
+
+    // marker side lenght (normally in meters)
+    float _markerLength;
+
+    // separation between markers in the grid
+    float _markerSeparation;
+};
+
+
+
+/**
+ * @brief Pose estimation for a board of markers
+ *
+ * @param corners vector of already detected markers corners. For each marker, its four corners
+ * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the
+ * dimensions of this array should be Nx4. The order of the corners should be clockwise.
+ * @param ids list of identifiers for each marker in corners
+ * @param board layout of markers in the board. The layout is composed by the marker identifiers
+ * and the positions of each marker corner in the board reference system.
+ * @param cameraMatrix input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvec Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
+ * (see cv::Rodrigues). Used as initial guess if not empty.
+ * @param tvec Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.
+ * @param useExtrinsicGuess defines whether initial guess for \b rvec and \b tvec will be used or not.
+ * Used as initial guess if not empty.
+ *
+ * This function receives the detected markers and returns the pose of a marker board composed
+ * by those markers.
+ * A Board of marker has a single world coordinate system which is defined by the board layout.
+ * The returned transformation is the one that transforms points from the board coordinate system
+ * to the camera coordinate system.
+ * Input markers that are not included in the board layout are ignored.
+ * The function returns the number of markers from the input employed for the board pose estimation.
+ * Note that returning a 0 means the pose has not been estimated.
+ */
+CV_EXPORTS_W int estimatePoseBoard(InputArrayOfArrays corners, InputArray ids, const Ptr<Board> &board,
+                                   InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec,
+                                   OutputArray tvec, bool useExtrinsicGuess = false);
+
+
+
+
+/**
+ * @brief Refind not detected markers based on the already detected and the board layout
+ *
+ * @param image input image
+ * @param board layout of markers in the board.
+ * @param detectedCorners vector of already detected marker corners.
+ * @param detectedIds vector of already detected marker identifiers.
+ * @param rejectedCorners vector of rejected candidates during the marker detection process.
+ * @param cameraMatrix optional input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs optional vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param minRepDistance minimum distance between the corners of the rejected candidate and the
+ * reprojected marker in order to consider it as a correspondence.
+ * @param errorCorrectionRate rate of allowed erroneous bits respect to the error correction
+ * capability of the used dictionary. -1 ignores the error correction step.
+ * @param checkAllOrders Consider the four posible corner orders in the rejectedCorners array.
+ * If it set to false, only the provided corner order is considered (default true).
+ * @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the
+ * original rejectedCorners array.
+ * @param parameters marker detection parameters
+ *
+ * This function tries to find markers that were not detected in the basic detecMarkers function.
+ * First, based on the current detected marker and the board layout, the function interpolates
+ * the position of the missing markers. Then it tries to find correspondence between the reprojected
+ * markers and the rejected candidates based on the minRepDistance and errorCorrectionRate
+ * parameters.
+ * If camera parameters and distortion coefficients are provided, missing markers are reprojected
+ * using projectPoint function. If not, missing marker projections are interpolated using global
+ * homography, and all the marker corners in the board must have the same Z coordinate.
+ */
+CV_EXPORTS_W void refineDetectedMarkers(
+    InputArray image,const  Ptr<Board> &board, InputOutputArrayOfArrays detectedCorners,
+    InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners,
+    InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(),
+    float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true,
+    OutputArray recoveredIdxs = noArray(), const Ptr<DetectorParameters> &parameters = DetectorParameters::create());
+
+
+
+/**
+ * @brief Draw detected markers in image
+ *
+ * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
+ * altered.
+ * @param corners positions of marker corners on input image.
+ * (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
+ * this array should be Nx4. The order of the corners should be clockwise.
+ * @param ids vector of identifiers for markers in markersCorners .
+ * Optional, if not provided, ids are not painted.
+ * @param borderColor color of marker borders. Rest of colors (text color and first corner color)
+ * are calculated based on this one to improve visualization.
+ *
+ * Given an array of detected marker corners and its corresponding ids, this functions draws
+ * the markers in the image. The marker borders are painted and the markers identifiers if provided.
+ * Useful for debugging purposes.
+ */
+CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners,
+                                      InputArray ids = noArray(),
+                                      Scalar borderColor = Scalar(0, 255, 0));
+
+
+
+/**
+ * @brief Draw coordinate system axis from pose estimation
+ *
+ * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
+ * altered.
+ * @param cameraMatrix input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvec rotation vector of the coordinate system that will be drawn. (@sa Rodrigues).
+ * @param tvec translation vector of the coordinate system that will be drawn.
+ * @param length length of the painted axis in the same unit than tvec (usually in meters)
+ *
+ * Given the pose estimation of a marker or board, this function draws the axis of the world
+ * coordinate system, i.e. the system centered on the marker/board. Useful for debugging purposes.
+ */
+CV_EXPORTS_W void drawAxis(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
+                           InputArray rvec, InputArray tvec, float length);
+
+
+
+/**
+ * @brief Draw a canonical marker image
+ *
+ * @param dictionary dictionary of markers indicating the type of markers
+ * @param id identifier of the marker that will be returned. It has to be a valid id
+ * in the specified dictionary.
+ * @param sidePixels size of the image in pixels
+ * @param img output image with the marker
+ * @param borderBits width of the marker border.
+ *
+ * This function returns a marker image in its canonical form (i.e. ready to be printed)
+ */
+CV_EXPORTS_W void drawMarker(const Ptr<Dictionary> &dictionary, int id, int sidePixels, OutputArray img,
+                             int borderBits = 1);
+
+
+
+/**
+ * @brief Draw a planar board
+ * @sa _drawPlanarBoardImpl
+ *
+ * @param board layout of the board that will be drawn. The board should be planar,
+ * z coordinate is ignored
+ * @param outSize size of the output image in pixels.
+ * @param img output image with the board. The size of this image will be outSize
+ * and the board will be on the center, keeping the board proportions.
+ * @param marginSize minimum margins (in pixels) of the board in the output image
+ * @param borderBits width of the marker borders.
+ *
+ * This function return the image of a planar board, ready to be printed. It assumes
+ * the Board layout specified is planar by ignoring the z coordinates of the object points.
+ */
+CV_EXPORTS_W void drawPlanarBoard(const Ptr<Board> &board, Size outSize, OutputArray img,
+                                  int marginSize = 0, int borderBits = 1);
+
+
+
+/**
+ * @brief Implementation of drawPlanarBoard that accepts a raw Board pointer.
+ */
+void _drawPlanarBoardImpl(Board *board, Size outSize, OutputArray img,
+                          int marginSize = 0, int borderBits = 1);
+
+
+
+/**
+ * @brief Calibrate a camera using aruco markers
+ *
+ * @param corners vector of detected marker corners in all frames.
+ * The corners should have the same format returned by detectMarkers (see #detectMarkers).
+ * @param ids list of identifiers for each marker in corners
+ * @param counter number of markers in each frame so that corners and ids can be split
+ * @param board Marker Board layout
+ * @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
+ * @param cameraMatrix Output 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
+ * and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
+ * initialized before calling the function.
+ * @param distCoeffs Output vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each board view
+ * (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
+ * k-th translation vector (see the next output parameter description) brings the board pattern
+ * from the model coordinate space (in which object points are specified) to the world coordinate
+ * space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1).
+ * @param tvecs Output vector of translation vectors estimated for each pattern view.
+ * @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
+ * Order of deviations values:
+ * \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
+ * s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
+ * @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
+ * Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
+ * \f$R_i, T_i\f$ are concatenated 1x3 vectors.
+ * @param perViewErrors Output vector of average re-projection errors estimated for each pattern view.
+ * @param flags flags Different flags  for the calibration process (see #calibrateCamera for details).
+ * @param criteria Termination criteria for the iterative optimization algorithm.
+ *
+ * This function calibrates a camera using an Aruco Board. The function receives a list of
+ * detected markers from several views of the Board. The process is similar to the chessboard
+ * calibration in calibrateCamera(). The function returns the final re-projection error.
+ */
+CV_EXPORTS_AS(calibrateCameraArucoExtended) double calibrateCameraAruco(
+    InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr<Board> &board,
+    Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+    OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+    OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics,
+    OutputArray perViewErrors, int flags = 0,
+    TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
+
+
+/** @brief It's the same function as #calibrateCameraAruco but without calibration error estimation.
+ */
+CV_EXPORTS_W double calibrateCameraAruco(
+  InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr<Board> &board,
+  Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+  OutputArrayOfArrays rvecs = noArray(), OutputArrayOfArrays tvecs = noArray(), int flags = 0,
+  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
+
+
+/**
+ * @brief Given a board configuration and a set of detected markers, returns the corresponding
+ * image points and object points to call solvePnP
+ *
+ * @param board Marker board layout.
+ * @param detectedCorners List of detected marker corners of the board.
+ * @param detectedIds List of identifiers for each marker.
+ * @param objPoints Vector of vectors of board marker points in the board coordinate space.
+ * @param imgPoints Vector of vectors of the projections of board marker corner points.
+*/
+CV_EXPORTS_W void getBoardObjectAndImagePoints(const Ptr<Board> &board, InputArrayOfArrays detectedCorners,
+  InputArray detectedIds, OutputArray objPoints, OutputArray imgPoints);
+
+
+//! @}
+}
+}
+
+#endif

+ 343 - 0
cv/include/opencv2/aruco/charuco.hpp

@@ -0,0 +1,343 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+                          License Agreement
+               For Open Source Computer Vision Library
+                       (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+  * Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+  * Redistributions in binary form must reproduce the above copyright notice,
+    this list of conditions and the following disclaimer in the documentation
+    and/or other materials provided with the distribution.
+
+  * Neither the names of the copyright holders nor the names of the contributors
+    may be used to endorse or promote products derived from this software
+    without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_CHARUCO_HPP__
+#define __OPENCV_CHARUCO_HPP__
+
+#include <opencv2/core.hpp>
+#include <vector>
+#include <opencv2/aruco.hpp>
+
+
+namespace cv {
+namespace aruco {
+
+//! @addtogroup aruco
+//! @{
+
+
+/**
+ * @brief ChArUco board
+ * Specific class for ChArUco boards. A ChArUco board is a planar board where the markers are placed
+ * inside the white squares of a chessboard. The benefits of ChArUco boards is that they provide
+ * both, ArUco markers versatility and chessboard corner precision, which is important for
+ * calibration and pose estimation.
+ * This class also allows the easy creation and drawing of ChArUco boards.
+ */
+class CV_EXPORTS_W CharucoBoard : public Board {
+
+    public:
+    // vector of chessboard 3D corners precalculated
+    CV_PROP std::vector< Point3f > chessboardCorners;
+
+    // for each charuco corner, nearest marker id and nearest marker corner id of each marker
+    CV_PROP std::vector< std::vector< int > > nearestMarkerIdx;
+    CV_PROP std::vector< std::vector< int > > nearestMarkerCorners;
+
+    /**
+     * @brief Draw a ChArUco board
+     *
+     * @param outSize size of the output image in pixels.
+     * @param img output image with the board. The size of this image will be outSize
+     * and the board will be on the center, keeping the board proportions.
+     * @param marginSize minimum margins (in pixels) of the board in the output image
+     * @param borderBits width of the marker borders.
+     *
+     * This function return the image of the ChArUco board, ready to be printed.
+     */
+    CV_WRAP void draw(Size outSize, OutputArray img, int marginSize = 0, int borderBits = 1);
+
+
+    /**
+     * @brief Create a CharucoBoard object
+     *
+     * @param squaresX number of chessboard squares in X direction
+     * @param squaresY number of chessboard squares in Y direction
+     * @param squareLength chessboard square side length (normally in meters)
+     * @param markerLength marker side length (same unit than squareLength)
+     * @param dictionary dictionary of markers indicating the type of markers.
+     * The first markers in the dictionary are used to fill the white chessboard squares.
+     * @return the output CharucoBoard object
+     *
+     * This functions creates a CharucoBoard object given the number of squares in each direction
+     * and the size of the markers and chessboard squares.
+     */
+    CV_WRAP static Ptr<CharucoBoard> create(int squaresX, int squaresY, float squareLength,
+                                            float markerLength, const Ptr<Dictionary> &dictionary);
+
+    /**
+      *
+      */
+    CV_WRAP Size getChessboardSize() const { return Size(_squaresX, _squaresY); }
+
+    /**
+      *
+      */
+    CV_WRAP float getSquareLength() const { return _squareLength; }
+
+    /**
+      *
+      */
+    CV_WRAP float getMarkerLength() const { return _markerLength; }
+
+    private:
+    void _getNearestMarkerCorners();
+
+    // number of markers in X and Y directions
+    int _squaresX, _squaresY;
+
+    // size of chessboard squares side (normally in meters)
+    float _squareLength;
+
+    // marker side lenght (normally in meters)
+    float _markerLength;
+};
+
+
+
+
+/**
+ * @brief Interpolate position of ChArUco board corners
+ * @param markerCorners vector of already detected markers corners. For each marker, its four
+ * corners are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the
+ * dimensions of this array should be Nx4. The order of the corners should be clockwise.
+ * @param markerIds list of identifiers for each marker in corners
+ * @param image input image necesary for corner refinement. Note that markers are not detected and
+ * should be sent in corners and ids parameters.
+ * @param board layout of ChArUco board.
+ * @param charucoCorners interpolated chessboard corners
+ * @param charucoIds interpolated chessboard corners identifiers
+ * @param cameraMatrix optional 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs optional vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param minMarkers number of adjacent markers that must be detected to return a charuco corner
+ *
+ * This function receives the detected markers and returns the 2D position of the chessboard corners
+ * from a ChArUco board using the detected Aruco markers. If camera parameters are provided,
+ * the process is based in an approximated pose estimation, else it is based on local homography.
+ * Only visible corners are returned. For each corner, its corresponding identifier is
+ * also returned in charucoIds.
+ * The function returns the number of interpolated corners.
+ */
+CV_EXPORTS_W int interpolateCornersCharuco(InputArrayOfArrays markerCorners, InputArray markerIds,
+                                           InputArray image, const Ptr<CharucoBoard> &board,
+                                           OutputArray charucoCorners, OutputArray charucoIds,
+                                           InputArray cameraMatrix = noArray(),
+                                           InputArray distCoeffs = noArray(), int minMarkers = 2);
+
+
+
+
+/**
+ * @brief Pose estimation for a ChArUco board given some of their corners
+ * @param charucoCorners vector of detected charuco corners
+ * @param charucoIds list of identifiers for each corner in charucoCorners
+ * @param board layout of ChArUco board.
+ * @param cameraMatrix input 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
+ * @param distCoeffs vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvec Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
+ * (see cv::Rodrigues).
+ * @param tvec Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.
+ * @param useExtrinsicGuess defines whether initial guess for \b rvec and \b tvec will be used or not.
+ *
+ * This function estimates a Charuco board pose from some detected corners.
+ * The function checks if the input corners are enough and valid to perform pose estimation.
+ * If pose estimation is valid, returns true, else returns false.
+ */
+CV_EXPORTS_W bool estimatePoseCharucoBoard(InputArray charucoCorners, InputArray charucoIds,
+                                           const Ptr<CharucoBoard> &board, InputArray cameraMatrix,
+                                           InputArray distCoeffs, OutputArray rvec, OutputArray tvec,
+                                           bool useExtrinsicGuess = false);
+
+
+
+
+/**
+ * @brief Draws a set of Charuco corners
+ * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
+ * altered.
+ * @param charucoCorners vector of detected charuco corners
+ * @param charucoIds list of identifiers for each corner in charucoCorners
+ * @param cornerColor color of the square surrounding each corner
+ *
+ * This function draws a set of detected Charuco corners. If identifiers vector is provided, it also
+ * draws the id of each corner.
+ */
+CV_EXPORTS_W void drawDetectedCornersCharuco(InputOutputArray image, InputArray charucoCorners,
+                                             InputArray charucoIds = noArray(),
+                                             Scalar cornerColor = Scalar(255, 0, 0));
+
+
+
+/**
+ * @brief Calibrate a camera using Charuco corners
+ *
+ * @param charucoCorners vector of detected charuco corners per frame
+ * @param charucoIds list of identifiers for each corner in charucoCorners per frame
+ * @param board Marker Board layout
+ * @param imageSize input image size
+ * @param cameraMatrix Output 3x3 floating-point camera matrix
+ * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
+ * and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
+ * initialized before calling the function.
+ * @param distCoeffs Output vector of distortion coefficients
+ * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
+ * @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each board view
+ * (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
+ * k-th translation vector (see the next output parameter description) brings the board pattern
+ * from the model coordinate space (in which object points are specified) to the world coordinate
+ * space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1).
+ * @param tvecs Output vector of translation vectors estimated for each pattern view.
+ * @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
+ * Order of deviations values:
+ * \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
+ * s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
+ * @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
+ * Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
+ * \f$R_i, T_i\f$ are concatenated 1x3 vectors.
+ * @param perViewErrors Output vector of average re-projection errors estimated for each pattern view.
+ * @param flags flags Different flags  for the calibration process (see #calibrateCamera for details).
+ * @param criteria Termination criteria for the iterative optimization algorithm.
+ *
+ * This function calibrates a camera using a set of corners of a  Charuco Board. The function
+ * receives a list of detected corners and its identifiers from several views of the Board.
+ * The function returns the final re-projection error.
+ */
+CV_EXPORTS_AS(calibrateCameraCharucoExtended) double calibrateCameraCharuco(
+    InputArrayOfArrays charucoCorners, InputArrayOfArrays charucoIds, const Ptr<CharucoBoard> &board,
+    Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+    OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+    OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics,
+    OutputArray perViewErrors, int flags = 0,
+    TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
+
+/** @brief It's the same function as #calibrateCameraCharuco but without calibration error estimation.
+*/
+CV_EXPORTS_W double calibrateCameraCharuco(
+  InputArrayOfArrays charucoCorners, InputArrayOfArrays charucoIds, const Ptr<CharucoBoard> &board,
+  Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+  OutputArrayOfArrays rvecs = noArray(), OutputArrayOfArrays tvecs = noArray(), int flags = 0,
+  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
+
+
+
+/**
+ * @brief Detect ChArUco Diamond markers
+ *
+ * @param image input image necessary for corner subpixel.
+ * @param markerCorners list of detected marker corners from detectMarkers function.
+ * @param markerIds list of marker ids in markerCorners.
+ * @param squareMarkerLengthRate rate between square and marker length:
+ * squareMarkerLengthRate = squareLength/markerLength. The real units are not necessary.
+ * @param diamondCorners output list of detected diamond corners (4 corners per diamond). The order
+ * is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
+ * format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> > ).
+ * @param diamondIds ids of the diamonds in diamondCorners. The id of each diamond is in fact of
+ * type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
+ * diamond.
+ * @param cameraMatrix Optional camera calibration matrix.
+ * @param distCoeffs Optional camera distortion coefficients.
+ *
+ * This function detects Diamond markers from the previous detected ArUco markers. The diamonds
+ * are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
+ * are provided, the diamond search is based on reprojection. If not, diamond search is based on
+ * homography. Homography is faster than reprojection but can slightly reduce the detection rate.
+ */
+CV_EXPORTS_W void detectCharucoDiamond(InputArray image, InputArrayOfArrays markerCorners,
+                                       InputArray markerIds, float squareMarkerLengthRate,
+                                       OutputArrayOfArrays diamondCorners, OutputArray diamondIds,
+                                       InputArray cameraMatrix = noArray(),
+                                       InputArray distCoeffs = noArray());
+
+
+
+/**
+ * @brief Draw a set of detected ChArUco Diamond markers
+ *
+ * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
+ * altered.
+ * @param diamondCorners positions of diamond corners in the same format returned by
+ * detectCharucoDiamond(). (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
+ * the dimensions of this array should be Nx4. The order of the corners should be clockwise.
+ * @param diamondIds vector of identifiers for diamonds in diamondCorners, in the same format
+ * returned by detectCharucoDiamond() (e.g. std::vector<Vec4i>).
+ * Optional, if not provided, ids are not painted.
+ * @param borderColor color of marker borders. Rest of colors (text color and first corner color)
+ * are calculated based on this one.
+ *
+ * Given an array of detected diamonds, this functions draws them in the image. The marker borders
+ * are painted and the markers identifiers if provided.
+ * Useful for debugging purposes.
+ */
+CV_EXPORTS_W void drawDetectedDiamonds(InputOutputArray image, InputArrayOfArrays diamondCorners,
+                                       InputArray diamondIds = noArray(),
+                                       Scalar borderColor = Scalar(0, 0, 255));
+
+
+
+
+/**
+ * @brief Draw a ChArUco Diamond marker
+ *
+ * @param dictionary dictionary of markers indicating the type of markers.
+ * @param ids list of 4 ids for each ArUco marker in the ChArUco marker.
+ * @param squareLength size of the chessboard squares in pixels.
+ * @param markerLength size of the markers in pixels.
+ * @param img output image with the marker. The size of this image will be
+ * 3*squareLength + 2*marginSize,.
+ * @param marginSize minimum margins (in pixels) of the marker in the output image
+ * @param borderBits width of the marker borders.
+ *
+ * This function return the image of a ChArUco marker, ready to be printed.
+ */
+// TODO cannot be exported yet; conversion from/to Vec4i is not wrapped in core
+CV_EXPORTS void drawCharucoDiamond(const Ptr<Dictionary> &dictionary, Vec4i ids, int squareLength,
+                                   int markerLength, OutputArray img, int marginSize = 0,
+                                   int borderBits = 1);
+
+
+
+
+//! @}
+}
+}
+
+#endif

+ 205 - 0
cv/include/opencv2/aruco/dictionary.hpp

@@ -0,0 +1,205 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+                          License Agreement
+               For Open Source Computer Vision Library
+                       (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+  * Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+  * Redistributions in binary form must reproduce the above copyright notice,
+    this list of conditions and the following disclaimer in the documentation
+    and/or other materials provided with the distribution.
+
+  * Neither the names of the copyright holders nor the names of the contributors
+    may be used to endorse or promote products derived from this software
+    without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_DICTIONARY_HPP__
+#define __OPENCV_DICTIONARY_HPP__
+
+#include <opencv2/core.hpp>
+
+namespace cv {
+namespace aruco {
+
+//! @addtogroup aruco
+//! @{
+
+
+/**
+ * @brief Dictionary/Set of markers. It contains the inner codification
+ *
+ * bytesList contains the marker codewords where
+ * - bytesList.rows is the dictionary size
+ * - each marker is encoded using `nbytes = ceil(markerSize*markerSize/8.)`
+ * - each row contains all 4 rotations of the marker, so its length is `4*nbytes`
+ *
+ * `bytesList.ptr(i)[k*nbytes + j]` is then the j-th byte of i-th marker, in its k-th rotation.
+ */
+class CV_EXPORTS_W Dictionary {
+
+    public:
+    CV_PROP Mat bytesList;         // marker code information
+    CV_PROP int markerSize;        // number of bits per dimension
+    CV_PROP int maxCorrectionBits; // maximum number of bits that can be corrected
+
+
+    /**
+      */
+    Dictionary(const Mat &_bytesList = Mat(), int _markerSize = 0, int _maxcorr = 0);
+
+
+    /**
+    Dictionary(const Dictionary &_dictionary);
+    */
+
+
+    /**
+      */
+    Dictionary(const Ptr<Dictionary> &_dictionary);
+
+
+    /**
+     * @see generateCustomDictionary
+     */
+    CV_WRAP_AS(create) static Ptr<Dictionary> create(int nMarkers, int markerSize);
+
+
+    /**
+     * @see generateCustomDictionary
+     */
+    CV_WRAP_AS(create_from) static Ptr<Dictionary> create(int nMarkers, int markerSize,
+            const Ptr<Dictionary> &baseDictionary);
+
+    /**
+     * @see getPredefinedDictionary
+     */
+    CV_WRAP static Ptr<Dictionary> get(int dict);
+
+    /**
+     * @brief Given a matrix of bits. Returns whether if marker is identified or not.
+     * It returns by reference the correct id (if any) and the correct rotation
+     */
+    bool identify(const Mat &onlyBits, int &idx, int &rotation, double maxCorrectionRate) const;
+
+    /**
+      * @brief Returns the distance of the input bits to the specific id. If allRotations is true,
+      * the four posible bits rotation are considered
+      */
+    int getDistanceToId(InputArray bits, int id, bool allRotations = true) const;
+
+
+    /**
+     * @brief Draw a canonical marker image
+     */
+    CV_WRAP void drawMarker(int id, int sidePixels, OutputArray _img, int borderBits = 1) const;
+
+
+    /**
+      * @brief Transform matrix of bits to list of bytes in the 4 rotations
+      */
+    static Mat getByteListFromBits(const Mat &bits);
+
+
+    /**
+      * @brief Transform list of bytes to matrix of bits
+      */
+    static Mat getBitsFromByteList(const Mat &byteList, int markerSize);
+};
+
+
+
+
+/**
+ * @brief Predefined markers dictionaries/sets
+ * Each dictionary indicates the number of bits and the number of markers contained
+ * - DICT_ARUCO_ORIGINAL: standard ArUco Library Markers. 1024 markers, 5x5 bits, 0 minimum
+                          distance
+ */
+enum CV_EXPORTS_W_SIMPLE PREDEFINED_DICTIONARY_NAME {
+    DICT_4X4_50 = 0,
+    DICT_4X4_100,
+    DICT_4X4_250,
+    DICT_4X4_1000,
+    DICT_5X5_50,
+    DICT_5X5_100,
+    DICT_5X5_250,
+    DICT_5X5_1000,
+    DICT_6X6_50,
+    DICT_6X6_100,
+    DICT_6X6_250,
+    DICT_6X6_1000,
+    DICT_7X7_50,
+    DICT_7X7_100,
+    DICT_7X7_250,
+    DICT_7X7_1000,
+    DICT_ARUCO_ORIGINAL
+};
+
+
+/**
+  * @brief Returns one of the predefined dictionaries defined in PREDEFINED_DICTIONARY_NAME
+  */
+CV_EXPORTS Ptr<Dictionary> getPredefinedDictionary(PREDEFINED_DICTIONARY_NAME name);
+
+
+/**
+  * @brief Returns one of the predefined dictionaries referenced by DICT_*.
+  */
+CV_EXPORTS_W Ptr<Dictionary> getPredefinedDictionary(int dict);
+
+
+/**
+  * @see generateCustomDictionary
+  */
+CV_EXPORTS_AS(custom_dictionary) Ptr<Dictionary> generateCustomDictionary(
+        int nMarkers,
+        int markerSize);
+
+
+/**
+  * @brief Generates a new customizable marker dictionary
+  *
+  * @param nMarkers number of markers in the dictionary
+  * @param markerSize number of bits per dimension of each markers
+  * @param baseDictionary Include the markers in this dictionary at the beginning (optional)
+  *
+  * This function creates a new dictionary composed by nMarkers markers and each markers composed
+  * by markerSize x markerSize bits. If baseDictionary is provided, its markers are directly
+  * included and the rest are generated based on them. If the size of baseDictionary is higher
+  * than nMarkers, only the first nMarkers in baseDictionary are taken and no new marker is added.
+  */
+CV_EXPORTS_AS(custom_dictionary_from) Ptr<Dictionary> generateCustomDictionary(
+        int nMarkers,
+        int markerSize,
+        const Ptr<Dictionary> &baseDictionary);
+
+
+
+//! @}
+}
+}
+
+#endif

+ 251 - 0
cv/include/opencv2/bgsegm.hpp

@@ -0,0 +1,251 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+                          License Agreement
+               For Open Source Computer Vision Library
+                       (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+  * Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+  * Redistributions in binary form must reproduce the above copyright notice,
+    this list of conditions and the following disclaimer in the documentation
+    and/or other materials provided with the distribution.
+
+  * Neither the names of the copyright holders nor the names of the contributors
+    may be used to endorse or promote products derived from this software
+    without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_BGSEGM_HPP__
+#define __OPENCV_BGSEGM_HPP__
+
+#include "opencv2/video.hpp"
+
+#ifdef __cplusplus
+
+/** @defgroup bgsegm Improved Background-Foreground Segmentation Methods
+*/
+
+namespace cv
+{
+namespace bgsegm
+{
+
+//! @addtogroup bgsegm
+//! @{
+
+/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
+
+The class implements the algorithm described in @cite KB2001 .
+ */
+class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
+{
+public:
+    CV_WRAP virtual int getHistory() const = 0;
+    CV_WRAP virtual void setHistory(int nframes) = 0;
+
+    CV_WRAP virtual int getNMixtures() const = 0;
+    CV_WRAP virtual void setNMixtures(int nmix) = 0;
+
+    CV_WRAP virtual double getBackgroundRatio() const = 0;
+    CV_WRAP virtual void setBackgroundRatio(double backgroundRatio) = 0;
+
+    CV_WRAP virtual double getNoiseSigma() const = 0;
+    CV_WRAP virtual void setNoiseSigma(double noiseSigma) = 0;
+};
+
+/** @brief Creates mixture-of-gaussian background subtractor
+
+@param history Length of the history.
+@param nmixtures Number of Gaussian mixtures.
+@param backgroundRatio Background ratio.
+@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0
+means some automatic value.
+ */
+CV_EXPORTS_W Ptr<BackgroundSubtractorMOG>
+    createBackgroundSubtractorMOG(int history=200, int nmixtures=5,
+                                  double backgroundRatio=0.7, double noiseSigma=0);
+
+
+/** @brief Background Subtractor module based on the algorithm given in @cite Gold2012 .
+
+ Takes a series of images and returns a sequence of mask (8UC1)
+ images of the same size, where 255 indicates Foreground and 0 represents Background.
+ This class implements an algorithm described in "Visual Tracking of Human Visitors under
+ Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
+ A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
+ */
+class CV_EXPORTS_W BackgroundSubtractorGMG : public BackgroundSubtractor
+{
+public:
+    /** @brief Returns total number of distinct colors to maintain in histogram.
+    */
+    CV_WRAP virtual int getMaxFeatures() const = 0;
+    /** @brief Sets total number of distinct colors to maintain in histogram.
+    */
+    CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
+
+    /** @brief Returns the learning rate of the algorithm.
+
+    It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from
+    histograms.
+     */
+    CV_WRAP virtual double getDefaultLearningRate() const = 0;
+    /** @brief Sets the learning rate of the algorithm.
+    */
+    CV_WRAP virtual void setDefaultLearningRate(double lr) = 0;
+
+    /** @brief Returns the number of frames used to initialize background model.
+    */
+    CV_WRAP virtual int getNumFrames() const = 0;
+    /** @brief Sets the number of frames used to initialize background model.
+    */
+    CV_WRAP virtual void setNumFrames(int nframes) = 0;
+
+    /** @brief Returns the parameter used for quantization of color-space.
+
+    It is the number of discrete levels in each channel to be used in histograms.
+     */
+    CV_WRAP virtual int getQuantizationLevels() const = 0;
+    /** @brief Sets the parameter used for quantization of color-space
+    */
+    CV_WRAP virtual void setQuantizationLevels(int nlevels) = 0;
+
+    /** @brief Returns the prior probability that each individual pixel is a background pixel.
+    */
+    CV_WRAP virtual double getBackgroundPrior() const = 0;
+    /** @brief Sets the prior probability that each individual pixel is a background pixel.
+    */
+    CV_WRAP virtual void setBackgroundPrior(double bgprior) = 0;
+
+    /** @brief Returns the kernel radius used for morphological operations
+    */
+    CV_WRAP virtual int getSmoothingRadius() const = 0;
+    /** @brief Sets the kernel radius used for morphological operations
+    */
+    CV_WRAP virtual void setSmoothingRadius(int radius) = 0;
+
+    /** @brief Returns the value of decision threshold.
+
+    Decision value is the value above which pixel is determined to be FG.
+     */
+    CV_WRAP virtual double getDecisionThreshold() const = 0;
+    /** @brief Sets the value of decision threshold.
+    */
+    CV_WRAP virtual void setDecisionThreshold(double thresh) = 0;
+
+    /** @brief Returns the status of background model update
+    */
+    CV_WRAP virtual bool getUpdateBackgroundModel() const = 0;
+    /** @brief Sets the status of background model update
+    */
+    CV_WRAP virtual void setUpdateBackgroundModel(bool update) = 0;
+
+    /** @brief Returns the minimum value taken on by pixels in image sequence. Usually 0.
+    */
+    CV_WRAP virtual double getMinVal() const = 0;
+    /** @brief Sets the minimum value taken on by pixels in image sequence.
+    */
+    CV_WRAP virtual void setMinVal(double val) = 0;
+
+    /** @brief Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
+    */
+    CV_WRAP virtual double getMaxVal() const = 0;
+    /** @brief Sets the maximum value taken on by pixels in image sequence.
+    */
+    CV_WRAP virtual void setMaxVal(double val) = 0;
+};
+
+/** @brief Creates a GMG Background Subtractor
+
+@param initializationFrames number of frames used to initialize the background models.
+@param decisionThreshold Threshold value, above which it is marked foreground, else background.
+ */
+CV_EXPORTS_W Ptr<BackgroundSubtractorGMG> createBackgroundSubtractorGMG(int initializationFrames=120,
+                                                                        double decisionThreshold=0.8);
+
+/** @brief Background subtraction based on counting.
+
+  About as fast as MOG2 on a high end system.
+  More than twice faster than MOG2 on cheap hardware (benchmarked on Raspberry Pi3).
+
+  %Algorithm by Sagi Zeevi ( https://github.com/sagi-z/BackgroundSubtractorCNT )
+*/
+class CV_EXPORTS_W BackgroundSubtractorCNT  : public BackgroundSubtractor
+{
+public:
+    // BackgroundSubtractor interface
+    CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
+    CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
+
+    /** @brief Returns number of frames with same pixel color to consider stable.
+    */
+    CV_WRAP virtual int getMinPixelStability() const = 0;
+    /** @brief Sets the number of frames with same pixel color to consider stable.
+    */
+    CV_WRAP virtual void setMinPixelStability(int value) = 0;
+
+    /** @brief Returns maximum allowed credit for a pixel in history.
+    */
+    CV_WRAP virtual int getMaxPixelStability() const = 0;
+    /** @brief Sets the maximum allowed credit for a pixel in history.
+    */
+    CV_WRAP virtual void setMaxPixelStability(int value) = 0;
+
+    /** @brief Returns if we're giving a pixel credit for being stable for a long time.
+    */
+    CV_WRAP virtual bool getUseHistory() const = 0;
+    /** @brief Sets if we're giving a pixel credit for being stable for a long time.
+    */
+    CV_WRAP virtual void setUseHistory(bool value) = 0;
+
+    /** @brief Returns if we're parallelizing the algorithm.
+    */
+    CV_WRAP virtual bool getIsParallel() const = 0;
+    /** @brief Sets if we're parallelizing the algorithm.
+    */
+    CV_WRAP virtual void setIsParallel(bool value) = 0;
+};
+
+/** @brief Creates a CNT Background Subtractor
+
+@param minPixelStability number of frames with same pixel color to consider stable
+@param useHistory determines if we're giving a pixel credit for being stable for a long time
+@param maxPixelStability maximum allowed credit for a pixel in history
+@param isParallel determines if we're parallelizing the algorithm
+ */
+
+CV_EXPORTS_W Ptr<BackgroundSubtractorCNT>
+createBackgroundSubtractorCNT(int minPixelStability = 15,
+                              bool useHistory = true,
+                              int maxPixelStability = 15*60,
+                              bool isParallel = true);
+
+//! @}
+
+}
+}
+
+#endif
+#endif

+ 60 - 0
cv/include/opencv2/bioinspired.hpp

@@ -0,0 +1,60 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_BIOINSPIRED_HPP__
+#define __OPENCV_BIOINSPIRED_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/bioinspired/retina.hpp"
+#include "opencv2/bioinspired/retinafasttonemapping.hpp"
+#include "opencv2/bioinspired/transientareassegmentationmodule.hpp"
+
+/** @defgroup bioinspired Biologically inspired vision models and derivated tools
+
+The module provides biological visual systems models (human visual system and others). It also
+provides derivated objects that take advantage of those bio-inspired models.
+
+@ref bioinspired_retina
+
+*/
+
+#endif

+ 48 - 0
cv/include/opencv2/bioinspired/bioinspired.hpp

@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifdef __OPENCV_BUILD
+#error this is a compatibility header which should not be used inside the OpenCV library
+#endif
+
+#include "opencv2/bioinspired.hpp"

+ 454 - 0
cv/include/opencv2/bioinspired/retina.hpp

@@ -0,0 +1,454 @@
+/*#******************************************************************************
+ ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ **
+ ** By downloading, copying, installing or using the software you agree to this license.
+ ** If you do not agree to this license, do not download, install,
+ ** copy or use the software.
+ **
+ **
+ ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
+ ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
+ **
+ ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
+ **
+ **  Creation - enhancement process 2007-2015
+ **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
+ **
+ ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
+ ** Refer to the following research paper for more information:
+ ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+ ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
+ ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+ **
+ ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
+ ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
+ ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
+ ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
+ ** ====> more informations in the above cited Jeanny Heraults's book.
+ **
+ **                          License Agreement
+ **               For Open Source Computer Vision Library
+ **
+ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+ ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+ **
+ **               For Human Visual System tools (bioinspired)
+ ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
+ **
+ ** Third party copyrights are property of their respective owners.
+ **
+ ** Redistribution and use in source and binary forms, with or without modification,
+ ** are permitted provided that the following conditions are met:
+ **
+ ** * Redistributions of source code must retain the above copyright notice,
+ **    this list of conditions and the following disclaimer.
+ **
+ ** * Redistributions in binary form must reproduce the above copyright notice,
+ **    this list of conditions and the following disclaimer in the documentation
+ **    and/or other materials provided with the distribution.
+ **
+ ** * The name of the copyright holders may not be used to endorse or promote products
+ **    derived from this software without specific prior written permission.
+ **
+ ** This software is provided by the copyright holders and contributors "as is" and
+ ** any express or implied warranties, including, but not limited to, the implied
+ ** warranties of merchantability and fitness for a particular purpose are disclaimed.
+ ** In no event shall the Intel Corporation or contributors be liable for any direct,
+ ** indirect, incidental, special, exemplary, or consequential damages
+ ** (including, but not limited to, procurement of substitute goods or services;
+ ** loss of use, data, or profits; or business interruption) however caused
+ ** and on any theory of liability, whether in contract, strict liability,
+ ** or tort (including negligence or otherwise) arising in any way out of
+ ** the use of this software, even if advised of the possibility of such damage.
+ *******************************************************************************/
+
+#ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__
+#define __OPENCV_BIOINSPIRED_RETINA_HPP__
+
+/**
+@file
+@date Jul 19, 2011
+@author Alexandre Benoit
+*/
+
+#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
+
+
+namespace cv{
+namespace bioinspired{
+
+//! @addtogroup bioinspired
+//! @{
+
+enum {
+    RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice
+    RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
+    RETINA_COLOR_BAYER//!< standard bayer sampling
+};
+
+
+/** @brief retina model parameters structure
+
+    For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
+
+    Here is the default configuration file of the retina module. It gives results such as the first
+    retina output shown on the top of this page.
+
+    @code{xml}
+    <?xml version="1.0"?>
+    <opencv_storage>
+    <OPLandIPLparvo>
+        <colorMode>1</colorMode>
+        <normaliseOutput>1</normaliseOutput>
+        <photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
+        <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
+        <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
+        <horizontalCellsGain>0.01</horizontalCellsGain>
+        <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
+        <hcellsSpatialConstant>7.</hcellsSpatialConstant>
+        <ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
+    <IPLmagno>
+        <normaliseOutput>1</normaliseOutput>
+        <parasolCells_beta>0.</parasolCells_beta>
+        <parasolCells_tau>0.</parasolCells_tau>
+        <parasolCells_k>7.</parasolCells_k>
+        <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
+        <V0CompressionParameter>9.5e-01</V0CompressionParameter>
+        <localAdaptintegration_tau>0.</localAdaptintegration_tau>
+        <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
+    </opencv_storage>
+    @endcode
+
+    Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
+
+    @code{xml}
+    <?xml version="1.0"?>
+    <opencv_storage>
+    <OPLandIPLparvo>
+      <colorMode>1</colorMode>
+      <normaliseOutput>1</normaliseOutput>
+      <photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
+      <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
+      <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
+      <horizontalCellsGain>0.3</horizontalCellsGain>
+      <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
+      <hcellsSpatialConstant>7.</hcellsSpatialConstant>
+      <ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
+    <IPLmagno>
+      <normaliseOutput>1</normaliseOutput>
+      <parasolCells_beta>0.</parasolCells_beta>
+      <parasolCells_tau>0.</parasolCells_tau>
+      <parasolCells_k>7.</parasolCells_k>
+      <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
+      <V0CompressionParameter>9.5e-01</V0CompressionParameter>
+      <localAdaptintegration_tau>0.</localAdaptintegration_tau>
+      <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
+    </opencv_storage>
+    @endcode
+      */
+    struct RetinaParameters{ 
+        //! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
+        struct OPLandIplParvoParameters{
+               OPLandIplParvoParameters():colorMode(true),
+                                 normaliseOutput(true),
+                                 photoreceptorsLocalAdaptationSensitivity(0.75f),
+                                 photoreceptorsTemporalConstant(0.9f),
+                                 photoreceptorsSpatialConstant(0.53f),
+                                 horizontalCellsGain(0.01f),
+                                 hcellsTemporalConstant(0.5f),
+                                 hcellsSpatialConstant(7.f),
+                                 ganglionCellsSensitivity(0.75f) { } // default setup
+               bool colorMode, normaliseOutput;
+               float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
+        };
+        //! Inner Plexiform Layer Magnocellular channel (IplMagno)
+        struct IplMagnoParameters{
+            IplMagnoParameters():
+                          normaliseOutput(true),
+                          parasolCells_beta(0.f),
+                          parasolCells_tau(0.f),
+                          parasolCells_k(7.f),
+                          amacrinCellsTemporalCutFrequency(2.0f),
+                          V0CompressionParameter(0.95f),
+                          localAdaptintegration_tau(0.f),
+                          localAdaptintegration_k(7.f) { } // default setup
+            bool normaliseOutput;
+            float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
+        };
+        OPLandIplParvoParameters OPLandIplParvo;
+        IplMagnoParameters IplMagno;
+    };
+
+
+
+/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
+
+This retina model allows spatio-temporal image processing (applied on still images, video sequences).
+As a summary, these are the retina model properties:
+- It applies a spectral whithening (mid-frequency details enhancement)
+- high frequency spatio-temporal noise reduction
+- low frequency luminance to be reduced (luminance range compression)
+- local logarithmic luminance compression allows details to be enhanced in low light conditions
+
+USE : this model can be used basically for spatio-temporal video effects but also for :
+     _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
+     _using the getMagno method output matrix : motion analysis also with the previously cited properties
+
+for more information, reer to the following papers :
+Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+
+The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
+take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
+B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
+take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
+more informations in the above cited Jeanny Heraults's book.
+ */
+class CV_EXPORTS_W Retina : public Algorithm {
+
+public:
+
+    
+    /** @brief Retreive retina input buffer size
+    @return the retina input buffer size
+     */
+    CV_WRAP virtual Size getInputSize()=0;
+
+    /** @brief Retreive retina output buffer size that can be different from the input if a spatial log
+    transformation is applied
+    @return the retina output buffer size
+     */
+    CV_WRAP virtual Size getOutputSize()=0;
+
+    /** @brief Try to open an XML retina parameters file to adjust current retina instance setup
+
+    - if the xml file does not exist, then default setup is applied
+    - warning, Exceptions are thrown if read XML file is not valid
+    @param retinaParameterFile the parameters filename
+    @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
+
+    You can retrieve the current parameters structure using the method Retina::getParameters and update
+    it before running method Retina::setup.
+     */
+    CV_WRAP virtual void setup(String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
+
+    /** @overload
+    @param fs the open Filestorage which contains retina parameters
+    @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
+    */
+    virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
+
+    /** @overload
+    @param newParameters a parameters structures updated with the new target configuration.
+    */
+    virtual void setup(RetinaParameters newParameters)=0;
+
+    /**
+    @return the current parameters setup
+    */
+    virtual RetinaParameters getParameters()=0;
+
+    /** @brief Outputs a string showing the used parameters setup
+    @return a string which contains formated parameters information
+     */
+    CV_WRAP virtual const String printSetup()=0;
+
+    /** @brief Write xml/yml formated parameters information
+    @param fs the filename of the xml file that will be open and writen with formatted parameters
+    information
+     */
+    CV_WRAP virtual void write( String fs ) const=0;
+
+    /** @overload */
+    virtual void write( FileStorage& fs ) const=0;
+
+    /** @brief Setup the OPL and IPL parvo channels (see biologocal model)
+
+    OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
+    which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
+    (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
+    Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
+    reference papers for more informations.
+    for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+    @param colorMode specifies if (true) color is processed of not (false) to then processing gray
+    level image
+    @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
+    @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
+    (more log compression effect when value increases)
+    @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
+    the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
+    frames, typical value is 1 frame
+    @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
+    the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
+    pixels, typical value is 1 pixel
+    @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
+    the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
+    still reachable at the output, typicall value is 0
+    @param HcellsTemporalConstant the time constant of the first order low pass filter of the
+    horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
+    frames, typical value is 1 frame, as the photoreceptors
+    @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
+    horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
+    typical value is 5 pixel, this value is also used for local contrast computing when computing
+    the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
+    channel model)
+    @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
+    output, set a value between 0.6 and 1 for best results, a high value increases more the low
+    value sensitivity... and the output saturates faster, recommended value: 0.7
+     */
+    CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0;
+
+    /** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
+
+    this channel processes signals output from OPL processing stage in peripheral vision, it allows
+    motion information enhancement. It is decorrelated from the details channel. See reference
+    papers for more details.
+
+    @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
+    @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
+    IPL level of the retina (for ganglion cells local adaptation), typical value is 0
+    @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
+    at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
+    value is 0 (immediate response)
+    @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
+    at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
+    value is 5
+    @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
+    the magnocellular way (motion information channel), unit is frames, typical value is 1.2
+    @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
+    output, set a value between 0.6 and 1 for best results, a high value increases more the low
+    value sensitivity... and the output saturates faster, recommended value: 0.95
+    @param localAdaptintegration_tau specifies the temporal constant of the low pas filter
+    involved in the computation of the local "motion mean" for the local adaptation computation
+    @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
+    in the computation of the local "motion mean" for the local adaptation computation
+     */
+    CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0;
+
+    /** @brief Method which allows retina to be applied on an input image,
+
+    after run, encapsulated retina module is ready to deliver its outputs using dedicated
+    acccessors, see getParvo and getMagno methods
+    @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
+    format (from 8bit to 16bits)
+     */
+    CV_WRAP virtual void run(InputArray inputImage)=0;
+
+    /** @brief Method which processes an image in the aim to correct its luminance correct
+    backlight problems, enhance details in shadows.
+
+    This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
+    images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
+    (simplified version of the run/getParvo methods call) since it does not include the
+    spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
+    whitening and many other stuff. However, it works great for tone mapping and in a faster way.
+
+    Check the demos and experiments section to see examples and the way to perform tone mapping
+    using the original retina model and the method.
+
+    @param inputImage the input image to process (should be coded in float format : CV_32F,
+    CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
+    @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
+     */
+    CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
+
+    /** @brief Accessor of the details channel of the retina (models foveal vision).
+
+    Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
+    the non RAW method allows a normalized matrix to be retrieved.
+
+    @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
+    -   a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
+    -   RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
+    B2, ...Bn), this output is the original retina filter model output, without any
+    quantification or rescaling.
+    @see getParvoRAW
+     */
+    CV_WRAP virtual void getParvo(OutputArray retinaOutput_parvo)=0;
+
+    /** @brief Accessor of the details channel of the retina (models foveal vision).
+    @see getParvo
+     */
+    CV_WRAP virtual void getParvoRAW(OutputArray retinaOutput_parvo)=0;
+
+    /** @brief Accessor of the motion channel of the retina (models peripheral vision).
+
+    Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
+    the non RAW method allows a normalized matrix to be retrieved.
+    @param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
+    -   a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
+    -   RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
+    original retina filter model output, without any quantification or rescaling.
+    @see getMagnoRAW
+     */
+    CV_WRAP virtual void getMagno(OutputArray retinaOutput_magno)=0;
+
+    /** @brief Accessor of the motion channel of the retina (models peripheral vision).
+    @see getMagno
+     */
+    CV_WRAP virtual void getMagnoRAW(OutputArray retinaOutput_magno)=0;
+
+    /** @overload */
+    CV_WRAP virtual const Mat getMagnoRAW() const=0;
+    /** @overload */
+    CV_WRAP virtual const Mat getParvoRAW() const=0;
+
+    /** @brief Activate color saturation as the final step of the color demultiplexing process -\> this
+    saturation is a sigmoide function applied to each channel of the demultiplexed image.
+    @param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
+    @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
+    buffers
+     */
+    CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0;
+
+    /** @brief Clears all retina buffers
+
+    (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
+    transition occuring just after this method call.
+     */
+    CV_WRAP virtual void clearBuffers()=0;
+
+    /** @brief Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
+    default, it is activated
+    @param activate true if Magnocellular output should be activated, false if not... if activated,
+    the Magnocellular output can be retrieved using the **getMagno** methods
+     */
+    CV_WRAP virtual void activateMovingContoursProcessing(const bool activate)=0;
+
+    /** @brief Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
+    default, it is activated
+    @param activate true if Parvocellular (contours information extraction) output should be
+    activated, false if not... if activated, the Parvocellular output can be retrieved using the
+    Retina::getParvo methods
+     */
+    CV_WRAP virtual void activateContoursProcessing(const bool activate)=0;
+
+    /** @overload */
+    CV_WRAP static Ptr<Retina> create(Size inputSize);
+    /** @brief Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
+
+    @param inputSize the input frame size
+    @param colorMode the chosen processing mode : with or without color processing
+    @param colorSamplingMethod specifies which kind of color sampling will be used :
+    -   cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
+    -   cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
+    -   cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
+    @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
+    be used
+    @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
+    factor of the output frame (as the center (fovea) is high resolution and corners can be
+    underscaled, then a reduction of the output is allowed without precision leak
+    @param samplingStrenght only usefull if param useRetinaLogSampling=true, specifies the strenght of
+    the log scale that is applied
+     */
+    CV_WRAP static Ptr<Retina> create(Size inputSize, const bool colorMode,
+                                           int colorSamplingMethod=RETINA_COLOR_BAYER,
+                                           const bool useRetinaLogSampling=false,
+                                           const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
+};
+
+//! @}
+
+}
+}
+#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */

+ 138 - 0
cv/include/opencv2/bioinspired/retinafasttonemapping.hpp

@@ -0,0 +1,138 @@
+
+/*#******************************************************************************
+ ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ **
+ ** By downloading, copying, installing or using the software you agree to this license.
+ ** If you do not agree to this license, do not download, install,
+ ** copy or use the software.
+ **
+ **
+ ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
+ **
+ ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
+ **
+ **  Creation - enhancement process 2007-2013
+ **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
+ **
+ ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
+ ** Refer to the following research paper for more information:
+ ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+ ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
+ ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+ **
+ **
+ **
+ **
+ **
+ ** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite:
+ ** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
+ **
+ **
+ **                          License Agreement
+ **               For Open Source Computer Vision Library
+ **
+ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+ ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+ **
+ **               For Human Visual System tools (bioinspired)
+ ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
+ **
+ ** Third party copyrights are property of their respective owners.
+ **
+ ** Redistribution and use in source and binary forms, with or without modification,
+ ** are permitted provided that the following conditions are met:
+ **
+ ** * Redistributions of source code must retain the above copyright notice,
+ **    this list of conditions and the following disclaimer.
+ **
+ ** * Redistributions in binary form must reproduce the above copyright notice,
+ **    this list of conditions and the following disclaimer in the documentation
+ **    and/or other materials provided with the distribution.
+ **
+ ** * The name of the copyright holders may not be used to endorse or promote products
+ **    derived from this software without specific prior written permission.
+ **
+ ** This software is provided by the copyright holders and contributors "as is" and
+ ** any express or implied warranties, including, but not limited to, the implied
+ ** warranties of merchantability and fitness for a particular purpose are disclaimed.
+ ** In no event shall the Intel Corporation or contributors be liable for any direct,
+ ** indirect, incidental, special, exemplary, or consequential damages
+ ** (including, but not limited to, procurement of substitute goods or services;
+ ** loss of use, data, or profits; or business interruption) however caused
+ ** and on any theory of liability, whether in contract, strict liability,
+ ** or tort (including negligence or otherwise) arising in any way out of
+ ** the use of this software, even if advised of the possibility of such damage.
+ *******************************************************************************/
+
+#ifndef __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__
+#define __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__
+
+/**
+@file
+@date May 26, 2013
+@author Alexandre Benoit
+ */
+
+#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
+
+namespace cv{
+namespace bioinspired{
+
+//! @addtogroup bioinspired
+//! @{
+
+/** @brief  a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV.
+
+This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc.
+As a summary, these are the model properties:
+- 2 stages of local luminance adaptation with a different local neighborhood for each.
+- first stage models the retina photorecetors local luminance adaptation
+- second stage models th ganglion cells local information adaptation
+- compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters.
+  this can help noise robustness and temporal stability for video sequence use cases.
+
+for more information, read to the following papers :
+Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+regarding spatio-temporal filter and the bigger retina model :
+Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+*/
+class CV_EXPORTS_W RetinaFastToneMapping : public Algorithm
+{
+public:
+
+    /** @brief applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)
+
+    using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors
+    level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal
+    smoothing and eventually high frequencies attenuation. This is a lighter method than the one
+    available using the regular retina::run method. It is then faster but it does not include
+    complete temporal filtering nor retina spectral whitening. Then, it can have a more limited
+    effect on images with a very high dynamic range. This is an adptation of the original still
+    image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's
+    work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local
+    Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of
+    America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
+
+    @param inputImage the input image to process RGB or gray levels
+    @param outputToneMappedImage the output tone mapped image
+    */
+    CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
+
+    /** @brief updates tone mapping behaviors by adjusing the local luminance computation area
+
+    @param photoreceptorsNeighborhoodRadius the first stage local adaptation area
+    @param ganglioncellsNeighborhoodRadius the second stage local adaptation area
+    @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information
+    (default is 1, see reference paper)
+     */
+    CV_WRAP virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f)=0;
+
+    CV_WRAP static Ptr<RetinaFastToneMapping> create(Size inputSize);
+};
+
+
+//! @}
+
+}
+}
+#endif /* __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ */

+ 204 - 0
cv/include/opencv2/bioinspired/transientareassegmentationmodule.hpp

@@ -0,0 +1,204 @@
+/*#******************************************************************************
+ ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ **
+ ** By downloading, copying, installing or using the software you agree to this license.
+ ** If you do not agree to this license, do not download, install,
+ ** copy or use the software.
+ **
+ **
+ ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models.
+ ** TransientAreasSegmentationModule Use: extract areas that present spatio-temporal changes.
+ ** => It should be used at the output of the cv::bioinspired::Retina::getMagnoRAW() output that enhances spatio-temporal changes
+ **
+ ** Maintainers : Listic lab (code author current affiliation & applications)
+ **
+ **  Creation - enhancement process 2007-2015
+ **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
+ **
+ ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
+ ** Refer to the following research paper for more information:
+ ** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
+ ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+ ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
+ ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+ **
+ **
+ **                          License Agreement
+ **               For Open Source Computer Vision Library
+ **
+ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+ ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+ **
+ **               For Human Visual System tools (bioinspired)
+ ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
+ **
+ ** Third party copyrights are property of their respective owners.
+ **
+ ** Redistribution and use in source and binary forms, with or without modification,
+ ** are permitted provided that the following conditions are met:
+ **
+ ** * Redistributions of source code must retain the above copyright notice,
+ **    this list of conditions and the following disclaimer.
+ **
+ ** * Redistributions in binary form must reproduce the above copyright notice,
+ **    this list of conditions and the following disclaimer in the documentation
+ **    and/or other materials provided with the distribution.
+ **
+ ** * The name of the copyright holders may not be used to endorse or promote products
+ **    derived from this software without specific prior written permission.
+ **
+ ** This software is provided by the copyright holders and contributors "as is" and
+ ** any express or implied warranties, including, but not limited to, the implied
+ ** warranties of merchantability and fitness for a particular purpose are disclaimed.
+ ** In no event shall the Intel Corporation or contributors be liable for any direct,
+ ** indirect, incidental, special, exemplary, or consequential damages
+ ** (including, but not limited to, procurement of substitute goods or services;
+ ** loss of use, data, or profits; or business interruption) however caused
+ ** and on any theory of liability, whether in contract, strict liability,
+ ** or tort (including negligence or otherwise) arising in any way out of
+ ** the use of this software, even if advised of the possibility of such damage.
+ *******************************************************************************/
+
+#ifndef SEGMENTATIONMODULE_HPP_
+#define SEGMENTATIONMODULE_HPP_
+
+/**
+@file
+@date 2007-2013
+@author Alexandre BENOIT, benoit.alexandre.vision@gmail.com
+*/
+
+#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
+
+namespace cv
+{
+namespace bioinspired
+{
+//! @addtogroup bioinspired
+//! @{
+
+/** @brief parameter structure that stores the transient events detector setup parameters
+*/
+struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries
+	// default structure instance construction with default values	
+	SegmentationParameters():
+	    thresholdON(100),
+	    thresholdOFF(100),
+	    localEnergy_temporalConstant(0.5),
+	    localEnergy_spatialConstant(5),
+	    neighborhoodEnergy_temporalConstant(1),
+	    neighborhoodEnergy_spatialConstant(15),
+	    contextEnergy_temporalConstant(1),
+	    contextEnergy_spatialConstant(75){};
+	// all properties list
+	float thresholdON;
+	float thresholdOFF;
+	//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
+	float localEnergy_temporalConstant;
+	//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
+	float localEnergy_spatialConstant;
+	//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
+	float neighborhoodEnergy_temporalConstant;
+	float neighborhoodEnergy_spatialConstant;
+	//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
+	float contextEnergy_temporalConstant;
+	float contextEnergy_spatialConstant;
+};
+
+/** @brief class which provides a transient/moving areas segmentation module
+
+perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
+BENOIT thesis: "Le système visuel humain au secours de la vision par ordinateur"
+
+3 spatio temporal filters are used:
+- a first one which filters the noise and local variations of the input motion energy
+- a second (more powerfull low pass spatial filter) which gives the neighborhood motion energy the
+segmentation consists in the comparison of these both outputs, if the local motion energy is higher
+to the neighborhood otion energy, then the area is considered as moving and is segmented
+- a stronger third low pass filter helps decision by providing a smooth information about the
+"motion context" in a wider area
+ */
+
+class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm
+{
+public:
+
+
+    /** @brief return the sze of the manage input and output images
+    */
+    CV_WRAP virtual Size getSize()=0;
+
+    /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
+
+    - if the xml file does not exist, then default setup is applied
+    - warning, Exceptions are thrown if read XML file is not valid
+    @param segmentationParameterFile : the parameters filename
+    @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
+     */
+    CV_WRAP virtual void setup(String segmentationParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
+
+    /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
+
+    - if the xml file does not exist, then default setup is applied
+    - warning, Exceptions are thrown if read XML file is not valid
+    @param fs : the open Filestorage which contains segmentation parameters
+    @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
+    */
+    virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
+
+    /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
+
+    - if the xml file does not exist, then default setup is applied
+    - warning, Exceptions are thrown if read XML file is not valid
+    @param newParameters : a parameters structures updated with the new target configuration
+     */
+    virtual void setup(SegmentationParameters newParameters)=0;
+
+    /** @brief return the current parameters setup
+    */
+    virtual SegmentationParameters getParameters()=0;
+
+    /** @brief parameters setup display method
+    @return a string which contains formatted parameters information
+    */
+    CV_WRAP virtual const String printSetup()=0;
+
+    /** @brief write xml/yml formated parameters information
+    @param fs : the filename of the xml file that will be open and writen with formatted parameters information
+    */
+    CV_WRAP virtual void write( String fs ) const=0;
+
+    /** @brief write xml/yml formated parameters information
+    @param fs : a cv::Filestorage object ready to be filled
+    */
+    virtual void write( cv::FileStorage& fs ) const=0;
+
+    /** @brief main processing method, get result using methods getSegmentationPicture()
+    @param inputToSegment : the image to process, it must match the instance buffer size !
+    @param channelIndex : the channel to process in case of multichannel images
+    */
+    CV_WRAP virtual void run(InputArray inputToSegment, const int channelIndex=0)=0;
+
+    /** @brief access function
+    @return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
+   */
+    CV_WRAP virtual void getSegmentationPicture(OutputArray transientAreas)=0;
+
+    /** @brief cleans all the buffers of the instance
+    */
+    CV_WRAP virtual void clearAllBuffers()=0;
+
+    /** @brief allocator
+    @param inputSize : size of the images input to segment (output will be the same size)
+     */
+    CV_WRAP static Ptr<TransientAreasSegmentationModule> create(Size inputSize);
+};
+
+//! @}
+
+}} // namespaces end : cv and bioinspired
+
+
+#endif
+
+

+ 2247 - 0
cv/include/opencv2/calib3d.hpp

@@ -0,0 +1,2247 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CALIB3D_HPP
+#define OPENCV_CALIB3D_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/features2d.hpp"
+#include "opencv2/core/affine.hpp"
+
+/**
+  @defgroup calib3d Camera Calibration and 3D Reconstruction
+
+The functions in this section use a so-called pinhole camera model. In this model, a scene view is
+formed by projecting 3D points into the image plane using a perspective transformation.
+
+\f[s  \; m' = A [R|t] M'\f]
+
+or
+
+\f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
+\begin{bmatrix}
+r_{11} & r_{12} & r_{13} & t_1  \\
+r_{21} & r_{22} & r_{23} & t_2  \\
+r_{31} & r_{32} & r_{33} & t_3
+\end{bmatrix}
+\begin{bmatrix}
+X \\
+Y \\
+Z \\
+1
+\end{bmatrix}\f]
+
+where:
+
+-   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
+-   \f$(u, v)\f$ are the coordinates of the projection point in pixels
+-   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
+-   \f$(cx, cy)\f$ is a principal point that is usually at the image center
+-   \f$fx, fy\f$ are the focal lengths expressed in pixel units.
+
+Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
+(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
+depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
+fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
+extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
+rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
+point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
+is equivalent to the following (when \f$z \ne 0\f$ ):
+
+\f[\begin{array}{l}
+\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
+x' = x/z \\
+y' = y/z \\
+u = f_x*x' + c_x \\
+v = f_y*y' + c_y
+\end{array}\f]
+
+The following figure illustrates the pinhole camera model.
+
+![Pinhole camera model](pics/pinhole_camera_model.png)
+
+Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
+So, the above model is extended as:
+
+\f[\begin{array}{l}
+\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
+x' = x/z \\
+y' = y/z \\
+x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
+y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
+\text{where} \quad r^2 = x'^2 + y'^2  \\
+u = f_x*x'' + c_x \\
+v = f_y*y'' + c_y
+\end{array}\f]
+
+\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
+tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
+coefficients. Higher-order coefficients are not considered in OpenCV.
+
+The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$).
+
+![](pics/distortion_examples.png)
+
+In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
+camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
+triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
+\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.
+
+\f[\begin{array}{l}
+s\vecthree{x'''}{y'''}{1} =
+\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
+{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
+{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
+u = f_x*x''' + c_x \\
+v = f_y*y''' + c_y
+\end{array}\f]
+
+where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
+and \f$\tau_y\f$, respectively,
+
+\f[
+R(\tau_x, \tau_y) =
+\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
+\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
+\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
+{0}{\cos(\tau_x)}{\sin(\tau_x)}
+{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
+\f]
+
+In the functions below the coefficients are passed or returned as
+
+\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
+
+vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
+coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
+parameters. And they remain the same regardless of the captured image resolution. If, for example, a
+camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
+coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
+\f$c_y\f$ need to be scaled appropriately.
+
+The functions below use the above model to do the following:
+
+-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
+-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
+projections.
+-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
+pattern (every view is described by several 3D-2D point correspondences).
+-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
+*rectification* transformation that makes the camera optical axes parallel.
+
+@note
+   -   A calibration sample for 3 cameras in horizontal position can be found at
+        opencv_source_code/samples/cpp/3calibration.cpp
+    -   A calibration sample based on a sequence of images can be found at
+        opencv_source_code/samples/cpp/calibration.cpp
+    -   A calibration sample in order to do 3D reconstruction can be found at
+        opencv_source_code/samples/cpp/build3dmodel.cpp
+    -   A calibration sample of an artificially generated camera and chessboard patterns can be
+        found at opencv_source_code/samples/cpp/calibration_artificial.cpp
+    -   A calibration example on stereo calibration can be found at
+        opencv_source_code/samples/cpp/stereo_calib.cpp
+    -   A calibration example on stereo matching can be found at
+        opencv_source_code/samples/cpp/stereo_match.cpp
+    -   (Python) A camera calibration sample can be found at
+        opencv_source_code/samples/python/calibrate.py
+
+  @{
+    @defgroup calib3d_fisheye Fisheye camera model
+
+    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
+    matrix X) The coordinate vector of P in the camera reference frame is:
+
+    \f[Xc = R X + T\f]
+
+    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
+    and z the 3 coordinates of Xc:
+
+    \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
+
+    The pinhole projection coordinates of P is [a; b] where
+
+    \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
+
+    Fisheye distortion:
+
+    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
+
+    The distorted point coordinates are [x'; y'] where
+
+    \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
+
+    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
+
+    \f[u = f_x (x' + \alpha y') + c_x \\
+    v = f_y y' + c_y\f]
+
+    @defgroup calib3d_c C API
+
+  @}
+ */
+
+namespace cv
+{
+
+//! @addtogroup calib3d
+//! @{
+
+//! type of the robust estimation algorithm
+enum { LMEDS  = 4, //!< least-median algorithm
+       RANSAC = 8, //!< RANSAC algorithm
+       RHO    = 16 //!< RHO algorithm
+     };
+
+enum { SOLVEPNP_ITERATIVE = 0,
+       SOLVEPNP_EPNP      = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
+       SOLVEPNP_P3P       = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
+       SOLVEPNP_DLS       = 3, //!< A Direct Least-Squares (DLS) Method for PnP  @cite hesch2011direct
+       SOLVEPNP_UPNP      = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
+       SOLVEPNP_AP3P      = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
+       SOLVEPNP_MAX_COUNT      //!< Used for count
+};
+
+enum { CALIB_CB_ADAPTIVE_THRESH = 1,
+       CALIB_CB_NORMALIZE_IMAGE = 2,
+       CALIB_CB_FILTER_QUADS    = 4,
+       CALIB_CB_FAST_CHECK      = 8
+     };
+
+enum { CALIB_CB_SYMMETRIC_GRID  = 1,
+       CALIB_CB_ASYMMETRIC_GRID = 2,
+       CALIB_CB_CLUSTERING      = 4
+     };
+
+enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
+       CALIB_FIX_ASPECT_RATIO    = 0x00002,
+       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
+       CALIB_ZERO_TANGENT_DIST   = 0x00008,
+       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
+       CALIB_FIX_K1              = 0x00020,
+       CALIB_FIX_K2              = 0x00040,
+       CALIB_FIX_K3              = 0x00080,
+       CALIB_FIX_K4              = 0x00800,
+       CALIB_FIX_K5              = 0x01000,
+       CALIB_FIX_K6              = 0x02000,
+       CALIB_RATIONAL_MODEL      = 0x04000,
+       CALIB_THIN_PRISM_MODEL    = 0x08000,
+       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
+       CALIB_TILTED_MODEL        = 0x40000,
+       CALIB_FIX_TAUX_TAUY       = 0x80000,
+       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
+       CALIB_FIX_TANGENT_DIST    = 0x200000,
+       // only for stereo
+       CALIB_FIX_INTRINSIC       = 0x00100,
+       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
+       // for stereo rectification
+       CALIB_ZERO_DISPARITY      = 0x00400,
+       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
+     };
+
+//! the algorithm for finding fundamental matrix
+enum { FM_7POINT = 1, //!< 7-point algorithm
+       FM_8POINT = 2, //!< 8-point algorithm
+       FM_LMEDS  = 4, //!< least-median algorithm
+       FM_RANSAC = 8  //!< RANSAC algorithm
+     };
+
+
+
+/** @brief Converts a rotation matrix to a rotation vector or vice versa.
+
+@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
+@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
+@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
+derivatives of the output array components with respect to the input array components.
+
+\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
+
+Inverse transformation can be also done easily, since
+
+\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
+
+A rotation vector is a convenient and most compact representation of a rotation matrix (since any
+rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
+optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
+ */
+CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
+
+/** @brief Finds a perspective transformation between two planes.
+
+@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
+or vector\<Point2f\> .
+@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
+a vector\<Point2f\> .
+@param method Method used to computed a homography matrix. The following methods are possible:
+-   **0** - a regular method using all the points
+-   **RANSAC** - RANSAC-based robust method
+-   **LMEDS** - Least-Median robust method
+-   **RHO**    - PROSAC-based robust method
+@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
+(used in the RANSAC and RHO methods only). That is, if
+\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|  >  \texttt{ransacReprojThreshold}\f]
+then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels,
+it usually makes sense to set this parameter somewhere in the range of 1 to 10.
+@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
+mask values are ignored.
+@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
+@param confidence Confidence level, between 0 and 1.
+
+The function finds and returns the perspective transformation \f$H\f$ between the source and the
+destination planes:
+
+\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
+
+so that the back-projection error
+
+\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
+
+is minimized. If the parameter method is set to the default value 0, the function uses all the point
+pairs to compute an initial homography estimate with a simple least-squares scheme.
+
+However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
+transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
+you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
+random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix
+using this subset and a simple least-square algorithm, and then compute the quality/goodness of the
+computed homography (which is the number of inliers for RANSAC or the median re-projection error for
+LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and
+the mask of inliers/outliers.
+
+Regardless of the method, robust or not, the computed homography matrix is refined further (using
+inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
+re-projection error even more.
+
+The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
+distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
+correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
+noise is rather small, use the default method (method=0).
+
+The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
+determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix
+cannot be estimated, an empty one will be returned.
+
+@sa
+getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
+perspectiveTransform
+
+
+@note
+   -   A example on calculating a homography for image matching can be found at
+        opencv_source_code/samples/cpp/video_homography.cpp
+
+ */
+CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
+                                 int method = 0, double ransacReprojThreshold = 3,
+                                 OutputArray mask=noArray(), const int maxIters = 2000,
+                                 const double confidence = 0.995);
+
+/** @overload */
+CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
+                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
+
+/** @brief Computes an RQ decomposition of 3x3 matrices.
+
+@param src 3x3 input matrix.
+@param mtxR Output 3x3 upper-triangular matrix.
+@param mtxQ Output 3x3 orthogonal matrix.
+@param Qx Optional output 3x3 rotation matrix around x-axis.
+@param Qy Optional output 3x3 rotation matrix around y-axis.
+@param Qz Optional output 3x3 rotation matrix around z-axis.
+
+The function computes a RQ decomposition using the given rotations. This function is used in
+decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
+and a rotation matrix.
+
+It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
+degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
+sequence of rotations about the three principal axes that results in the same orientation of an
+object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
+are only one of the possible solutions.
+ */
+CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
+                                OutputArray Qx = noArray(),
+                                OutputArray Qy = noArray(),
+                                OutputArray Qz = noArray());
+
+/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
+
+@param projMatrix 3x4 input projection matrix P.
+@param cameraMatrix Output 3x3 camera matrix K.
+@param rotMatrix Output 3x3 external rotation matrix R.
+@param transVect Output 4x1 translation vector T.
+@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
+@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
+@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
+@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
+degrees.
+
+The function computes a decomposition of a projection matrix into a calibration and a rotation
+matrix and the position of a camera.
+
+It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
+be used in OpenGL. Note, there is always more than one sequence of rotations about the three
+principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
+tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
+
+The function is based on RQDecomp3x3 .
+ */
+CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
+                                             OutputArray rotMatrix, OutputArray transVect,
+                                             OutputArray rotMatrixX = noArray(),
+                                             OutputArray rotMatrixY = noArray(),
+                                             OutputArray rotMatrixZ = noArray(),
+                                             OutputArray eulerAngles =noArray() );
+
+/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
+
+@param A First multiplied matrix.
+@param B Second multiplied matrix.
+@param dABdA First output derivative matrix d(A\*B)/dA of size
+\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
+@param dABdB Second output derivative matrix d(A\*B)/dB of size
+\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
+
+The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
+the elements of each of the two input matrices. The function is used to compute the Jacobian
+matrices in stereoCalibrate but can also be used in any other similar optimization function.
+ */
+CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
+
+/** @brief Combines two rotation-and-shift transformations.
+
+@param rvec1 First rotation vector.
+@param tvec1 First translation vector.
+@param rvec2 Second rotation vector.
+@param tvec2 Second translation vector.
+@param rvec3 Output rotation vector of the superposition.
+@param tvec3 Output translation vector of the superposition.
+@param dr3dr1
+@param dr3dt1
+@param dr3dr2
+@param dr3dt2
+@param dt3dr1
+@param dt3dt1
+@param dt3dr2
+@param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
+tvec2, respectively.
+
+The functions compute:
+
+\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
+
+where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
+\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
+
+Also, the functions can compute the derivatives of the output vectors with regards to the input
+vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
+your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
+function that contains a matrix multiplication.
+ */
+CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
+                             InputArray rvec2, InputArray tvec2,
+                             OutputArray rvec3, OutputArray tvec3,
+                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
+                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
+                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
+                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
+
+/** @brief Projects 3D points to an image plane.
+
+@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
+vector\<Point3f\> ), where N is the number of points in the view.
+@param rvec Rotation vector. See Rodrigues for details.
+@param tvec Translation vector.
+@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
+@param distCoeffs Input vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
+@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
+vector\<Point2f\> .
+@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
+points with respect to components of the rotation vector, translation vector, focal lengths,
+coordinates of the principal point and the distortion coefficients. In the old interface different
+components of the jacobian are returned via different output parameters.
+@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
+function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
+matrix.
+
+The function computes projections of 3D points to the image plane given intrinsic and extrinsic
+camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
+image points coordinates (as functions of all the input parameters) with respect to the particular
+parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
+calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
+re-projection error given the current intrinsic and extrinsic parameters.
+
+@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
+passing zero distortion coefficients, you can get various useful partial cases of the function. This
+means that you can compute the distorted coordinates for a sparse set of points or apply a
+perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
+ */
+CV_EXPORTS_W void projectPoints( InputArray objectPoints,
+                                 InputArray rvec, InputArray tvec,
+                                 InputArray cameraMatrix, InputArray distCoeffs,
+                                 OutputArray imagePoints,
+                                 OutputArray jacobian = noArray(),
+                                 double aspectRatio = 0 );
+
+/** @brief Finds an object pose from 3D-2D point correspondences.
+
+@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
+1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
+@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
+where N is the number of points. vector\<Point2f\> can be also passed here.
+@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
+@param distCoeffs Input vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
+assumed.
+@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
+the model coordinate system to the camera coordinate system.
+@param tvec Output translation vector.
+@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
+the provided rvec and tvec values as initial approximations of the rotation and translation
+vectors, respectively, and further optimizes them.
+@param flags Method for solving a PnP problem:
+-   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
+this case the function finds such a pose that minimizes reprojection error, that is the sum
+of squared distances between the observed projections imagePoints and the projected (using
+projectPoints ) objectPoints .
+-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
+"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
+In this case the function requires exactly four object and image points.
+-   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
+"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
+In this case the function requires exactly four object and image points.
+-   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
+paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
+-   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
+"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
+-   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
+F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
+Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
+assuming that both have the same value. Then the cameraMatrix is updated with the estimated
+focal length.
+-   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
+"An Efficient Algebraic Solution to the Perspective-Three-Point Problem". In this case the
+function requires exactly four object and image points.
+
+The function estimates the object pose given a set of object points, their corresponding image
+projections, as well as the camera matrix and the distortion coefficients.
+
+@note
+   -   An example of how to use solvePnP for planar augmented reality can be found at
+        opencv_source_code/samples/python/plane_ar.py
+   -   If you are using Python:
+        - Numpy array slices won't work as input because solvePnP requires contiguous
+        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
+        modules/calib3d/src/solvepnp.cpp version 2.4.9)
+        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
+        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
+        which requires 2-channel information.
+        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
+        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
+        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
+   -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
+       unstable and sometimes give completly wrong results. If you pass one of these two
+       flags, **SOLVEPNP_EPNP** method will be used instead.
+   -   The minimum number of points is 4. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
+       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
+       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
+ */
+CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
+                            InputArray cameraMatrix, InputArray distCoeffs,
+                            OutputArray rvec, OutputArray tvec,
+                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
+
+/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
+
+@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
+1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
+@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
+where N is the number of points. vector\<Point2f\> can be also passed here.
+@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
+@param distCoeffs Input vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
+assumed.
+@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
+the model coordinate system to the camera coordinate system.
+@param tvec Output translation vector.
+@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
+the provided rvec and tvec values as initial approximations of the rotation and translation
+vectors, respectively, and further optimizes them.
+@param iterationsCount Number of iterations.
+@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
+is the maximum allowed distance between the observed and computed point projections to consider it
+an inlier.
+@param confidence The probability that the algorithm produces a useful result.
+@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
+@param flags Method for solving a PnP problem (see solvePnP ).
+
+The function estimates an object pose given a set of object points, their corresponding image
+projections, as well as the camera matrix and the distortion coefficients. This function finds such
+a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
+projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
+makes the function resistant to outliers.
+
+@note
+   -   An example of how to use solvePNPRansac for object detection can be found at
+        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
+   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
+       is #SOLVEPNP_EPNP. Exceptions are:
+         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
+         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
+   -   The method used to estimate the camera pose using all the inliers is defined by the
+       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
+       the method #SOLVEPNP_EPNP will be used instead.
+ */
+CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
+                                  InputArray cameraMatrix, InputArray distCoeffs,
+                                  OutputArray rvec, OutputArray tvec,
+                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
+                                  float reprojectionError = 8.0, double confidence = 0.99,
+                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
+/** @brief Finds an object pose from 3 3D-2D point correspondences.
+
+@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
+1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
+@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
+ vector\<Point2f\> can be also passed here.
+@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
+@param distCoeffs Input vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
+assumed.
+@param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
+the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
+@param tvecs Output translation vectors.
+@param flags Method for solving a P3P problem:
+-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
+"Complete Solution Classification for the Perspective-Three-Point Problem".
+-   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
+"An Efficient Algebraic Solution to the Perspective-Three-Point Problem".
+
+The function estimates the object pose given 3 object points, their corresponding image
+projections, as well as the camera matrix and the distortion coefficients.
+ */
+CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
+                           InputArray cameraMatrix, InputArray distCoeffs,
+                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+                           int flags );
+
+/** @brief Finds an initial camera matrix from 3D-2D point correspondences.
+
+@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
+coordinate space. In the old interface all the per-view vectors are concatenated. See
+calibrateCamera for details.
+@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
+old interface all the per-view vectors are concatenated.
+@param imageSize Image size in pixels used to initialize the principal point.
+@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
+Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
+
+The function estimates and returns an initial camera matrix for the camera calibration process.
+Currently, the function only supports planar calibration patterns, which are patterns where each
+object point has z-coordinate =0.
+ */
+CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
+                                     InputArrayOfArrays imagePoints,
+                                     Size imageSize, double aspectRatio = 1.0 );
+
+/** @brief Finds the positions of internal corners of the chessboard.
+
+@param image Source chessboard view. It must be an 8-bit grayscale or color image.
+@param patternSize Number of inner corners per a chessboard row and column
+( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
+@param corners Output array of detected corners.
+@param flags Various operation flags that can be zero or a combination of the following values:
+-   **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
+and white, rather than a fixed threshold level (computed from the average image brightness).
+-   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
+applying fixed or adaptive thresholding.
+-   **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
+square-like shape) to filter out false quads extracted at the contour retrieval stage.
+-   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
+and shortcut the call if none is found. This can drastically speed up the call in the
+degenerate condition when no chessboard is observed.
+
+The function attempts to determine whether the input image is a view of the chessboard pattern and
+locate the internal chessboard corners. The function returns a non-zero value if all of the corners
+are found and they are placed in a certain order (row by row, left to right in every row).
+Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
+a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
+squares touch each other. The detected coordinates are approximate, and to determine their positions
+more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
+different parameters if returned coordinates are not accurate enough.
+
+Sample usage of detecting and drawing chessboard corners: :
+@code
+    Size patternsize(8,6); //interior number of corners
+    Mat gray = ....; //source image
+    vector<Point2f> corners; //this will be filled by the detected corners
+
+    //CALIB_CB_FAST_CHECK saves a lot of time on images
+    //that do not contain any chessboard corners
+    bool patternfound = findChessboardCorners(gray, patternsize, corners,
+            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+            + CALIB_CB_FAST_CHECK);
+
+    if(patternfound)
+      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
+        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
+
+    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
+@endcode
+@note The function requires white space (like a square-thick border, the wider the better) around
+the board to make the detection more robust in various environments. Otherwise, if there is no
+border and the background is dark, the outer black squares cannot be segmented properly and so the
+square grouping and ordering algorithm fails.
+ */
+CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
+                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
+
+//! finds subpixel-accurate positions of the chessboard corners
+CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
+
+/** @brief Renders the detected chessboard corners.
+
+@param image Destination image. It must be an 8-bit color image.
+@param patternSize Number of inner corners per a chessboard row and column
+(patternSize = cv::Size(points_per_row,points_per_column)).
+@param corners Array of detected corners, the output of findChessboardCorners.
+@param patternWasFound Parameter indicating whether the complete board was found or not. The
+return value of findChessboardCorners should be passed here.
+
+The function draws individual chessboard corners detected either as red circles if the board was not
+found, or as colored corners connected with lines if the board was found.
+ */
+CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
+                                         InputArray corners, bool patternWasFound );
+
+struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
+{
+    CV_WRAP CirclesGridFinderParameters();
+    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
+    CV_PROP_RW float minDensity;
+    CV_PROP_RW int kmeansAttempts;
+    CV_PROP_RW int minDistanceToAddKeypoint;
+    CV_PROP_RW int keypointScale;
+    CV_PROP_RW float minGraphConfidence;
+    CV_PROP_RW float vertexGain;
+    CV_PROP_RW float vertexPenalty;
+    CV_PROP_RW float existingVertexGain;
+    CV_PROP_RW float edgeGain;
+    CV_PROP_RW float edgePenalty;
+    CV_PROP_RW float convexHullFactor;
+    CV_PROP_RW float minRNGEdgeSwitchDist;
+
+    enum GridType
+    {
+      SYMMETRIC_GRID, ASYMMETRIC_GRID
+    };
+    GridType gridType;
+};
+
+struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters2 : public CirclesGridFinderParameters
+{
+    CV_WRAP CirclesGridFinderParameters2();
+
+    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
+    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
+};
+
+/** @brief Finds centers in the grid of circles.
+
+@param image grid view of input circles; it must be an 8-bit grayscale or color image.
+@param patternSize number of circles per row and column
+( patternSize = Size(points_per_row, points_per_colum) ).
+@param centers output array of detected centers.
+@param flags various operation flags that can be one of the following values:
+-   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
+-   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
+-   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
+perspective distortions but much more sensitive to background clutter.
+@param blobDetector feature detector that finds blobs like dark circles on light background.
+@param parameters struct for finding circles in a grid pattern.
+
+The function attempts to determine whether the input image contains a grid of circles. If it is, the
+function locates centers of the circles. The function returns a non-zero value if all of the centers
+have been found and they have been placed in a certain order (row by row, left to right in every
+row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
+
+Sample usage of detecting and drawing the centers of circles: :
+@code
+    Size patternsize(7,7); //number of centers
+    Mat gray = ....; //source image
+    vector<Point2f> centers; //this will be filled by the detected centers
+
+    bool patternfound = findCirclesGrid(gray, patternsize, centers);
+
+    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
+@endcode
+@note The function requires white space (like a square-thick border, the wider the better) around
+the board to make the detection more robust in various environments.
+ */
+CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
+                                   OutputArray centers, int flags,
+                                   const Ptr<FeatureDetector> &blobDetector,
+                                   CirclesGridFinderParameters parameters);
+
+/** @overload */
+CV_EXPORTS_W bool findCirclesGrid2( InputArray image, Size patternSize,
+                                   OutputArray centers, int flags,
+                                   const Ptr<FeatureDetector> &blobDetector,
+                                   CirclesGridFinderParameters2 parameters);
+
+/** @overload */
+CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
+                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
+                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
+
+/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
+
+@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
+the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
+vector contains as many elements as the number of the pattern views. If the same calibration pattern
+is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
+possible to use partially occluded patterns, or even different patterns in different views. Then,
+the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
+then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
+Z-coordinate of each input object point is 0.
+In the old interface all the vectors of object points from different views are concatenated
+together.
+@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
+pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
+objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
+In the old interface all the vectors of object points from different views are concatenated
+together.
+@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
+@param cameraMatrix Output 3x3 floating-point camera matrix
+\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
+and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
+initialized before calling the function.
+@param distCoeffs Output vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements.
+@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
+(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
+k-th translation vector (see the next output parameter description) brings the calibration pattern
+from the model coordinate space (in which object points are specified) to the world coordinate
+space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
+@param tvecs Output vector of translation vectors estimated for each pattern view.
+@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
+ Order of deviations values:
+\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
+ s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
+@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
+ Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
+ \f$R_i, T_i\f$ are concatenated 1x3 vectors.
+ @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
+@param flags Different flags that may be zero or a combination of the following values:
+-   **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
+fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
+center ( imageSize is used), and focal distances are computed in a least-squares fashion.
+Note, that if intrinsic parameters are known, there is no need to use this function just to
+estimate extrinsic parameters. Use solvePnP instead.
+-   **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
+optimization. It stays at the center or at a different location specified when
+CALIB_USE_INTRINSIC_GUESS is set too.
+-   **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
+ratio fx/fy stays the same as in the input cameraMatrix . When
+CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
+ignored, only their ratio is computed and used further.
+-   **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
+to zeros and stay zero.
+-   **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
+coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
+set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+-   **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
+backward compatibility, this extra flag should be explicitly specified to make the
+calibration function use the rational model and return 8 coefficients. If the flag is not
+set, the function computes and returns only 5 distortion coefficients.
+-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
+backward compatibility, this extra flag should be explicitly specified to make the
+calibration function use the thin prism model and return 12 coefficients. If the flag is not
+set, the function computes and returns only 5 distortion coefficients.
+-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
+the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
+supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
+backward compatibility, this extra flag should be explicitly specified to make the
+calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
+set, the function computes and returns only 5 distortion coefficients.
+-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
+the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
+supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+@param criteria Termination criteria for the iterative optimization algorithm.
+
+@return the overall RMS re-projection error.
+
+The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
+views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
+points and their corresponding 2D projections in each view must be specified. That may be achieved
+by using an object with a known geometry and easily detectable feature points. Such an object is
+called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
+a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
+(when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
+patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
+be used as long as initial cameraMatrix is provided.
+
+The algorithm performs the following steps:
+
+-   Compute the initial intrinsic parameters (the option only available for planar calibration
+    patterns) or read them from the input parameters. The distortion coefficients are all set to
+    zeros initially unless some of CALIB_FIX_K? are specified.
+
+-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
+    done using solvePnP .
+
+-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
+    that is, the total sum of squared distances between the observed feature points imagePoints and
+    the projected (using the current estimates for camera parameters and the poses) object points
+    objectPoints. See projectPoints for details.
+
+@note
+   If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
+    calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
+    (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
+    then you have probably used patternSize=cvSize(rows,cols) instead of using
+    patternSize=cvSize(cols,rows) in findChessboardCorners .
+
+@sa
+   findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
+ */
+CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
+                                     InputArrayOfArrays imagePoints, Size imageSize,
+                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+                                     OutputArray stdDeviationsIntrinsics,
+                                     OutputArray stdDeviationsExtrinsics,
+                                     OutputArray perViewErrors,
+                                     int flags = 0, TermCriteria criteria = TermCriteria(
+                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
+
+/** @overload double calibrateCamera( InputArrayOfArrays objectPoints,
+                                     InputArrayOfArrays imagePoints, Size imageSize,
+                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+                                     OutputArray stdDeviations, OutputArray perViewErrors,
+                                     int flags = 0, TermCriteria criteria = TermCriteria(
+                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
+ */
+CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
+                                     InputArrayOfArrays imagePoints, Size imageSize,
+                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+                                     int flags = 0, TermCriteria criteria = TermCriteria(
+                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
+
+/** @brief Computes useful camera characteristics from the camera matrix.
+
+@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
+stereoCalibrate .
+@param imageSize Input image size in pixels.
+@param apertureWidth Physical width in mm of the sensor.
+@param apertureHeight Physical height in mm of the sensor.
+@param fovx Output field of view in degrees along the horizontal sensor axis.
+@param fovy Output field of view in degrees along the vertical sensor axis.
+@param focalLength Focal length of the lens in mm.
+@param principalPoint Principal point in mm.
+@param aspectRatio \f$f_y/f_x\f$
+
+The function computes various useful camera characteristics from the previously estimated camera
+matrix.
+
+@note
+   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
+    the chessboard pitch (it can thus be any value).
+ */
+CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
+                                           double apertureWidth, double apertureHeight,
+                                           CV_OUT double& fovx, CV_OUT double& fovy,
+                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
+                                           CV_OUT double& aspectRatio );
+
+/** @brief Calibrates the stereo camera.
+
+@param objectPoints Vector of vectors of the calibration pattern points.
+@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
+observed by the first camera.
+@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
+observed by the second camera.
+@param cameraMatrix1 Input/output first camera matrix:
+\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
+any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
+CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
+matrix components must be initialized. See the flags description for details.
+@param distCoeffs1 Input/output vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
+@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
+@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
+is similar to distCoeffs1 .
+@param imageSize Size of the image used only to initialize intrinsic camera matrix.
+@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
+@param T Output translation vector between the coordinate systems of the cameras.
+@param E Output essential matrix.
+@param F Output fundamental matrix.
+@param flags Different flags that may be zero or a combination of the following values:
+-   **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
+matrices are estimated.
+-   **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
+according to the specified flags. Initial values are provided by the user.
+-   **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
+-   **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
+-   **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
+.
+-   **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
+-   **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
+zeros and fix there.
+-   **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
+distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
+the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+-   **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
+compatibility, this extra flag should be explicitly specified to make the calibration
+function use the rational model and return 8 coefficients. If the flag is not set, the
+function computes and returns only 5 distortion coefficients.
+-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
+backward compatibility, this extra flag should be explicitly specified to make the
+calibration function use the thin prism model and return 12 coefficients. If the flag is not
+set, the function computes and returns only 5 distortion coefficients.
+-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
+the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
+supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
+backward compatibility, this extra flag should be explicitly specified to make the
+calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
+set, the function computes and returns only 5 distortion coefficients.
+-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
+the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
+supplied distCoeffs matrix is used. Otherwise, it is set to 0.
+@param criteria Termination criteria for the iterative optimization algorithm.
+
+The function estimates transformation between two cameras making a stereo pair. If you have a stereo
+camera where the relative position and orientation of two cameras is fixed, and if you computed
+poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
+respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
+This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
+need to know the position and orientation of the second camera relative to the first camera. This is
+what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
+
+\f[R_2=R*R_1\f]
+\f[T_2=R*T_1 + T,\f]
+
+Optionally, it computes the essential matrix E:
+
+\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
+
+where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
+can also compute the fundamental matrix F:
+
+\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
+
+Besides the stereo-related information, the function can also perform a full calibration of each of
+two cameras. However, due to the high dimensionality of the parameter space and noise in the input
+data, the function can diverge from the correct solution. If the intrinsic parameters can be
+estimated with high accuracy for each of the cameras individually (for example, using
+calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
+function along with the computed intrinsic parameters. Otherwise, if all the parameters are
+estimated at once, it makes sense to restrict some parameters, for example, pass
+CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
+reasonable assumption.
+
+Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
+points in all the available views from both cameras. The function returns the final value of the
+re-projection error.
+ */
+CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
+                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
+                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
+                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
+                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
+                                     int flags = CALIB_FIX_INTRINSIC,
+                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
+
+
+/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
+
+@param cameraMatrix1 First camera matrix.
+@param distCoeffs1 First camera distortion parameters.
+@param cameraMatrix2 Second camera matrix.
+@param distCoeffs2 Second camera distortion parameters.
+@param imageSize Size of the image used for stereo calibration.
+@param R Rotation matrix between the coordinate systems of the first and the second cameras.
+@param T Translation vector between coordinate systems of the cameras.
+@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
+@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
+@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
+camera.
+@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
+camera.
+@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
+@param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
+the function makes the principal points of each camera have the same pixel coordinates in the
+rectified views. And if the flag is not set, the function may still shift the images in the
+horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
+useful image area.
+@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
+scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
+images are zoomed and shifted so that only valid pixels are visible (no black areas after
+rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
+pixels from the original images from the cameras are retained in the rectified images (no source
+image pixels are lost). Obviously, any intermediate value yields an intermediate result between
+those two extreme cases.
+@param newImageSize New image resolution after rectification. The same size should be passed to
+initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
+is passed (default), it is set to the original imageSize . Setting it to larger value can help you
+preserve details in the original image, especially when there is a big radial distortion.
+@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
+are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
+(see the picture below).
+@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
+are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
+(see the picture below).
+
+The function computes the rotation matrices for each camera that (virtually) make both camera image
+planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
+the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
+as input. As output, it provides two rotation matrices and also two projection matrices in the new
+coordinates. The function distinguishes the following two cases:
+
+-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
+    mainly along the x axis (with possible small vertical shift). In the rectified images, the
+    corresponding epipolar lines in the left and right cameras are horizontal and have the same
+    y-coordinate. P1 and P2 look like:
+
+    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
+
+    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
+
+    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
+    CALIB_ZERO_DISPARITY is set.
+
+-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
+    mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
+    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
+
+    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
+
+    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
+
+    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
+    set.
+
+As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
+matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
+initialize the rectification map for each camera.
+
+See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
+the corresponding image regions. This means that the images are well rectified, which is what most
+stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
+their interiors are all valid pixels.
+
+![image](pics/stereo_undistort.jpg)
+ */
+CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
+                                 InputArray cameraMatrix2, InputArray distCoeffs2,
+                                 Size imageSize, InputArray R, InputArray T,
+                                 OutputArray R1, OutputArray R2,
+                                 OutputArray P1, OutputArray P2,
+                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
+                                 double alpha = -1, Size newImageSize = Size(),
+                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
+
+/** @brief Computes a rectification transform for an uncalibrated stereo camera.
+
+@param points1 Array of feature points in the first image.
+@param points2 The corresponding points in the second image. The same formats as in
+findFundamentalMat are supported.
+@param F Input fundamental matrix. It can be computed from the same set of point pairs using
+findFundamentalMat .
+@param imgSize Size of the image.
+@param H1 Output rectification homography matrix for the first image.
+@param H2 Output rectification homography matrix for the second image.
+@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
+than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
+for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
+rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
+
+The function computes the rectification transformations without knowing intrinsic parameters of the
+cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
+related difference from stereoRectify is that the function outputs not the rectification
+transformations in the object (3D) space, but the planar perspective transformations encoded by the
+homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
+
+@note
+   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
+    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
+    it would be better to correct it before computing the fundamental matrix and calling this
+    function. For example, distortion coefficients can be estimated for each head of stereo camera
+    separately by using calibrateCamera . Then, the images can be corrected using undistort , or
+    just the point coordinates can be corrected with undistortPoints .
+ */
+CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
+                                             InputArray F, Size imgSize,
+                                             OutputArray H1, OutputArray H2,
+                                             double threshold = 5 );
+
+//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
+CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
+                                      InputArray cameraMatrix2, InputArray distCoeffs2,
+                                      InputArray cameraMatrix3, InputArray distCoeffs3,
+                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
+                                      Size imageSize, InputArray R12, InputArray T12,
+                                      InputArray R13, InputArray T13,
+                                      OutputArray R1, OutputArray R2, OutputArray R3,
+                                      OutputArray P1, OutputArray P2, OutputArray P3,
+                                      OutputArray Q, double alpha, Size newImgSize,
+                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
+
+/** @brief Returns the new camera matrix based on the free scaling parameter.
+
+@param cameraMatrix Input camera matrix.
+@param distCoeffs Input vector of distortion coefficients
+\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
+4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
+assumed.
+@param imageSize Original image size.
+@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
+valid) and 1 (when all the source image pixels are retained in the undistorted image). See
+stereoRectify for details.
+@param newImgSize Image size after rectification. By default,it is set to imageSize .
+@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
+undistorted image. See roi1, roi2 description in stereoRectify .
+@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
+principal point should be at the image center or not. By default, the principal point is chosen to
+best fit a subset of the source image (determined by alpha) to the corrected image.
+@return new_camera_matrix Output new camera matrix.
+
+The function computes and returns the optimal new camera matrix based on the free scaling parameter.
+By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
+image pixels if there is valuable information in the corners alpha=1 , or get something in between.
+When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to
+"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
+coefficients, the computed new camera matrix, and newImageSize should be passed to
+initUndistortRectifyMap to produce the maps for remap .
+ */
+CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
+                                            Size imageSize, double alpha, Size newImgSize = Size(),
+                                            CV_OUT Rect* validPixROI = 0,
+                                            bool centerPrincipalPoint = false);
+
+/** @brief Converts points from Euclidean to homogeneous space.
+
+@param src Input vector of N-dimensional points.
+@param dst Output vector of N+1-dimensional points.
+
+The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
+point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
+ */
+CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
+
+/** @brief Converts points from homogeneous to Euclidean space.
+
+@param src Input vector of N-dimensional points.
+@param dst Output vector of N-1-dimensional points.
+
+The function converts points homogeneous to Euclidean space using perspective projection. That is,
+each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
+output point coordinates will be (0,0,0,...).
+ */
+CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
+
+/** @brief Converts points to/from homogeneous coordinates.
+
+@param src Input array or vector of 2D, 3D, or 4D points.
+@param dst Output vector of 2D, 3D, or 4D points.
+
+The function converts 2D or 3D points from/to homogeneous coordinates by calling either
+convertPointsToHomogeneous or convertPointsFromHomogeneous.
+
+@note The function is obsolete. Use one of the previous two functions instead.
+ */
+CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
+
+/** @brief Calculates a fundamental matrix from the corresponding points in two images.
+
+@param points1 Array of N points from the first image. The point coordinates should be
+floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1 .
+@param method Method for computing a fundamental matrix.
+-   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
+-   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
+-   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
+-   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
+@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
+line in pixels, beyond which the point is considered an outlier and is not used for computing the
+final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
+point localization, image resolution, and the image noise.
+@param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level
+of confidence (probability) that the estimated matrix is correct.
+@param mask
+
+The epipolar geometry is described by the following equation:
+
+\f[[p_2; 1]^T F [p_1; 1] = 0\f]
+
+where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
+second images, respectively.
+
+The function calculates the fundamental matrix using one of four methods listed above and returns
+the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
+algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
+matrices sequentially).
+
+The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
+epipolar lines corresponding to the specified points. It can also be passed to
+stereoRectifyUncalibrated to compute the rectification transformation. :
+@code
+    // Example. Estimation of fundamental matrix using the RANSAC algorithm
+    int point_count = 100;
+    vector<Point2f> points1(point_count);
+    vector<Point2f> points2(point_count);
+
+    // initialize the points here ...
+    for( int i = 0; i < point_count; i++ )
+    {
+        points1[i] = ...;
+        points2[i] = ...;
+    }
+
+    Mat fundamental_matrix =
+     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
+@endcode
+ */
+CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
+                                     int method = FM_RANSAC,
+                                     double param1 = 3., double param2 = 0.99,
+                                     OutputArray mask = noArray() );
+
+/** @overload */
+CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
+                                   OutputArray mask, int method = FM_RANSAC,
+                                   double param1 = 3., double param2 = 0.99 );
+
+/** @brief Calculates an essential matrix from the corresponding points in two images.
+
+@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
+be floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1 .
+@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
+Note that this function assumes that points1 and points2 are feature points from cameras with the
+same camera matrix.
+@param method Method for computing a fundamental matrix.
+-   **RANSAC** for the RANSAC algorithm.
+-   **MEDS** for the LMedS algorithm.
+@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
+confidence (probability) that the estimated matrix is correct.
+@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
+line in pixels, beyond which the point is considered an outlier and is not used for computing the
+final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
+point localization, image resolution, and the image noise.
+@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
+for the other points. The array is computed only in the RANSAC and LMedS methods.
+
+This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
+@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
+
+\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
+
+where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
+second images, respectively. The result of this function may be passed further to
+decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
+ */
+CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
+                                 InputArray cameraMatrix, int method = RANSAC,
+                                 double prob = 0.999, double threshold = 1.0,
+                                 OutputArray mask = noArray() );
+
+/** @overload
+@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
+be floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1 .
+@param focal focal length of the camera. Note that this function assumes that points1 and points2
+are feature points from cameras with same focal length and principal point.
+@param pp principal point of the camera.
+@param method Method for computing a fundamental matrix.
+-   **RANSAC** for the RANSAC algorithm.
+-   **LMEDS** for the LMedS algorithm.
+@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
+line in pixels, beyond which the point is considered an outlier and is not used for computing the
+final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
+point localization, image resolution, and the image noise.
+@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
+confidence (probability) that the estimated matrix is correct.
+@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
+for the other points. The array is computed only in the RANSAC and LMedS methods.
+
+This function differs from the one above that it computes camera matrix from focal length and
+principal point:
+
+\f[K =
+\begin{bmatrix}
+f & 0 & x_{pp}  \\
+0 & f & y_{pp}  \\
+0 & 0 & 1
+\end{bmatrix}\f]
+ */
+CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
+                                 double focal = 1.0, Point2d pp = Point2d(0, 0),
+                                 int method = RANSAC, double prob = 0.999,
+                                 double threshold = 1.0, OutputArray mask = noArray() );
+
+/** @brief Decompose an essential matrix to possible rotations and translation.
+
+@param E The input essential matrix.
+@param R1 One possible rotation matrix.
+@param R2 Another possible rotation matrix.
+@param t One possible translation.
+
+This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
+possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
+decomposing E, you can only get the direction of the translation, so the function returns unit t.
+ */
+CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
+
+/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
+corresponding points in two images, using cheirality check. Returns the number of inliers which pass
+the check.
+
+@param E The input essential matrix.
+@param points1 Array of N 2D points from the first image. The point coordinates should be
+floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1 .
+@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
+Note that this function assumes that points1 and points2 are feature points from cameras with the
+same camera matrix.
+@param R Recovered relative rotation.
+@param t Recoverd relative translation.
+@param mask Input/output mask for inliers in points1 and points2.
+:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
+matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
+which pass the cheirality check.
+This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
+pose hypotheses by doing cheirality check. The cheirality check basically means that the
+triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
+
+This function can be used to process output E and mask from findEssentialMat. In this scenario,
+points1 and points2 are the same input for findEssentialMat. :
+@code
+    // Example. Estimation of fundamental matrix using the RANSAC algorithm
+    int point_count = 100;
+    vector<Point2f> points1(point_count);
+    vector<Point2f> points2(point_count);
+
+    // initialize the points here ...
+    for( int i = 0; i < point_count; i++ )
+    {
+        points1[i] = ...;
+        points2[i] = ...;
+    }
+
+    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
+    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
+
+    Mat E, R, t, mask;
+
+    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
+    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
+@endcode
+ */
+CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
+                            InputArray cameraMatrix, OutputArray R, OutputArray t,
+                            InputOutputArray mask = noArray() );
+
+/** @overload
+@param E The input essential matrix.
+@param points1 Array of N 2D points from the first image. The point coordinates should be
+floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1 .
+@param R Recovered relative rotation.
+@param t Recoverd relative translation.
+@param focal Focal length of the camera. Note that this function assumes that points1 and points2
+are feature points from cameras with same focal length and principal point.
+@param pp principal point of the camera.
+@param mask Input/output mask for inliers in points1 and points2.
+:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
+matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
+which pass the cheirality check.
+
+This function differs from the one above that it computes camera matrix from focal length and
+principal point:
+
+\f[K =
+\begin{bmatrix}
+f & 0 & x_{pp}  \\
+0 & f & y_{pp}  \\
+0 & 0 & 1
+\end{bmatrix}\f]
+ */
+CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
+                            OutputArray R, OutputArray t,
+                            double focal = 1.0, Point2d pp = Point2d(0, 0),
+                            InputOutputArray mask = noArray() );
+
+/** @overload
+@param E The input essential matrix.
+@param points1 Array of N 2D points from the first image. The point coordinates should be
+floating-point (single or double precision).
+@param points2 Array of the second image points of the same size and format as points1.
+@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
+Note that this function assumes that points1 and points2 are feature points from cameras with the
+same camera matrix.
+@param R Recovered relative rotation.
+@param t Recoverd relative translation.
+@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
+@param mask Input/output mask for inliers in points1 and points2.
+:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
+matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
+which pass the cheirality check.
+@param triangulatedPoints 3d points which were reconstructed by triangulation.
+ */
+
+CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
+                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
+                            OutputArray triangulatedPoints = noArray());
+
+/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
+
+@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
+vector\<Point2f\> .
+@param whichImage Index of the image (1 or 2) that contains the points .
+@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
+@param lines Output vector of the epipolar lines corresponding to the points in the other image.
+Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
+
+For every point in one of the two images of a stereo pair, the function finds the equation of the
+corresponding epipolar line in the other image.
+
+From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
+image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
+
+\f[l^{(2)}_i = F p^{(1)}_i\f]
+
+And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
+
+\f[l^{(1)}_i = F^T p^{(2)}_i\f]
+
+Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
+ */
+CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
+                                             InputArray F, OutputArray lines );
+
+/** @brief Reconstructs points by triangulation.
+
+@param projMatr1 3x4 projection matrix of the first camera.
+@param projMatr2 3x4 projection matrix of the second camera.
+@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
+be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
+@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
+it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
+@param points4D 4xN array of reconstructed points in homogeneous coordinates.
+
+The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
+observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
+
+@note
+   Keep in mind that all input data should be of float type in order for this function to work.
+
+@sa
+   reprojectImageTo3D
+ */
+CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
+                                     InputArray projPoints1, InputArray projPoints2,
+                                     OutputArray points4D );
+
+/** @brief Refines coordinates of corresponding points.
+
+@param F 3x3 fundamental matrix.
+@param points1 1xN array containing the first set of points.
+@param points2 1xN array containing the second set of points.
+@param newPoints1 The optimized points1.
+@param newPoints2 The optimized points2.
+
+The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
+For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
+computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
+error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
+geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
+\f$newPoints2^T * F * newPoints1 = 0\f$ .
+ */
+CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
+                                  OutputArray newPoints1, OutputArray newPoints2 );
+
+/** @brief Filters off small noise blobs (speckles) in the disparity map
+
+@param img The input 16-bit signed disparity image
+@param newVal The disparity value used to paint-off the speckles
+@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
+affected by the algorithm
+@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
+blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
+disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
+account when specifying this parameter value.
+@param buf The optional temporary buffer to avoid memory allocation within the function.
+ */
+CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
+                                  int maxSpeckleSize, double maxDiff,
+                                  InputOutputArray buf = noArray() );
+
+//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
+CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
+                                        int minDisparity, int numberOfDisparities,
+                                        int SADWindowSize );
+
+//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
+CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
+                                     int minDisparity, int numberOfDisparities,
+                                     int disp12MaxDisp = 1 );
+
+/** @brief Reprojects a disparity image to 3D space.
+
+@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
+floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
+fractional bits.
+@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
+element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
+map.
+@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
+@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
+points where the disparity was not computed). If handleMissingValues=true, then pixels with the
+minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
+to 3D points with a very large Z value (currently set to 10000).
+@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
+depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
+
+The function transforms a single-channel disparity map to a 3-channel image representing a 3D
+surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
+computes:
+
+\f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
+
+The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
+stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
+perspectiveTransform .
+ */
+CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
+                                      OutputArray _3dImage, InputArray Q,
+                                      bool handleMissingValues = false,
+                                      int ddepth = -1 );
+
+/** @brief Calculates the Sampson Distance between two points.
+
+The function sampsonDistance calculates and returns the first order approximation of the geometric error as:
+\f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f]
+The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details.
+@param pt1 first homogeneous 2d point
+@param pt2 second homogeneous 2d point
+@param F fundamental matrix
+*/
+CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
+
+/** @brief Computes an optimal affine transformation between two 3D point sets.
+
+@param src First input 3D point set.
+@param dst Second input 3D point set.
+@param out Output 3D affine transformation matrix \f$3 \times 4\f$ .
+@param inliers Output vector indicating which points are inliers.
+@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
+an inlier.
+@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
+between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
+significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
+
+The function estimates an optimal 3D affine transformation between two 3D point sets using the
+RANSAC algorithm.
+ */
+CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
+                                   OutputArray out, OutputArray inliers,
+                                   double ransacThreshold = 3, double confidence = 0.99);
+
+/** @brief Computes an optimal affine transformation between two 2D point sets.
+
+@param from First input 2D point set.
+@param to Second input 2D point set.
+@param inliers Output vector indicating which points are inliers.
+@param method Robust method used to compute tranformation. The following methods are possible:
+-   cv::RANSAC - RANSAC-based robust method
+-   cv::LMEDS - Least-Median robust method
+RANSAC is the default method.
+@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
+a point as an inlier. Applies only to RANSAC.
+@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
+@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
+between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
+significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
+@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
+Passing 0 will disable refining, so the output matrix will be output of robust method.
+
+@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
+could not be estimated.
+
+The function estimates an optimal 2D affine transformation between two 2D point sets using the
+selected robust algorithm.
+
+The computed transformation is then refined further (using only inliers) with the
+Levenberg-Marquardt method to reduce the re-projection error even more.
+
+@note
+The RANSAC method can handle practically any ratio of outliers but need a threshold to
+distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
+correctly only when there are more than 50% of inliers.
+
+@sa estimateAffinePartial2D, getAffineTransform
+*/
+CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
+                                  int method = RANSAC, double ransacReprojThreshold = 3,
+                                  size_t maxIters = 2000, double confidence = 0.99,
+                                  size_t refineIters = 10);
+
+/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
+two 2D point sets.
+
+@param from First input 2D point set.
+@param to Second input 2D point set.
+@param inliers Output vector indicating which points are inliers.
+@param method Robust method used to compute tranformation. The following methods are possible:
+-   cv::RANSAC - RANSAC-based robust method
+-   cv::LMEDS - Least-Median robust method
+RANSAC is the default method.
+@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
+a point as an inlier. Applies only to RANSAC.
+@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
+@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
+between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
+significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
+@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
+Passing 0 will disable refining, so the output matrix will be output of robust method.
+
+@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
+empty matrix if transformation could not be estimated.
+
+The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
+combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
+estimation.
+
+The computed transformation is then refined further (using only inliers) with the
+Levenberg-Marquardt method to reduce the re-projection error even more.
+
+Estimated transformation matrix is:
+\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\
+                \sin(\theta)s & \cos(\theta)s & ty
+\end{bmatrix} \f]
+Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are
+translations in \f$ x, y \f$ axes respectively.
+
+@note
+The RANSAC method can handle practically any ratio of outliers but need a threshold to
+distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
+correctly only when there are more than 50% of inliers.
+
+@sa estimateAffine2D, getAffineTransform
+*/
+CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
+                                  int method = RANSAC, double ransacReprojThreshold = 3,
+                                  size_t maxIters = 2000, double confidence = 0.99,
+                                  size_t refineIters = 10);
+
+/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
+
+@param H The input homography matrix between two images.
+@param K The input intrinsic camera calibration matrix.
+@param rotations Array of rotation matrices.
+@param translations Array of translation matrices.
+@param normals Array of plane normal matrices.
+
+This function extracts relative camera motion between two views observing a planar object from the
+homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
+may return up to four mathematical solution sets. At least two of the solutions may further be
+invalidated if point correspondences are available by applying positive depth constraint (all points
+must be in front of the camera). The decomposition method is described in detail in @cite Malis .
+ */
+CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
+                                        InputArray K,
+                                        OutputArrayOfArrays rotations,
+                                        OutputArrayOfArrays translations,
+                                        OutputArrayOfArrays normals);
+
+/** @brief The base class for stereo correspondence algorithms.
+ */
+class CV_EXPORTS_W StereoMatcher : public Algorithm
+{
+public:
+    enum { DISP_SHIFT = 4,
+           DISP_SCALE = (1 << DISP_SHIFT)
+         };
+
+    /** @brief Computes disparity map for the specified stereo pair
+
+    @param left Left 8-bit single-channel image.
+    @param right Right image of the same size and the same type as the left one.
+    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
+    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
+    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
+     */
+    CV_WRAP virtual void compute( InputArray left, InputArray right,
+                                  OutputArray disparity ) = 0;
+
+    CV_WRAP virtual int getMinDisparity() const = 0;
+    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
+
+    CV_WRAP virtual int getNumDisparities() const = 0;
+    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
+
+    CV_WRAP virtual int getBlockSize() const = 0;
+    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
+
+    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
+    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
+
+    CV_WRAP virtual int getSpeckleRange() const = 0;
+    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
+
+    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
+    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
+};
+
+
+/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
+contributed to OpenCV by K. Konolige.
+ */
+class CV_EXPORTS_W StereoBM : public StereoMatcher
+{
+public:
+    enum { PREFILTER_NORMALIZED_RESPONSE = 0,
+           PREFILTER_XSOBEL              = 1
+         };
+
+    CV_WRAP virtual int getPreFilterType() const = 0;
+    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
+
+    CV_WRAP virtual int getPreFilterSize() const = 0;
+    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
+
+    CV_WRAP virtual int getPreFilterCap() const = 0;
+    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
+
+    CV_WRAP virtual int getTextureThreshold() const = 0;
+    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
+
+    CV_WRAP virtual int getUniquenessRatio() const = 0;
+    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
+
+    CV_WRAP virtual int getSmallerBlockSize() const = 0;
+    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
+
+    CV_WRAP virtual Rect getROI1() const = 0;
+    CV_WRAP virtual void setROI1(Rect roi1) = 0;
+
+    CV_WRAP virtual Rect getROI2() const = 0;
+    CV_WRAP virtual void setROI2(Rect roi2) = 0;
+
+    /** @brief Creates StereoBM object
+
+    @param numDisparities the disparity search range. For each pixel algorithm will find the best
+    disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
+    shifted by changing the minimum disparity.
+    @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
+    (as the block is centered at the current pixel). Larger block size implies smoother, though less
+    accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
+    chance for algorithm to find a wrong correspondence.
+
+    The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
+    a specific stereo pair.
+     */
+    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
+};
+
+/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
+one as follows:
+
+-   By default, the algorithm is single-pass, which means that you consider only 5 directions
+instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
+algorithm but beware that it may consume a lot of memory.
+-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
+blocks to single pixels.
+-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
+sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
+-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
+example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
+check, quadratic interpolation and speckle filtering).
+
+@note
+   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
+        at opencv_source_code/samples/python/stereo_match.py
+ */
+class CV_EXPORTS_W StereoSGBM : public StereoMatcher
+{
+public:
+    enum
+    {
+        MODE_SGBM = 0,
+        MODE_HH   = 1,
+        MODE_SGBM_3WAY = 2,
+        MODE_HH4  = 3
+    };
+
+    CV_WRAP virtual int getPreFilterCap() const = 0;
+    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
+
+    CV_WRAP virtual int getUniquenessRatio() const = 0;
+    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
+
+    CV_WRAP virtual int getP1() const = 0;
+    CV_WRAP virtual void setP1(int P1) = 0;
+
+    CV_WRAP virtual int getP2() const = 0;
+    CV_WRAP virtual void setP2(int P2) = 0;
+
+    CV_WRAP virtual int getMode() const = 0;
+    CV_WRAP virtual void setMode(int mode) = 0;
+
+    /** @brief Creates StereoSGBM object
+
+    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
+    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
+    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
+    zero. In the current implementation, this parameter must be divisible by 16.
+    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
+    somewhere in the 3..11 range.
+    @param P1 The first parameter controlling the disparity smoothness. See below.
+    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
+    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
+    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
+    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
+    P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
+    32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
+    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
+    disparity check. Set it to a non-positive value to disable the check.
+    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
+    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
+    The result values are passed to the Birchfield-Tomasi pixel cost function.
+    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
+    value should "win" the second best value to consider the found match correct. Normally, a value
+    within the 5-15 range is good enough.
+    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
+    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
+    50-200 range.
+    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
+    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
+    Normally, 1 or 2 is good enough.
+    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
+    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
+    huge for HD-size pictures. By default, it is set to false .
+
+    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
+    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
+    to a custom value.
+     */
+    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
+                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
+                                          int preFilterCap = 0, int uniquenessRatio = 0,
+                                          int speckleWindowSize = 0, int speckleRange = 0,
+                                          int mode = StereoSGBM::MODE_SGBM);
+};
+
+//! @} calib3d
+
+/** @brief The methods in this namespace use a so-called fisheye camera model.
+  @ingroup calib3d_fisheye
+*/
+namespace fisheye
+{
+//! @addtogroup calib3d_fisheye
+//! @{
+
+    enum{
+        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
+        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
+        CALIB_CHECK_COND            = 1 << 2,
+        CALIB_FIX_SKEW              = 1 << 3,
+        CALIB_FIX_K1                = 1 << 4,
+        CALIB_FIX_K2                = 1 << 5,
+        CALIB_FIX_K3                = 1 << 6,
+        CALIB_FIX_K4                = 1 << 7,
+        CALIB_FIX_INTRINSIC         = 1 << 8,
+        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9
+    };
+
+    /** @brief Projects points using fisheye model
+
+    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
+    the number of points in the view.
+    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
+    vector\<Point2f\>.
+    @param affine
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param alpha The skew coefficient.
+    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
+    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
+    rotation vector, translation vector, and the skew. In the old interface different components of
+    the jacobian are returned via different output parameters.
+
+    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
+    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
+    image points coordinates (as functions of all the input parameters) with respect to the particular
+    parameters, intrinsic and/or extrinsic.
+     */
+    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
+        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
+
+    /** @overload */
+    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
+        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
+
+    /** @brief Distorts 2D points using fisheye model.
+
+    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
+    the number of points in the view.
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param alpha The skew coefficient.
+    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
+
+    Note that the function assumes the camera matrix of the undistorted points to be indentity.
+    This means if you want to transform back points undistorted with undistortPoints() you have to
+    multiply them with \f$P^{-1}\f$.
+     */
+    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
+
+    /** @brief Undistorts 2D points using fisheye model
+
+    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
+    number of points in the view.
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
+    1-channel or 1x1 3-channel
+    @param P New camera matrix (3x3) or new projection matrix (3x4)
+    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
+     */
+    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
+        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());
+
+    /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
+    distortion is used, if R or P is empty identity matrixes are used.
+
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
+    1-channel or 1x1 3-channel
+    @param P New camera matrix (3x3) or new projection matrix (3x4)
+    @param size Undistorted image size.
+    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
+    for details.
+    @param map1 The first output map.
+    @param map2 The second output map.
+     */
+    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
+        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
+
+    /** @brief Transforms an image to compensate for fisheye lens distortion.
+
+    @param distorted image with fisheye lens distortion.
+    @param undistorted Output image with compensated fisheye lens distortion.
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
+    may additionally scale and shift the result by using a different matrix.
+    @param new_size
+
+    The function transforms an image to compensate radial and tangential lens distortion.
+
+    The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
+    (with bilinear interpolation). See the former function for details of the transformation being
+    performed.
+
+    See below the results of undistortImage.
+       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
+            k_4, k_5, k_6) of distortion were optimized under calibration)
+        -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
+            k_3, k_4) of fisheye distortion were optimized under calibration)
+        -   c\) original image was captured with fisheye lens
+
+    Pictures a) and b) almost the same. But if we consider points of image located far from the center
+    of image, we can notice that on image a) these points are distorted.
+
+    ![image](pics/fisheye_undistorted.jpg)
+     */
+    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
+        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
+
+    /** @brief Estimates new camera matrix for undistortion or rectification.
+
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param image_size
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
+    1-channel or 1x1 3-channel
+    @param P New camera matrix (3x3) or new projection matrix (3x4)
+    @param balance Sets the new focal length in range between the min focal length and the max focal
+    length. Balance is in range of [0, 1].
+    @param new_size
+    @param fov_scale Divisor for new focal length.
+     */
+    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
+        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
+
+    /** @brief Performs camera calibaration
+
+    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
+    coordinate space.
+    @param imagePoints vector of vectors of the projections of calibration pattern points.
+    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
+    objectPoints[i].size() for each i.
+    @param image_size Size of the image used only to initialize the intrinsic camera matrix.
+    @param K Output 3x3 floating-point camera matrix
+    \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
+    fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
+    initialized before calling the function.
+    @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
+    @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
+    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
+    the next output parameter description) brings the calibration pattern from the model coordinate
+    space (in which object points are specified) to the world coordinate space, that is, a real
+    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
+    @param tvecs Output vector of translation vectors estimated for each pattern view.
+    @param flags Different flags that may be zero or a combination of the following values:
+    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
+    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
+    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
+    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
+    of intrinsic optimization.
+    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
+    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
+    -   **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
+    are set to zeros and stay zero.
+    -   **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
+optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
+    @param criteria Termination criteria for the iterative optimization algorithm.
+     */
+    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
+        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
+            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
+
+    /** @brief Stereo rectification for fisheye camera model
+
+    @param K1 First camera matrix.
+    @param D1 First camera distortion parameters.
+    @param K2 Second camera matrix.
+    @param D2 Second camera distortion parameters.
+    @param imageSize Size of the image used for stereo calibration.
+    @param R Rotation matrix between the coordinate systems of the first and the second
+    cameras.
+    @param tvec Translation vector between coordinate systems of the cameras.
+    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
+    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
+    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
+    camera.
+    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
+    camera.
+    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
+    @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
+    the function makes the principal points of each camera have the same pixel coordinates in the
+    rectified views. And if the flag is not set, the function may still shift the images in the
+    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
+    useful image area.
+    @param newImageSize New image resolution after rectification. The same size should be passed to
+    initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
+    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
+    preserve details in the original image, especially when there is a big radial distortion.
+    @param balance Sets the new focal length in range between the min focal length and the max focal
+    length. Balance is in range of [0, 1].
+    @param fov_scale Divisor for new focal length.
+     */
+    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
+        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
+        double balance = 0.0, double fov_scale = 1.0);
+
+    /** @brief Performs stereo calibration
+
+    @param objectPoints Vector of vectors of the calibration pattern points.
+    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
+    observed by the first camera.
+    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
+    observed by the second camera.
+    @param K1 Input/output first camera matrix:
+    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
+    any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
+    some or all of the matrix components must be initialized.
+    @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
+    @param K2 Input/output second camera matrix. The parameter is similar to K1 .
+    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
+    similar to D1 .
+    @param imageSize Size of the image used only to initialize intrinsic camera matrix.
+    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
+    @param T Output translation vector between the coordinate systems of the cameras.
+    @param flags Different flags that may be zero or a combination of the following values:
+    -   **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
+    are estimated.
+    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
+    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
+    center (imageSize is used), and focal distances are computed in a least-squares fashion.
+    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
+    of intrinsic optimization.
+    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
+    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
+    -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
+    zero.
+    @param criteria Termination criteria for the iterative optimization algorithm.
+     */
+    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
+                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
+                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
+                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
+
+//! @} calib3d_fisheye
+}
+
+} // cv
+
+#ifndef DISABLE_OPENCV_24_COMPATIBILITY
+#include "opencv2/calib3d/calib3d_c.h"
+#endif
+
+#endif

+ 48 - 0
cv/include/opencv2/calib3d/calib3d.hpp

@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifdef __OPENCV_BUILD
+#error this is a compatibility header which should not be used inside the OpenCV library
+#endif
+
+#include "opencv2/calib3d.hpp"

+ 427 - 0
cv/include/opencv2/calib3d/calib3d_c.h

@@ -0,0 +1,427 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CALIB3D_C_H
+#define OPENCV_CALIB3D_C_H
+
+#include "opencv2/core/core_c.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** @addtogroup calib3d_c
+  @{
+  */
+
+/****************************************************************************************\
+*                      Camera Calibration, Pose Estimation and Stereo                    *
+\****************************************************************************************/
+
+typedef struct CvPOSITObject CvPOSITObject;
+
+/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
+CVAPI(CvPOSITObject*)  cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
+
+
+/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
+   an object given its model and projection in a weak-perspective case */
+CVAPI(void)  cvPOSIT(  CvPOSITObject* posit_object, CvPoint2D32f* image_points,
+                       double focal_length, CvTermCriteria criteria,
+                       float* rotation_matrix, float* translation_vector);
+
+/* Releases CvPOSITObject structure */
+CVAPI(void)  cvReleasePOSITObject( CvPOSITObject**  posit_object );
+
+/* updates the number of RANSAC iterations */
+CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
+                                   int model_points, int max_iters );
+
+CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
+
+/* Calculates fundamental matrix given a set of corresponding points */
+#define CV_FM_7POINT 1
+#define CV_FM_8POINT 2
+
+#define CV_LMEDS 4
+#define CV_RANSAC 8
+
+#define CV_FM_LMEDS_ONLY  CV_LMEDS
+#define CV_FM_RANSAC_ONLY CV_RANSAC
+#define CV_FM_LMEDS CV_LMEDS
+#define CV_FM_RANSAC CV_RANSAC
+
+enum
+{
+    CV_ITERATIVE = 0,
+    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
+    CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
+    CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"
+};
+
+CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
+                                 CvMat* fundamental_matrix,
+                                 int method CV_DEFAULT(CV_FM_RANSAC),
+                                 double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
+                                 CvMat* status CV_DEFAULT(NULL) );
+
+/* For each input point on one of images
+   computes parameters of the corresponding
+   epipolar line on the other image */
+CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
+                                         int which_image,
+                                         const CvMat* fundamental_matrix,
+                                         CvMat* correspondent_lines );
+
+/* Triangulation functions */
+
+CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
+                                CvMat* projPoints1, CvMat* projPoints2,
+                                CvMat* points4D);
+
+CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
+                             CvMat* new_points1, CvMat* new_points2);
+
+
+/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
+   alpha=0 - only valid pixels will be retained in the undistorted image
+   alpha=1 - all the source image pixels will be retained in the undistorted image
+*/
+CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
+                                         const CvMat* dist_coeffs,
+                                         CvSize image_size, double alpha,
+                                         CvMat* new_camera_matrix,
+                                         CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
+                                         CvRect* valid_pixel_ROI CV_DEFAULT(0),
+                                         int center_principal_point CV_DEFAULT(0));
+
+/* Converts rotation vector to rotation matrix or vice versa */
+CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
+                         CvMat* jacobian CV_DEFAULT(0) );
+
+/* Finds perspective transformation between the object plane and image (view) plane */
+CVAPI(int) cvFindHomography( const CvMat* src_points,
+                             const CvMat* dst_points,
+                             CvMat* homography,
+                             int method CV_DEFAULT(0),
+                             double ransacReprojThreshold CV_DEFAULT(3),
+                             CvMat* mask CV_DEFAULT(0),
+                             int maxIters CV_DEFAULT(2000),
+                             double confidence CV_DEFAULT(0.995));
+
+/* Computes RQ decomposition for 3x3 matrices */
+CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
+                           CvMat *matrixQx CV_DEFAULT(NULL),
+                           CvMat *matrixQy CV_DEFAULT(NULL),
+                           CvMat *matrixQz CV_DEFAULT(NULL),
+                           CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
+
+/* Computes projection matrix decomposition */
+CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
+                                         CvMat *rotMatr, CvMat *posVect,
+                                         CvMat *rotMatrX CV_DEFAULT(NULL),
+                                         CvMat *rotMatrY CV_DEFAULT(NULL),
+                                         CvMat *rotMatrZ CV_DEFAULT(NULL),
+                                         CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
+
+/* Computes d(AB)/dA and d(AB)/dB */
+CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
+
+/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
+   t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
+CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
+                         const CvMat* _rvec2, const CvMat* _tvec2,
+                         CvMat* _rvec3, CvMat* _tvec3,
+                         CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
+                         CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
+                         CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
+                         CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
+
+/* Projects object points to the view plane using
+   the specified extrinsic and intrinsic camera parameters */
+CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
+                              const CvMat* translation_vector, const CvMat* camera_matrix,
+                              const CvMat* distortion_coeffs, CvMat* image_points,
+                              CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
+                              CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
+                              CvMat* dpddist CV_DEFAULT(NULL),
+                              double aspect_ratio CV_DEFAULT(0));
+
+/* Finds extrinsic camera parameters from
+   a few known corresponding point pairs and intrinsic parameters */
+CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
+                                          const CvMat* image_points,
+                                          const CvMat* camera_matrix,
+                                          const CvMat* distortion_coeffs,
+                                          CvMat* rotation_vector,
+                                          CvMat* translation_vector,
+                                          int use_extrinsic_guess CV_DEFAULT(0) );
+
+/* Computes initial estimate of the intrinsic camera parameters
+   in case of planar calibration target (e.g. chessboard) */
+CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
+                                     const CvMat* image_points,
+                                     const CvMat* npoints, CvSize image_size,
+                                     CvMat* camera_matrix,
+                                     double aspect_ratio CV_DEFAULT(1.) );
+
+#define CV_CALIB_CB_ADAPTIVE_THRESH  1
+#define CV_CALIB_CB_NORMALIZE_IMAGE  2
+#define CV_CALIB_CB_FILTER_QUADS     4
+#define CV_CALIB_CB_FAST_CHECK       8
+
+// Performs a fast check if a chessboard is in the input image. This is a workaround to
+// a problem of cvFindChessboardCorners being slow on images with no chessboard
+// - src: input image
+// - size: chessboard size
+// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
+// 0 if there is no chessboard, -1 in case of error
+CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
+
+    /* Detects corners on a chessboard calibration pattern */
+CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
+                                    CvPoint2D32f* corners,
+                                    int* corner_count CV_DEFAULT(NULL),
+                                    int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
+
+/* Draws individual chessboard corners or the whole chessboard detected */
+CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
+                                     CvPoint2D32f* corners,
+                                     int count, int pattern_was_found );
+
+#define CV_CALIB_USE_INTRINSIC_GUESS  1
+#define CV_CALIB_FIX_ASPECT_RATIO     2
+#define CV_CALIB_FIX_PRINCIPAL_POINT  4
+#define CV_CALIB_ZERO_TANGENT_DIST    8
+#define CV_CALIB_FIX_FOCAL_LENGTH 16
+#define CV_CALIB_FIX_K1  32
+#define CV_CALIB_FIX_K2  64
+#define CV_CALIB_FIX_K3  128
+#define CV_CALIB_FIX_K4  2048
+#define CV_CALIB_FIX_K5  4096
+#define CV_CALIB_FIX_K6  8192
+#define CV_CALIB_RATIONAL_MODEL 16384
+#define CV_CALIB_THIN_PRISM_MODEL 32768
+#define CV_CALIB_FIX_S1_S2_S3_S4  65536
+#define CV_CALIB_TILTED_MODEL  262144
+#define CV_CALIB_FIX_TAUX_TAUY  524288
+#define CV_CALIB_FIX_TANGENT_DIST 2097152
+
+#define CV_CALIB_NINTRINSIC 18
+
+/* Finds intrinsic and extrinsic camera parameters
+   from a few views of known calibration pattern */
+CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
+                                const CvMat* image_points,
+                                const CvMat* point_counts,
+                                CvSize image_size,
+                                CvMat* camera_matrix,
+                                CvMat* distortion_coeffs,
+                                CvMat* rotation_vectors CV_DEFAULT(NULL),
+                                CvMat* translation_vectors CV_DEFAULT(NULL),
+                                int flags CV_DEFAULT(0),
+                                CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
+                                    CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
+
+/* Computes various useful characteristics of the camera from the data computed by
+   cvCalibrateCamera2 */
+CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
+                                CvSize image_size,
+                                double aperture_width CV_DEFAULT(0),
+                                double aperture_height CV_DEFAULT(0),
+                                double *fovx CV_DEFAULT(NULL),
+                                double *fovy CV_DEFAULT(NULL),
+                                double *focal_length CV_DEFAULT(NULL),
+                                CvPoint2D64f *principal_point CV_DEFAULT(NULL),
+                                double *pixel_aspect_ratio CV_DEFAULT(NULL));
+
+#define CV_CALIB_FIX_INTRINSIC  256
+#define CV_CALIB_SAME_FOCAL_LENGTH 512
+
+/* Computes the transformation from one camera coordinate system to another one
+   from a few correspondent views of the same calibration target. Optionally, calibrates
+   both cameras */
+CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
+                               const CvMat* image_points2, const CvMat* npoints,
+                               CvMat* camera_matrix1, CvMat* dist_coeffs1,
+                               CvMat* camera_matrix2, CvMat* dist_coeffs2,
+                               CvSize image_size, CvMat* R, CvMat* T,
+                               CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
+                               int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC),
+                               CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
+                                   CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) );
+
+#define CV_CALIB_ZERO_DISPARITY 1024
+
+/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
+   views parallel (=> to make all the epipolar lines horizontal or vertical) */
+CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
+                             const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
+                             CvSize image_size, const CvMat* R, const CvMat* T,
+                             CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
+                             CvMat* Q CV_DEFAULT(0),
+                             int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
+                             double alpha CV_DEFAULT(-1),
+                             CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
+                             CvRect* valid_pix_ROI1 CV_DEFAULT(0),
+                             CvRect* valid_pix_ROI2 CV_DEFAULT(0));
+
+/* Computes rectification transformations for uncalibrated pair of images using a set
+   of point correspondences */
+CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
+                                        const CvMat* F, CvSize img_size,
+                                        CvMat* H1, CvMat* H2,
+                                        double threshold CV_DEFAULT(5));
+
+
+
+/* stereo correspondence parameters and functions */
+
+#define CV_STEREO_BM_NORMALIZED_RESPONSE  0
+#define CV_STEREO_BM_XSOBEL               1
+
+/* Block matching algorithm structure */
+typedef struct CvStereoBMState
+{
+    // pre-filtering (normalization of input images)
+    int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
+    int preFilterSize; // averaging window size: ~5x5..21x21
+    int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
+
+    // correspondence using Sum of Absolute Difference (SAD)
+    int SADWindowSize; // ~5x5..21x21
+    int minDisparity;  // minimum disparity (can be negative)
+    int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
+
+    // post-filtering
+    int textureThreshold;  // the disparity is only computed for pixels
+                           // with textured enough neighborhood
+    int uniquenessRatio;   // accept the computed disparity d* only if
+                           // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
+                           // for any d != d*+/-1 within the search range.
+    int speckleWindowSize; // disparity variation window
+    int speckleRange; // acceptable range of variation in window
+
+    int trySmallerWindows; // if 1, the results may be more accurate,
+                           // at the expense of slower processing
+    CvRect roi1, roi2;
+    int disp12MaxDiff;
+
+    // temporary buffers
+    CvMat* preFilteredImg0;
+    CvMat* preFilteredImg1;
+    CvMat* slidingSumBuf;
+    CvMat* cost;
+    CvMat* disp;
+} CvStereoBMState;
+
+#define CV_STEREO_BM_BASIC 0
+#define CV_STEREO_BM_FISH_EYE 1
+#define CV_STEREO_BM_NARROW 2
+
+CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
+                                              int numberOfDisparities CV_DEFAULT(0));
+
+CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
+
+CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
+                                          CvArr* disparity, CvStereoBMState* state );
+
+CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
+                                      int numberOfDisparities, int SADWindowSize );
+
+CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
+                                 int minDisparity, int numberOfDisparities,
+                                 int disp12MaxDiff CV_DEFAULT(1) );
+
+/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
+CVAPI(void)  cvReprojectImageTo3D( const CvArr* disparityImage,
+                                   CvArr* _3dImage, const CvMat* Q,
+                                   int handleMissingValues CV_DEFAULT(0) );
+
+/** @} calib3d_c */
+
+#ifdef __cplusplus
+} // extern "C"
+
+//////////////////////////////////////////////////////////////////////////////////////////
+class CV_EXPORTS CvLevMarq
+{
+public:
+    CvLevMarq();
+    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
+              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
+              bool completeSymmFlag=false );
+    ~CvLevMarq();
+    void init( int nparams, int nerrs, CvTermCriteria criteria=
+              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
+              bool completeSymmFlag=false );
+    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
+    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
+
+    void clear();
+    void step();
+    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
+
+    cv::Ptr<CvMat> mask;
+    cv::Ptr<CvMat> prevParam;
+    cv::Ptr<CvMat> param;
+    cv::Ptr<CvMat> J;
+    cv::Ptr<CvMat> err;
+    cv::Ptr<CvMat> JtJ;
+    cv::Ptr<CvMat> JtJN;
+    cv::Ptr<CvMat> JtErr;
+    cv::Ptr<CvMat> JtJV;
+    cv::Ptr<CvMat> JtJW;
+    double prevErrNorm, errNorm;
+    int lambdaLg10;
+    CvTermCriteria criteria;
+    int state;
+    int iters;
+    bool completeSymmFlag;
+    int solveMethod;
+};
+
+#endif
+
+#endif /* OPENCV_CALIB3D_C_H */

+ 157 - 0
cv/include/opencv2/ccalib.hpp

@@ -0,0 +1,157 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+ //
+ //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ //
+ //  By downloading, copying, installing or using the software you agree to this license.
+ //  If you do not agree to this license, do not download, install,
+ //  copy or use the software.
+ //
+ //
+ //                           License Agreement
+ //                For Open Source Computer Vision Library
+ //
+ // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
+ // Third party copyrights are property of their respective owners.
+ //
+ // Redistribution and use in source and binary forms, with or without modification,
+ // are permitted provided that the following conditions are met:
+ //
+ //   * Redistribution's of source code must retain the above copyright notice,
+ //     this list of conditions and the following disclaimer.
+ //
+ //   * Redistribution's in binary form must reproduce the above copyright notice,
+ //     this list of conditions and the following disclaimer in the documentation
+ //     and/or other materials provided with the distribution.
+ //
+ //   * The name of the copyright holders may not be used to endorse or promote products
+ //     derived from this software without specific prior written permission.
+ //
+ // This software is provided by the copyright holders and contributors "as is" and
+ // any express or implied warranties, including, but not limited to, the implied
+ // warranties of merchantability and fitness for a particular purpose are disclaimed.
+ // In no event shall the Intel Corporation or contributors be liable for any direct,
+ // indirect, incidental, special, exemplary, or consequential damages
+ // (including, but not limited to, procurement of substitute goods or services;
+ // loss of use, data, or profits; or business interruption) however caused
+ // and on any theory of liability, whether in contract, strict liability,
+ // or tort (including negligence or otherwise) arising in any way out of
+ // the use of this software, even if advised of the possibility of such damage.
+ //
+ //M*/
+
+#ifndef __OPENCV_CCALIB_HPP__
+#define __OPENCV_CCALIB_HPP__
+
+#include <opencv2/core.hpp>
+#include <opencv2/features2d.hpp>
+#include <opencv2/imgproc.hpp>
+#include <opencv2/calib3d.hpp>
+
+#include <vector>
+
+/** @defgroup ccalib Custom Calibration Pattern for 3D reconstruction
+*/
+
+namespace cv{ namespace ccalib{
+
+//! @addtogroup ccalib
+//! @{
+
+class CV_EXPORTS CustomPattern : public Algorithm
+{
+public:
+	CustomPattern();
+	virtual ~CustomPattern();
+
+	bool create(InputArray pattern, const Size2f boardSize, OutputArray output = noArray());
+
+	bool findPattern(InputArray image, OutputArray matched_features, OutputArray pattern_points, const double ratio = 0.7,
+					 const double proj_error = 8.0, const bool refine_position = false, OutputArray out = noArray(),
+					 OutputArray H = noArray(), OutputArray pattern_corners = noArray());
+
+	bool isInitialized();
+
+	void getPatternPoints(std::vector<KeyPoint>& original_points);
+    /**<
+		Returns a vector<Point> of the original points.
+	*/
+	double getPixelSize();
+    /**<
+		Get the pixel size of the pattern
+	*/
+
+	bool setFeatureDetector(Ptr<FeatureDetector> featureDetector);
+	bool setDescriptorExtractor(Ptr<DescriptorExtractor> extractor);
+	bool setDescriptorMatcher(Ptr<DescriptorMatcher> matcher);
+
+	Ptr<FeatureDetector> getFeatureDetector();
+	Ptr<DescriptorExtractor> getDescriptorExtractor();
+	Ptr<DescriptorMatcher> getDescriptorMatcher();
+
+	double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
+				Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
+				OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
+				TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
+    /**<
+		Calls the calirateCamera function with the same inputs.
+	*/
+
+	bool findRt(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs,
+                OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE);
+	bool findRt(InputArray image, InputArray cameraMatrix, InputArray distCoeffs,
+                OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE);
+    /**<
+		Uses solvePnP to find the rotation and translation of the pattern
+		with respect to the camera frame.
+	*/
+
+	bool findRtRANSAC(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs,
+				OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int iterationsCount = 100,
+				float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE);
+	bool findRtRANSAC(InputArray image, InputArray cameraMatrix, InputArray distCoeffs,
+				OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int iterationsCount = 100,
+				float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE);
+        /**<
+		Uses solvePnPRansac()
+	*/
+
+	void drawOrientation(InputOutputArray image, InputArray tvec, InputArray rvec, InputArray cameraMatrix,
+						 InputArray distCoeffs, double axis_length = 3, int axis_width = 2);
+    /**<
+		pattern_corners -> projected over the image position of the edges of the pattern.
+	*/
+
+private:
+
+	Mat img_roi;
+	std::vector<Point2f> obj_corners;
+	double pxSize;
+
+	bool initialized;
+
+	Ptr<FeatureDetector> detector;
+	Ptr<DescriptorExtractor> descriptorExtractor;
+	Ptr<DescriptorMatcher> descriptorMatcher;
+
+	std::vector<KeyPoint> keypoints;
+	std::vector<Point3f> points3d;
+	Mat descriptor;
+
+	bool init(Mat& image, const float pixel_size, OutputArray output = noArray());
+	bool findPatternPass(const Mat& image, std::vector<Point2f>& matched_features, std::vector<Point3f>& pattern_points,
+						 Mat& H, std::vector<Point2f>& scene_corners, const double pratio, const double proj_error,
+						 const bool refine_position = false, const Mat& mask = Mat(), OutputArray output = noArray());
+	void scaleFoundPoints(const double squareSize, const std::vector<KeyPoint>& corners, std::vector<Point3f>& pts3d);
+	void check_matches(std::vector<Point2f>& matched, const std::vector<Point2f>& pattern, std::vector<DMatch>& good, std::vector<Point3f>& pattern_3d, const Mat& H);
+
+	void keypoints2points(const std::vector<KeyPoint>& in, std::vector<Point2f>& out);
+	void updateKeypointsPos(std::vector<KeyPoint>& in, const std::vector<Point2f>& new_pos);
+	void refinePointsPos(const Mat& img, std::vector<Point2f>& p);
+	void refineKeypointsPos(const Mat& img, std::vector<KeyPoint>& kp);
+};
+
+//! @}
+
+}} // namespace ccalib, cv
+
+#endif

+ 212 - 0
cv/include/opencv2/ccalib/multicalib.hpp

@@ -0,0 +1,212 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University,
+// all rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_MULTICAMERACALIBRATION_HPP__
+#define __OPENCV_MULTICAMERACALIBRATION_HPP__
+
+#include "opencv2/ccalib/randpattern.hpp"
+#include "opencv2/ccalib/omnidir.hpp"
+#include <string>
+#include <iostream>
+
+namespace cv { namespace multicalib {
+
+//! @addtogroup ccalib
+//! @{
+
+#define HEAD -1
+#define INVALID -2
+
+/** @brief Class for multiple camera calibration that supports pinhole camera and omnidirection camera.
+For omnidirectional camera model, please refer to omnidir.hpp in ccalib module.
+It first calibrate each camera individually, then a bundle adjustment like optimization is applied to
+refine extrinsic parameters. So far, it only support "random" pattern for calibration,
+see randomPattern.hpp in ccalib module for details.
+Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp
+means that they are the same pattern that are photographed. cameraIdx should start from 0.
+
+For more details, please refer to paper
+    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
+    Calibration Toolbox Using A Feature Descriptor-Based Calibration
+    Pattern", in IROS 2013.
+*/
+
+class CV_EXPORTS MultiCameraCalibration
+{
+public:
+    enum {
+        PINHOLE,
+        OMNIDIRECTIONAL
+        //FISHEYE
+    };
+
+    // an edge connects a camera and pattern
+    struct edge
+    {
+        int cameraVertex;   // vertex index for camera in this edge
+        int photoVertex;    // vertex index for pattern in this edge
+        int photoIndex;     // photo index among photos for this camera
+        Mat transform;      // transform from pattern to camera
+
+        edge(int cv, int pv, int pi, Mat trans)
+        {
+            cameraVertex = cv;
+            photoVertex = pv;
+            photoIndex = pi;
+            transform = trans;
+        }
+    };
+
+    struct vertex
+    {
+        Mat pose;   // relative pose to the first camera. For camera vertex, it is the
+                    // transform from the first camera to this camera, for pattern vertex,
+                    // it is the transform from pattern to the first camera
+        int timestamp;  // timestamp of photo, only available for photo vertex
+
+        vertex(Mat po, int ts)
+        {
+            pose = po;
+            timestamp = ts;
+        }
+
+        vertex()
+        {
+            pose = Mat::eye(4, 4, CV_32F);
+            timestamp = -1;
+        }
+    };
+    /* @brief Constructor
+    @param cameraType camera type, PINHOLE or OMNIDIRECTIONAL
+    @param nCameras number of cameras
+    @fileName filename of string list that are used for calibration, the file is generated
+    by imagelist_creator from OpenCv samples. The first one in the list is the pattern filename.
+    @patternWidth the physical width of pattern, in user defined unit.
+    @patternHeight the physical height of pattern, in user defined unit.
+    @showExtration whether show extracted features and feature filtering.
+    @nMiniMatches minimal number of matched features for a frame.
+	@flags Calibration flags
+    @criteria optimization stopping criteria.
+    @detector feature detector that detect feature points in pattern and images.
+    @descriptor feature descriptor.
+    @matcher feature matcher.
+    */
+    MultiCameraCalibration(int cameraType, int nCameras, const std::string& fileName, float patternWidth,
+        float patternHeight, int verbose = 0, int showExtration = 0, int nMiniMatches = 20, int flags = 0,
+        TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 200, 1e-7),
+        Ptr<FeatureDetector> detector = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 0, 3, 0.006f),
+        Ptr<DescriptorExtractor> descriptor = AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0, 3, 0.006f),
+        Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-L1"));
+
+    /* @brief load images
+    */
+    void loadImages();
+
+    /* @brief initialize multiple camera calibration. It calibrates each camera individually.
+    */
+    void initialize();
+
+    /* @brief optimization extrinsic parameters
+    */
+    double optimizeExtrinsics();
+
+    /* @brief run multi-camera camera calibration, it runs loadImage(), initialize() and optimizeExtrinsics()
+    */
+    double run();
+
+    /* @brief write camera parameters to file.
+    */
+    void writeParameters(const std::string& filename);
+
+private:
+    std::vector<std::string> readStringList();
+
+    int getPhotoVertex(int timestamp);
+
+    void graphTraverse(const Mat& G, int begin, std::vector<int>& order, std::vector<int>& pre);
+
+    void findRowNonZero(const Mat& row, Mat& idx);
+
+    void computeJacobianExtrinsic(const Mat& extrinsicParams, Mat& JTJ_inv, Mat& JTE);
+
+    void computePhotoCameraJacobian(const Mat& rvecPhoto, const Mat& tvecPhoto, const Mat& rvecCamera,
+        const Mat& tvecCamera, Mat& rvecTran, Mat& tvecTran, const Mat& objectPoints, const Mat& imagePoints, const Mat& K,
+        const Mat& distort, const Mat& xi, Mat& jacobianPhoto, Mat& jacobianCamera, Mat& E);
+
+    void compose_motion(InputArray _om1, InputArray _T1, InputArray _om2, InputArray _T2, Mat& om3, Mat& T3, Mat& dom3dom1,
+        Mat& dom3dT1, Mat& dom3dom2, Mat& dom3dT2, Mat& dT3dom1, Mat& dT3dT1, Mat& dT3dom2, Mat& dT3dT2);
+
+    void JRodriguesMatlab(const Mat& src, Mat& dst);
+    void dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB);
+
+    double computeProjectError(Mat& parameters);
+
+    void vector2parameters(const Mat& parameters, std::vector<Vec3f>& rvecVertex, std::vector<Vec3f>& tvecVertexs);
+    void parameters2vector(const std::vector<Vec3f>& rvecVertex, const std::vector<Vec3f>& tvecVertex, Mat& parameters);
+
+    int _camType; //PINHOLE, FISHEYE or OMNIDIRECTIONAL
+    int _nCamera;
+    int _nMiniMatches;
+    int _flags;
+	int _verbose;
+    double _error;
+    float _patternWidth, _patternHeight;
+    TermCriteria _criteria;
+    std::string _filename;
+    int _showExtraction;
+    Ptr<FeatureDetector> _detector;
+    Ptr<DescriptorExtractor> _descriptor;
+    Ptr<DescriptorMatcher> _matcher;
+
+    std::vector<edge> _edgeList;
+    std::vector<vertex> _vertexList;
+    std::vector<std::vector<cv::Mat> > _objectPointsForEachCamera;
+    std::vector<std::vector<cv::Mat> > _imagePointsForEachCamera;
+    std::vector<cv::Mat> _cameraMatrix;
+    std::vector<cv::Mat> _distortCoeffs;
+    std::vector<cv::Mat> _xi;
+    std::vector<std::vector<Mat> > _omEachCamera, _tEachCamera;
+};
+
+//! @}
+
+}} // namespace multicalib, cv
+#endif

+ 310 - 0
cv/include/opencv2/ccalib/omnidir.hpp

@@ -0,0 +1,310 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University,
+// all rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include <opencv2/core.hpp>
+#include <vector>
+
+#ifndef __OPENCV_OMNIDIR_HPP__
+#define __OPENCV_OMNIDIR_HPP__
+
+namespace cv
+{
+namespace omnidir
+{
+    //! @addtogroup ccalib
+    //! @{
+
+    enum {
+        CALIB_USE_GUESS             = 1,
+        CALIB_FIX_SKEW              = 2,
+        CALIB_FIX_K1                = 4,
+        CALIB_FIX_K2                = 8,
+        CALIB_FIX_P1                = 16,
+        CALIB_FIX_P2                = 32,
+        CALIB_FIX_XI                = 64,
+        CALIB_FIX_GAMMA             = 128,
+        CALIB_FIX_CENTER            = 256
+    };
+
+    enum{
+        RECTIFY_PERSPECTIVE         = 1,
+        RECTIFY_CYLINDRICAL         = 2,
+        RECTIFY_LONGLATI            = 3,
+        RECTIFY_STEREOGRAPHIC       = 4
+    };
+
+    enum{
+        XYZRGB  = 1,
+        XYZ     = 2
+    };
+/**
+ * This module was accepted as a GSoC 2015 project for OpenCV, authored by
+ * Baisheng Lai, mentored by Bo Li.
+ */
+
+    /** @brief Projects points for omnidirectional camera using CMei's model
+
+    @param objectPoints Object points in world coordinate, vector of vector of Vec3f or Mat of
+    1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable.
+    @param imagePoints Output array of image points, vector of vector of Vec2f or
+    1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable.
+    @param rvec vector of rotation between world coordinate and camera coordinate, i.e., om
+    @param tvec vector of translation between pattern coordinate and camera coordinate
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.
+    @param xi The parameter xi for CMei's model
+    @param jacobian Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of
+    image pixel points wrt parameters including \f$om, T, f_x, f_y, s, c_x, c_y, xi, k_1, k_2, p_1, p_2\f$.
+    This matrix will be used in calibration by optimization.
+
+    The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic
+    and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing
+    contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters.
+     */
+    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
+                       InputArray K, double xi, InputArray D, OutputArray jacobian = noArray());
+
+    /** @brief Undistort 2D image points for omnidirectional camera using CMei's model
+
+    @param distorted Array of distorted image points, vector of Vec2f
+    or 1xN/Nx1 2-channel Mat of type CV_32F, 64F depth is also acceptable
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.
+    @param xi The parameter xi for CMei's model
+    @param R Rotation trainsform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3
+    1-channel or 1x1 3-channel
+    @param undistorted array of normalized object points, vector of Vec2f/Vec2d or 1xN/Nx1 2-channel Mat with the same
+    depth of distorted points.
+     */
+    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray xi, InputArray R);
+
+    /** @brief Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
+    It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
+    if R or P is empty then identity matrices are used.
+
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$, with depth CV_32F or CV_64F
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$, with depth CV_32F or CV_64F
+    @param xi The parameter xi for CMei's model
+    @param R Rotation transform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3, with depth CV_32F or CV_64F
+    @param P New camera matrix (3x3) or new projection matrix (3x4)
+    @param size Undistorted image size.
+    @param mltype Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
+    for details.
+    @param map1 The first output map.
+    @param map2 The second output map.
+    @param flags Flags indicates the rectification type,  RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
+    are supported.
+     */
+    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray xi, InputArray R, InputArray P, const cv::Size& size,
+        int mltype, OutputArray map1, OutputArray map2, int flags);
+
+    /** @brief Undistort omnidirectional images to perspective images
+
+    @param distorted The input omnidirectional image.
+    @param undistorted The output undistorted image.
+    @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
+    @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.
+    @param xi The parameter xi for CMei's model.
+    @param flags Flags indicates the rectification type,  RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
+    @param Knew Camera matrix of the distorted image. If it is not assigned, it is just K.
+    @param new_size The new image size. By default, it is the size of distorted.
+    @param R Rotation matrix between the input and output images. By default, it is identity matrix.
+    */
+    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray xi, int flags,
+        InputArray Knew = cv::noArray(), const Size& new_size = Size(), InputArray R = Mat::eye(3, 3, CV_64F));
+
+    /** @brief Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.
+
+    @param objectPoints Vector of vector of Vec3f object points in world (pattern) coordinate.
+    It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.
+    @param imagePoints Vector of vector of Vec2f corresponding image points of objectPoints. It must be the same
+    size and the same type with objectPoints.
+    @param size Image size of calibration images.
+    @param K Output calibrated camera matrix.
+    @param xi Output parameter xi for CMei's model
+    @param D Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$
+    @param rvecs Output rotations for each calibration images
+    @param tvecs Output translation for each calibration images
+    @param flags The flags that control calibrate
+    @param criteria Termination criteria for optimization
+    @param idx Indices of images that pass initialization, which are really used in calibration. So the size of rvecs is the
+    same as idx.total().
+    */
+    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size size,
+        InputOutputArray K, InputOutputArray xi, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+        int flags, TermCriteria criteria, OutputArray idx=noArray());
+
+    /** @brief Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
+    cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.
+
+    @param objectPoints Object points in world (pattern) coordinate. Its type is vector<vector<Vec3f> >.
+    It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.
+    @param imagePoints1 The corresponding image points of the first camera, with type vector<vector<Vec2f> >.
+    It must be the same size and the same type as objectPoints.
+    @param imagePoints2 The corresponding image points of the second camera, with type vector<vector<Vec2f> >.
+    It must be the same size and the same type as objectPoints.
+    @param imageSize1 Image size of calibration images of the first camera.
+    @param imageSize2 Image size of calibration images of the second camera.
+    @param K1 Output camera matrix for the first camera.
+    @param xi1 Output parameter xi of Mei's model for the first camera
+    @param D1 Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera
+    @param K2 Output camera matrix for the first camera.
+    @param xi2 Output parameter xi of CMei's model for the second camera
+    @param D2 Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera
+    @param rvec Output rotation between the first and second camera
+    @param tvec Output translation between the first and second camera
+    @param rvecsL Output rotation for each image of the first camera
+    @param tvecsL Output translation for each image of the first camera
+    @param flags The flags that control stereoCalibrate
+    @param criteria Termination criteria for optimization
+    @param idx Indices of image pairs that pass initialization, which are really used in calibration. So the size of rvecs is the
+    same as idx.total().
+    @
+    */
+    CV_EXPORTS_W double stereoCalibrate(InputOutputArrayOfArrays objectPoints, InputOutputArrayOfArrays imagePoints1, InputOutputArrayOfArrays imagePoints2,
+        const Size& imageSize1, const Size& imageSize2, InputOutputArray K1, InputOutputArray xi1, InputOutputArray D1, InputOutputArray K2, InputOutputArray xi2,
+        InputOutputArray D2, OutputArray rvec, OutputArray tvec, OutputArrayOfArrays rvecsL, OutputArrayOfArrays tvecsL, int flags, TermCriteria criteria, OutputArray idx=noArray());
+
+    /** @brief Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras
+
+    @param R Rotation between the first and second camera
+    @param T Translation between the first and second camera
+    @param R1 Output 3x3 rotation matrix for the first camera
+    @param R2 Output 3x3 rotation matrix for the second camera
+    */
+    CV_EXPORTS_W void stereoRectify(InputArray R, InputArray T, OutputArray R1, OutputArray R2);
+
+    /** @brief Stereo 3D reconstruction from a pair of images
+
+    @param image1 The first input image
+    @param image2 The second input image
+    @param K1 Input camera matrix of the first camera
+    @param D1 Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera
+    @param xi1 Input parameter xi for the first camera for CMei's model
+    @param K2 Input camera matrix of the second camera
+    @param D2 Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera
+    @param xi2 Input parameter xi for the second camera for CMei's model
+    @param R Rotation between the first and second camera
+    @param T Translation between the first and second camera
+    @param flag Flag of rectification type, RECTIFY_PERSPECTIVE or RECTIFY_LONGLATI
+    @param numDisparities The parameter 'numDisparities' in StereoSGBM, see StereoSGBM for details.
+    @param SADWindowSize The parameter 'SADWindowSize' in StereoSGBM, see StereoSGBM for details.
+    @param disparity Disparity map generated by stereo matching
+    @param image1Rec Rectified image of the first image
+    @param image2Rec rectified image of the second image
+    @param newSize Image size of rectified image, see omnidir::undistortImage
+    @param Knew New camera matrix of rectified image, see omnidir::undistortImage
+    @param pointCloud Point cloud of 3D reconstruction, with type CV_64FC3
+    @param pointType Point cloud type, it can be XYZRGB or XYZ
+    */
+    CV_EXPORTS_W void stereoReconstruct(InputArray image1, InputArray image2, InputArray K1, InputArray D1, InputArray xi1,
+        InputArray K2, InputArray D2, InputArray xi2, InputArray R, InputArray T, int flag, int numDisparities, int SADWindowSize,
+        OutputArray disparity, OutputArray image1Rec, OutputArray image2Rec, const Size& newSize = Size(), InputArray Knew = cv::noArray(),
+        OutputArray pointCloud = cv::noArray(), int pointType = XYZRGB);
+
+namespace internal
+{
+    void initializeCalibration(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size size, OutputArrayOfArrays omAll,
+        OutputArrayOfArrays tAll, OutputArray K, double& xi, OutputArray idx = noArray());
+
+    void initializeStereoCalibration(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
+        const Size& size1, const Size& size2, OutputArray om, OutputArray T, OutputArrayOfArrays omL, OutputArrayOfArrays tL, OutputArray K1, OutputArray D1, OutputArray K2, OutputArray D2,
+        double &xi1, double &xi2, int flags, OutputArray idx);
+
+    void computeJacobian(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray parameters, Mat& JTJ_inv, Mat& JTE, int flags,
+							double epsilon);
+
+    void computeJacobianStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
+        InputArray parameters, Mat& JTJ_inv, Mat& JTE, int flags, double epsilon);
+
+    void encodeParameters(InputArray K, InputArrayOfArrays omAll, InputArrayOfArrays tAll, InputArray distoaration, double xi, OutputArray parameters);
+
+    void encodeParametersStereo(InputArray K1, InputArray K2, InputArray om, InputArray T, InputArrayOfArrays omL, InputArrayOfArrays tL,
+        InputArray D1, InputArray D2, double xi1, double xi2, OutputArray parameters);
+
+    void decodeParameters(InputArray paramsters, OutputArray K, OutputArrayOfArrays omAll, OutputArrayOfArrays tAll, OutputArray distoration, double& xi);
+
+    void decodeParametersStereo(InputArray parameters, OutputArray K1, OutputArray K2, OutputArray om, OutputArray T, OutputArrayOfArrays omL,
+        OutputArrayOfArrays tL, OutputArray D1, OutputArray D2, double& xi1, double& xi2);
+
+    void estimateUncertainties(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray parameters, Mat& errors, Vec2d& std_error, double& rms, int flags);
+
+    void estimateUncertaintiesStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputArray parameters, Mat& errors,
+        Vec2d& std_error, double& rms, int flags);
+
+    double computeMeanReproErr(InputArrayOfArrays imagePoints, InputArrayOfArrays proImagePoints);
+
+    double computeMeanReproErr(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray K, InputArray D, double xi, InputArrayOfArrays omAll,
+        InputArrayOfArrays tAll);
+
+    double computeMeanReproErrStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputArray K1, InputArray K2,
+        InputArray D1, InputArray D2, double xi1, double xi2, InputArray om, InputArray T, InputArrayOfArrays omL, InputArrayOfArrays TL);
+
+    void subMatrix(const Mat& src, Mat& dst, const std::vector<int>& cols, const std::vector<int>& rows);
+
+    void flags2idx(int flags, std::vector<int>& idx, int n);
+
+    void flags2idxStereo(int flags, std::vector<int>& idx, int n);
+
+    void fillFixed(Mat&G, int flags, int n);
+
+    void fillFixedStereo(Mat& G, int flags, int n);
+
+    double findMedian(const Mat& row);
+
+    Vec3d findMedian3(InputArray mat);
+
+    void getInterset(InputArray idx1, InputArray idx2, OutputArray inter1, OutputArray inter2, OutputArray inter_ori);
+
+    void compose_motion(InputArray _om1, InputArray _T1, InputArray _om2, InputArray _T2, Mat& om3, Mat& T3, Mat& dom3dom1,
+        Mat& dom3dT1, Mat& dom3dom2, Mat& dom3dT2, Mat& dT3dom1, Mat& dT3dT1, Mat& dT3dom2, Mat& dT3dT2);
+
+    //void JRodriguesMatlab(const Mat& src, Mat& dst);
+
+    //void dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB);
+} // internal
+
+//! @}
+
+} // omnidir
+
+} //cv
+#endif

+ 177 - 0
cv/include/opencv2/ccalib/randpattern.hpp

@@ -0,0 +1,177 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University,
+// all rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_RANDOMPATTERN_HPP__
+#define __OPENCV_RANDOMPATTERN_HPP__
+
+#include "opencv2/features2d.hpp"
+#include "opencv2/highgui.hpp"
+
+namespace cv { namespace randpattern {
+
+
+//! @addtogroup ccalib
+//! @{
+
+/** @brief Class for finding features points and corresponding 3D in world coordinate of
+a "random" pattern, which can be to be used in calibration. It is useful when pattern is
+partly occluded or only a part of pattern can be observed in multiple cameras calibration.
+The pattern can be generated by RandomPatternGenerator class described in this file.
+
+Please refer to paper
+    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
+    Calibration Toolbox Using A Feature Descriptor-Based Calibration
+    Pattern", in IROS 2013.
+*/
+
+class CV_EXPORTS RandomPatternCornerFinder
+{
+public:
+
+    /* @brief Construct RandomPatternCornerFinder object
+
+    @param patternWidth the real width of "random" pattern in a user defined unit.
+    @param patternHeight the real height of "random" pattern in a user defined unit.
+    @param nMiniMatch number of minimal matches, otherwise that image is abandoned
+    @depth depth of output objectPoints and imagePoints, set it to be CV_32F or CV_64F.
+    @showExtraction whether show feature extraction, 0 for no and 1 for yes.
+    @detector feature detector to detect feature points in pattern and images.
+    @descriptor feature descriptor.
+    @matcher feature matcher.
+    */
+    RandomPatternCornerFinder(float patternWidth, float patternHeight,
+        int nminiMatch = 20, int depth = CV_32F, int verbose = 0, int showExtraction = 0,
+        Ptr<FeatureDetector> detector = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 0, 3, 0.005f),
+        Ptr<DescriptorExtractor> descriptor = AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0, 3, 0.005f),
+        Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-L1"));
+
+    /* @brief Load pattern image and compute features for pattern
+    @param patternImage image for "random" pattern generated by RandomPatternGenerator, run it first.
+    */
+    void loadPattern(cv::Mat patternImage);
+
+    /* @brief Compute matched object points and image points which are used for calibration
+    The objectPoints (3D) and imagePoints (2D) are stored inside the class. Run getObjectPoints()
+    and getImagePoints() to get them.
+
+    @param inputImages vector of 8-bit grayscale images containing "random" pattern
+    that are used for calibration.
+    */
+    void computeObjectImagePoints(std::vector<cv::Mat> inputImages);
+
+    //void computeObjectImagePoints2(std::vector<cv::Mat> inputImages);
+
+    /* @brief Compute object and image points for a single image. It returns a vector<Mat> that
+    the first element stores the imagePoints and the second one stores the objectPoints.
+
+    @param inputImage single input image for calibration
+    */
+    std::vector<cv::Mat> computeObjectImagePointsForSingle(cv::Mat inputImage);
+
+    /* @brief Get object(3D) points
+    */
+    std::vector<cv::Mat> getObjectPoints();
+
+    /* @brief and image(2D) points
+    */
+    std::vector<cv::Mat> getImagePoints();
+
+private:
+
+    std::vector<cv::Mat> _objectPonits, _imagePoints;
+    float _patternWidth, _patternHeight;
+    cv::Size _patternImageSize;
+    int _nminiMatch;
+    int _depth;
+	int _verbose;
+
+    Ptr<FeatureDetector> _detector;
+    Ptr<DescriptorExtractor> _descriptor;
+    Ptr<DescriptorMatcher> _matcher;
+    Mat _descriptorPattern;
+    std::vector<cv::KeyPoint> _keypointsPattern;
+    Mat _patternImage;
+    int _showExtraction;
+
+    void keyPoints2MatchedLocation(const std::vector<cv::KeyPoint>& imageKeypoints,
+        const std::vector<cv::KeyPoint>& patternKeypoints, const std::vector<cv::DMatch> matchces,
+        cv::Mat& matchedImagelocation, cv::Mat& matchedPatternLocation);
+    void getFilteredLocation(cv::Mat& imageKeypoints, cv::Mat& patternKeypoints, const cv::Mat mask);
+    void getObjectImagePoints(const cv::Mat& imageKeypoints, const cv::Mat& patternKeypoints);
+    void crossCheckMatching( cv::Ptr<DescriptorMatcher>& descriptorMatcher,
+        const Mat& descriptors1, const Mat& descriptors2,
+        std::vector<DMatch>& filteredMatches12, int knn=1 );
+    void drawCorrespondence(const Mat& image1, const std::vector<cv::KeyPoint> keypoint1,
+        const Mat& image2, const std::vector<cv::KeyPoint> keypoint2, const std::vector<cv::DMatch> matchces,
+        const Mat& mask1, const Mat& mask2, const int step);
+};
+
+/* @brief Class to generate "random" pattern image that are used for RandomPatternCornerFinder
+Please refer to paper
+B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
+Calibration Toolbox Using A Feature Descriptor-Based Calibration
+Pattern", in IROS 2013.
+*/
+class CV_EXPORTS RandomPatternGenerator
+{
+public:
+    /* @brief Construct RandomPatternGenerator
+
+    @param imageWidth image width of the generated pattern image
+    @param imageHeight image height of the generated pattern image
+    */
+    RandomPatternGenerator(int imageWidth, int imageHeight);
+
+    /* @brief Generate pattern
+    */
+    void generatePattern();
+    /* @brief Get pattern
+    */
+    cv::Mat getPattern();
+private:
+    cv::Mat _pattern;
+    int _imageWidth, _imageHeight;
+};
+
+//! @}
+
+}} //namespace randpattern, cv
+#endif

+ 3280 - 0
cv/include/opencv2/core.hpp

@@ -0,0 +1,3280 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
+// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
+// Copyright (C) 2015, Itseez Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_HPP
+#define OPENCV_CORE_HPP
+
+#ifndef __cplusplus
+#  error core.hpp header must be compiled as C++
+#endif
+
+#include "opencv2/core/cvdef.h"
+#include "opencv2/core/version.hpp"
+#include "opencv2/core/base.hpp"
+#include "opencv2/core/cvstd.hpp"
+#include "opencv2/core/traits.hpp"
+#include "opencv2/core/matx.hpp"
+#include "opencv2/core/types.hpp"
+#include "opencv2/core/mat.hpp"
+#include "opencv2/core/persistence.hpp"
+
+/**
+@defgroup core Core functionality
+@{
+    @defgroup core_basic Basic structures
+    @defgroup core_c C structures and operations
+    @{
+        @defgroup core_c_glue Connections with C++
+    @}
+    @defgroup core_array Operations on arrays
+    @defgroup core_xml XML/YAML Persistence
+    @defgroup core_cluster Clustering
+    @defgroup core_utils Utility and system functions and macros
+    @{
+        @defgroup core_utils_sse SSE utilities
+        @defgroup core_utils_neon NEON utilities
+        @defgroup core_utils_softfloat Softfloat support
+    @}
+    @defgroup core_opengl OpenGL interoperability
+    @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
+    @defgroup core_optim Optimization Algorithms
+    @defgroup core_directx DirectX interoperability
+    @defgroup core_eigen Eigen support
+    @defgroup core_opencl OpenCL support
+    @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability
+    @defgroup core_hal Hardware Acceleration Layer
+    @{
+        @defgroup core_hal_functions Functions
+        @defgroup core_hal_interface Interface
+        @defgroup core_hal_intrin Universal intrinsics
+        @{
+            @defgroup core_hal_intrin_impl Private implementation helpers
+        @}
+    @}
+@}
+ */
+
+namespace cv {
+
+//! @addtogroup core_utils
+//! @{
+
+/*! @brief Class passed to an error.
+
+This class encapsulates all or almost all necessary
+information about the error happened in the program. The exception is
+usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
+@see error
+ */
+class CV_EXPORTS Exception : public std::exception
+{
+public:
+    /*!
+     Default constructor
+     */
+    Exception();
+    /*!
+     Full constructor. Normally the constructor is not called explicitly.
+     Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
+    */
+    Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
+    virtual ~Exception() throw();
+
+    /*!
+     \return the error description and the context as a text string.
+    */
+    virtual const char *what() const throw();
+    void formatMessage();
+
+    String msg; ///< the formatted error message
+
+    int code; ///< error code @see CVStatus
+    String err; ///< error description
+    String func; ///< function name. Available only when the compiler supports getting it
+    String file; ///< source file name where the error has occurred
+    int line; ///< line number in the source file where the error has occurred
+};
+
+/*! @brief Signals an error and raises the exception.
+
+By default the function prints information about the error to stderr,
+then it either stops if cv::setBreakOnError() had been called before or raises the exception.
+It is possible to alternate error processing by using cv::redirectError().
+@param exc the exception raisen.
+@deprecated drop this version
+ */
+CV_EXPORTS void error( const Exception& exc );
+
+enum SortFlags { SORT_EVERY_ROW    = 0, //!< each matrix row is sorted independently
+                 SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
+                                        //!< independently; this flag and the previous one are
+                                        //!< mutually exclusive.
+                 SORT_ASCENDING    = 0, //!< each matrix row is sorted in the ascending
+                                        //!< order.
+                 SORT_DESCENDING   = 16 //!< each matrix row is sorted in the
+                                        //!< descending order; this flag and the previous one are also
+                                        //!< mutually exclusive.
+               };
+
+//! @} core_utils
+
+//! @addtogroup core
+//! @{
+
+//! Covariation flags
+enum CovarFlags {
+    /** The output covariance matrix is calculated as:
+       \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],\f]
+       The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
+       for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
+       face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
+       covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
+       the "scrambled" covariance matrix. */
+    COVAR_SCRAMBLED = 0,
+    /**The output covariance matrix is calculated as:
+        \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,\f]
+        covar will be a square matrix of the same size as the total number of elements in each input
+        vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
+    COVAR_NORMAL    = 1,
+    /** If the flag is specified, the function does not calculate mean from
+        the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
+        pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
+        this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
+        vector of the whole set.*/
+    COVAR_USE_AVG   = 2,
+    /** If the flag is specified, the covariance matrix is scaled. In the
+        "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
+        total number of elements in each input vector. By default (if the flag is not specified), the
+        covariance matrix is not scaled ( scale=1 ).*/
+    COVAR_SCALE     = 4,
+    /** If the flag is
+        specified, all the input vectors are stored as rows of the samples matrix. mean should be a
+        single-row vector in this case.*/
+    COVAR_ROWS      = 8,
+    /** If the flag is
+        specified, all the input vectors are stored as columns of the samples matrix. mean should be a
+        single-column vector in this case.*/
+    COVAR_COLS      = 16
+};
+
+//! k-Means flags
+enum KmeansFlags {
+    /** Select random initial centers in each attempt.*/
+    KMEANS_RANDOM_CENTERS     = 0,
+    /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
+    KMEANS_PP_CENTERS         = 2,
+    /** During the first (and possibly the only) attempt, use the
+        user-supplied labels instead of computing them from the initial centers. For the second and
+        further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
+        to specify the exact method.*/
+    KMEANS_USE_INITIAL_LABELS = 1
+};
+
+//! type of line
+enum LineTypes {
+    FILLED  = -1,
+    LINE_4  = 4, //!< 4-connected line
+    LINE_8  = 8, //!< 8-connected line
+    LINE_AA = 16 //!< antialiased line
+};
+
+//! Only a subset of Hershey fonts
+//! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
+enum HersheyFonts {
+    FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
+    FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
+    FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
+    FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
+    FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
+    FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
+    FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
+    FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
+    FONT_ITALIC                 = 16 //!< flag for italic font
+};
+
+enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
+                   REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
+                   REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
+                   REDUCE_MIN = 3  //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
+                 };
+
+
+/** @brief Swaps two matrices
+*/
+CV_EXPORTS void swap(Mat& a, Mat& b);
+/** @overload */
+CV_EXPORTS void swap( UMat& a, UMat& b );
+
+//! @} core
+
+//! @addtogroup core_array
+//! @{
+
+/** @brief Computes the source location of an extrapolated pixel.
+
+The function computes and returns the coordinate of a donor pixel corresponding to the specified
+extrapolated pixel when using the specified extrapolation border mode. For example, if you use
+cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
+want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
+looks like:
+@code{.cpp}
+    float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
+                              borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
+@endcode
+Normally, the function is not called directly. It is used inside filtering functions and also in
+copyMakeBorder.
+@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
+@param len Length of the array along the corresponding axis.
+@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
+cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
+of p and len.
+
+@sa copyMakeBorder
+*/
+CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
+
+/** @example copyMakeBorder_demo.cpp
+An example using copyMakeBorder function
+ */
+/** @brief Forms a border around an image.
+
+The function copies the source image into the middle of the destination image. The areas to the
+left, to the right, above and below the copied source image will be filled with extrapolated
+pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
+what other more complex functions, including your own, may do to simplify image boundary handling.
+
+The function supports the mode when src is already in the middle of dst . In this case, the
+function does not copy src itself but simply constructs the border, for example:
+
+@code{.cpp}
+    // let border be the same in all directions
+    int border=2;
+    // constructs a larger image to fit both the image and the border
+    Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
+    // select the middle part of it w/o copying data
+    Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
+    // convert image from RGB to grayscale
+    cvtColor(rgb, gray, COLOR_RGB2GRAY);
+    // form a border in-place
+    copyMakeBorder(gray, gray_buf, border, border,
+                   border, border, BORDER_REPLICATE);
+    // now do some custom filtering ...
+    ...
+@endcode
+@note When the source image is a part (ROI) of a bigger image, the function will try to use the
+pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
+if src was not a ROI, use borderType | BORDER_ISOLATED.
+
+@param src Source image.
+@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
+src.rows+top+bottom) .
+@param top
+@param bottom
+@param left
+@param right Parameter specifying how many pixels in each direction from the source image rectangle
+to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
+to be built.
+@param borderType Border type. See borderInterpolate for details.
+@param value Border value if borderType==BORDER_CONSTANT .
+
+@sa  borderInterpolate
+*/
+CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
+                                 int top, int bottom, int left, int right,
+                                 int borderType, const Scalar& value = Scalar() );
+
+/** @brief Calculates the per-element sum of two arrays or an array and a scalar.
+
+The function add calculates:
+- Sum of two arrays when both input arrays have the same size and the same number of channels:
+\f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
+- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
+elements as `src1.channels()`:
+\f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
+- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
+elements as `src2.channels()`:
+\f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+
+The first function in the list above can be replaced with matrix expressions:
+@code{.cpp}
+    dst = src1 + src2;
+    dst += src1; // equivalent to add(dst, src1, dst);
+@endcode
+The input arrays and the output array can all have the same or different depths. For example, you
+can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
+floating-point array. Depth of the output array is determined by the dtype parameter. In the second
+and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
+be set to the default -1. In this case, the output array will have the same depth as the input
+array, be it src1, src2 or both.
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and number of channels as the input array(s); the
+depth is defined by dtype or src1/src2.
+@param mask optional operation mask - 8-bit single channel array, that specifies elements of the
+output array to be changed.
+@param dtype optional depth of the output array (see the discussion below).
+@sa subtract, addWeighted, scaleAdd, Mat::convertTo
+*/
+CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
+                      InputArray mask = noArray(), int dtype = -1);
+
+/** @brief Calculates the per-element difference between two arrays or array and a scalar.
+
+The function subtract calculates:
+- Difference between two arrays, when both input arrays have the same size and the same number of
+channels:
+    \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
+- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
+number of elements as `src1.channels()`:
+    \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
+- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
+number of elements as `src2.channels()`:
+    \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+- The reverse difference between a scalar and an array in the case of `SubRS`:
+    \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+
+The first function in the list above can be replaced with matrix expressions:
+@code{.cpp}
+    dst = src1 - src2;
+    dst -= src1; // equivalent to subtract(dst, src1, dst);
+@endcode
+The input arrays and the output array can all have the same or different depths. For example, you
+can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
+the output array is determined by dtype parameter. In the second and third cases above, as well as
+in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
+case the output array will have the same depth as the input array, be it src1, src2 or both.
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array of the same size and the same number of channels as the input array.
+@param mask optional operation mask; this is an 8-bit single channel array that specifies elements
+of the output array to be changed.
+@param dtype optional depth of the output array
+@sa  add, addWeighted, scaleAdd, Mat::convertTo
+  */
+CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
+                           InputArray mask = noArray(), int dtype = -1);
+
+
+/** @brief Calculates the per-element scaled product of two arrays.
+
+The function multiply calculates the per-element product of two arrays:
+
+\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))\f]
+
+There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
+
+For a not-per-element matrix product, see gemm .
+
+@note Saturation is not applied when the output array has the depth
+CV_32S. You may even get result of an incorrect sign in the case of
+overflow.
+@param src1 first input array.
+@param src2 second input array of the same size and the same type as src1.
+@param dst output array of the same size and type as src1.
+@param scale optional scale factor.
+@param dtype optional depth of the output array
+@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
+Mat::convertTo
+*/
+CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
+                           OutputArray dst, double scale = 1, int dtype = -1);
+
+/** @brief Performs per-element division of two arrays or a scalar by an array.
+
+The function cv::divide divides one array by another:
+\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
+or a scalar by an array when there is no src1 :
+\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
+
+When src2(I) is zero, dst(I) will also be zero. Different channels of
+multi-channel arrays are processed independently.
+
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1.
+@param scale scalar factor.
+@param dst output array of the same size and type as src2.
+@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
+case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
+@sa  multiply, add, subtract
+*/
+CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
+                         double scale = 1, int dtype = -1);
+
+/** @overload */
+CV_EXPORTS_W void divide(double scale, InputArray src2,
+                         OutputArray dst, int dtype = -1);
+
+/** @brief Calculates the sum of a scaled array and another array.
+
+The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
+or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
+the sum of a scaled array and another array:
+\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)\f]
+The function can also be emulated with a matrix expression, for example:
+@code{.cpp}
+    Mat A(3, 3, CV_64F);
+    ...
+    A.row(0) = A.row(1)*2 + A.row(2);
+@endcode
+@param src1 first input array.
+@param alpha scale factor for the first array.
+@param src2 second input array of the same size and type as src1.
+@param dst output array of the same size and type as src1.
+@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
+*/
+CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
+
+/** @example AddingImagesTrackbar.cpp
+
+ */
+/** @brief Calculates the weighted sum of two arrays.
+
+The function addWeighted calculates the weighted sum of two arrays as follows:
+\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )\f]
+where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+The function can be replaced with a matrix expression:
+@code{.cpp}
+    dst = src1*alpha + src2*beta + gamma;
+@endcode
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array.
+@param alpha weight of the first array elements.
+@param src2 second input array of the same size and channel number as src1.
+@param beta weight of the second array elements.
+@param gamma scalar added to each sum.
+@param dst output array that has the same size and number of channels as the input arrays.
+@param dtype optional depth of the output array; when both input arrays have the same depth, dtype
+can be set to -1, which will be equivalent to src1.depth().
+@sa  add, subtract, scaleAdd, Mat::convertTo
+*/
+CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
+                              double beta, double gamma, OutputArray dst, int dtype = -1);
+
+/** @brief Scales, calculates absolute values, and converts the result to 8-bit.
+
+On each element of the input array, the function convertScaleAbs
+performs three operations sequentially: scaling, taking an absolute
+value, conversion to an unsigned 8-bit type:
+\f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)\f]
+In case of multi-channel arrays, the function processes each channel
+independently. When the output is not 8-bit, the operation can be
+emulated by calling the Mat::convertTo method (or by using matrix
+expressions) and then by calculating an absolute value of the result.
+For example:
+@code{.cpp}
+    Mat_<float> A(30,30);
+    randu(A, Scalar(-100), Scalar(100));
+    Mat_<float> B = A*5 + 3;
+    B = abs(B);
+    // Mat_<float> B = abs(A*5+3) will also do the job,
+    // but it will allocate a temporary matrix
+@endcode
+@param src input array.
+@param dst output array.
+@param alpha optional scale factor.
+@param beta optional delta added to the scaled values.
+@sa  Mat::convertTo, cv::abs(const Mat&)
+*/
+CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
+                                  double alpha = 1, double beta = 0);
+
+/** @brief Converts an array to half precision floating number.
+
+This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point).  The input array has to have type of CV_32F or
+CV_16S to represent the bit depth.  If the input array is neither of them, the function will raise an error.
+The format of half precision floating point is defined in IEEE 754-2008.
+
+@param src input array.
+@param dst output array.
+*/
+CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
+
+/** @brief Performs a look-up table transform of an array.
+
+The function LUT fills the output array with values from the look-up table. Indices of the entries
+are taken from the input array. That is, the function processes each element of src as follows:
+\f[\texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}\f]
+where
+\f[d =  \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f]
+@param src input array of 8-bit elements.
+@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
+either have a single channel (in this case the same table is used for all channels) or the same
+number of channels as in the input array.
+@param dst output array of the same size and number of channels as src, and the same depth as lut.
+@sa  convertScaleAbs, Mat::convertTo
+*/
+CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
+
+/** @brief Calculates the sum of array elements.
+
+The function cv::sum calculates and returns the sum of array elements,
+independently for each channel.
+@param src input array that must have from 1 to 4 channels.
+@sa  countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
+*/
+CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
+
+/** @brief Counts non-zero array elements.
+
+The function returns the number of non-zero elements in src :
+\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
+@param src single-channel array.
+@sa  mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
+*/
+CV_EXPORTS_W int countNonZero( InputArray src );
+
+/** @brief Returns the list of locations of non-zero pixels
+
+Given a binary matrix (likely returned from an operation such
+as threshold(), compare(), >, ==, etc, return all of
+the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
+For example:
+@code{.cpp}
+    cv::Mat binaryImage; // input, binary image
+    cv::Mat locations;   // output, locations of non-zero pixels
+    cv::findNonZero(binaryImage, locations);
+
+    // access pixel coordinates
+    Point pnt = locations.at<Point>(i);
+@endcode
+or
+@code{.cpp}
+    cv::Mat binaryImage; // input, binary image
+    vector<Point> locations;   // output, locations of non-zero pixels
+    cv::findNonZero(binaryImage, locations);
+
+    // access pixel coordinates
+    Point pnt = locations[i];
+@endcode
+@param src single-channel array (type CV_8UC1)
+@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
+*/
+CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
+
+/** @brief Calculates an average (mean) of array elements.
+
+The function cv::mean calculates the mean value M of array elements,
+independently for each channel, and return it:
+\f[\begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
+When all the mask elements are 0's, the function returns Scalar::all(0)
+@param src input array that should have from 1 to 4 channels so that the result can be stored in
+Scalar_ .
+@param mask optional operation mask.
+@sa  countNonZero, meanStdDev, norm, minMaxLoc
+*/
+CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
+
+/** Calculates a mean and standard deviation of array elements.
+
+The function cv::meanStdDev calculates the mean and the standard deviation M
+of array elements independently for each channel and returns it via the
+output parameters:
+\f[\begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}\f]
+When all the mask elements are 0's, the function returns
+mean=stddev=Scalar::all(0).
+@note The calculated standard deviation is only the diagonal of the
+complete normalized covariance matrix. If the full matrix is needed, you
+can reshape the multi-channel array M x N to the single-channel array
+M\*N x mtx.channels() (only possible when the matrix is continuous) and
+then pass the matrix to calcCovarMatrix .
+@param src input array that should have from 1 to 4 channels so that the results can be stored in
+Scalar_ 's.
+@param mean output parameter: calculated mean value.
+@param stddev output parameter: calculated standard deviation.
+@param mask optional operation mask.
+@sa  countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
+*/
+CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
+                             InputArray mask=noArray());
+
+/** @brief Calculates the  absolute norm of an array.
+
+This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes.
+
+As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
+The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
+is calculated as follows
+\f{align*}
+    \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
+    \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
+    \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
+\f}
+and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
+\f{align*}
+    \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
+    \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
+    \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
+\f}
+The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
+It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
+![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
+
+When the mask parameter is specified and it is not empty, the norm is
+
+If normType is not specified, NORM_L2 is used.
+calculated only over the region specified by the mask.
+
+Multi-channel input arrays are treated as single-channel arrays, that is,
+the results for all channels are combined.
+
+Hamming norms can only be calculated with CV_8U depth arrays.
+
+@param src1 first input array.
+@param normType type of the norm (see cv::NormTypes).
+@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
+*/
+CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
+
+/** @brief Calculates an absolute difference norm or a relative difference norm.
+
+This version of cv::norm calculates the absolute difference norm
+or the relative difference norm of arrays src1 and src2.
+The type of norm to calculate is specified using cv::NormTypes.
+
+@param src1 first input array.
+@param src2 second input array of the same size and the same type as src1.
+@param normType type of the norm (cv::NormTypes).
+@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
+*/
+CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
+                         int normType = NORM_L2, InputArray mask = noArray());
+/** @overload
+@param src first input array.
+@param normType type of the norm (see cv::NormTypes).
+*/
+CV_EXPORTS double norm( const SparseMat& src, int normType );
+
+/** @brief Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
+
+This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. Arrays must have depth CV_8U.
+
+The PSNR is calculated as follows:
+
+\f[
+\texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) }
+\f]
+
+where R is the maximum integer value of depth CV_8U (255) and MSE is the mean squared error between the two arrays.
+
+@param src1 first input array.
+@param src2 second input array of the same size as src1.
+
+  */
+CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
+
+/** @brief naive nearest neighbor finder
+
+see http://en.wikipedia.org/wiki/Nearest_neighbor_search
+@todo document
+  */
+CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
+                                OutputArray dist, int dtype, OutputArray nidx,
+                                int normType = NORM_L2, int K = 0,
+                                InputArray mask = noArray(), int update = 0,
+                                bool crosscheck = false);
+
+/** @brief Normalizes the norm or value range of an array.
+
+The function cv::normalize normalizes scale and shift the input array elements so that
+\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
+(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
+\f[\min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}\f]
+
+when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
+normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
+sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
+min-max but modify the whole array, you can use norm and Mat::convertTo.
+
+In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
+the range transformation for sparse matrices is not allowed since it can shift the zero level.
+
+Possible usage with some positive example data:
+@code{.cpp}
+    vector<double> positiveData = { 2.0, 8.0, 10.0 };
+    vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
+
+    // Norm to probability (total count)
+    // sum(numbers) = 20.0
+    // 2.0      0.1     (2.0/20.0)
+    // 8.0      0.4     (8.0/20.0)
+    // 10.0     0.5     (10.0/20.0)
+    normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
+
+    // Norm to unit vector: ||positiveData|| = 1.0
+    // 2.0      0.15
+    // 8.0      0.62
+    // 10.0     0.77
+    normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
+
+    // Norm to max element
+    // 2.0      0.2     (2.0/10.0)
+    // 8.0      0.8     (8.0/10.0)
+    // 10.0     1.0     (10.0/10.0)
+    normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
+
+    // Norm to range [0.0;1.0]
+    // 2.0      0.0     (shift to left border)
+    // 8.0      0.75    (6.0/8.0)
+    // 10.0     1.0     (shift to right border)
+    normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
+@endcode
+
+@param src input array.
+@param dst output array of the same size as src .
+@param alpha norm value to normalize to or the lower range boundary in case of the range
+normalization.
+@param beta upper range boundary in case of the range normalization; it is not used for the norm
+normalization.
+@param norm_type normalization type (see cv::NormTypes).
+@param dtype when negative, the output array has the same type as src; otherwise, it has the same
+number of channels as src and the depth =CV_MAT_DEPTH(dtype).
+@param mask optional operation mask.
+@sa norm, Mat::convertTo, SparseMat::convertTo
+*/
+CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
+                             int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
+
+/** @overload
+@param src input array.
+@param dst output array of the same size as src .
+@param alpha norm value to normalize to or the lower range boundary in case of the range
+normalization.
+@param normType normalization type (see cv::NormTypes).
+*/
+CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
+
+/** @brief Finds the global minimum and maximum in an array.
+
+The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
+extremums are searched across the whole array or, if mask is not an empty array, in the specified
+array region.
+
+The function do not work with multi-channel arrays. If you need to find minimum or maximum
+elements across all the channels, use Mat::reshape first to reinterpret the array as
+single-channel. Or you may extract the particular channel using either extractImageCOI , or
+mixChannels , or split .
+@param src input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
+@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
+@param mask optional mask used to select a sub-array.
+@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
+*/
+CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
+                            CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
+                            CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
+
+
+/** @brief Finds the global minimum and maximum in an array
+
+The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
+extremums are searched across the whole array or, if mask is not an empty array, in the specified
+array region. The function does not work with multi-channel arrays. If you need to find minimum or
+maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
+single-channel. Or you may extract the particular channel using either extractImageCOI , or
+mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
+only.
+@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
+a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
+dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
+(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
+(0,j1)/(0,j2)).
+@param src input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
+Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
+in each dimension are stored there sequentially.
+@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
+@param mask specified array region
+*/
+CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
+                          int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
+
+/** @overload
+@param a input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
+Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
+in each dimension are stored there sequentially.
+@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
+*/
+CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
+                          double* maxVal, int* minIdx = 0, int* maxIdx = 0);
+
+/** @brief Reduces a matrix to a vector.
+
+The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
+1D vectors and performing the specified operation on the vectors until a single row/column is
+obtained. For example, the function can be used to compute horizontal and vertical projections of a
+raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
+In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
+And multi-channel arrays are also supported in these two reduction modes.
+
+The following code demonstrates its usage for a single channel matrix.
+@snippet snippets/core_reduce.cpp example
+
+And the following code demonstrates its usage for a two-channel matrix.
+@snippet snippets/core_reduce.cpp example2
+
+@param src input 2D matrix.
+@param dst output vector. Its size and type is defined by dim and dtype parameters.
+@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
+a single row. 1 means that the matrix is reduced to a single column.
+@param rtype reduction operation that could be one of cv::ReduceTypes
+@param dtype when negative, the output vector will have the same type as the input matrix,
+otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
+@sa repeat
+*/
+CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
+
+/** @brief Creates one multi-channel array out of several single-channel ones.
+
+The function cv::merge merges several arrays to make a single multi-channel array. That is, each
+element of the output array will be a concatenation of the elements of the input arrays, where
+elements of i-th input array are treated as mv[i].channels()-element vectors.
+
+The function cv::split does the reverse operation. If you need to shuffle channels in some other
+advanced way, use cv::mixChannels.
+
+The following example shows how to merge 3 single channel matrices into a single 3-channel matrix.
+@snippet snippets/core_merge.cpp example
+
+@param mv input array of matrices to be merged; all the matrices in mv must have the same
+size and the same depth.
+@param count number of input matrices when mv is a plain C array; it must be greater than zero.
+@param dst output array of the same size and the same depth as mv[0]; The number of channels will
+be equal to the parameter count.
+@sa  mixChannels, split, Mat::reshape
+*/
+CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
+
+/** @overload
+@param mv input vector of matrices to be merged; all the matrices in mv must have the same
+size and the same depth.
+@param dst output array of the same size and the same depth as mv[0]; The number of channels will
+be the total number of channels in the matrix array.
+  */
+CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
+
+/** @brief Divides a multi-channel array into several single-channel arrays.
+
+The function cv::split splits a multi-channel array into separate single-channel arrays:
+\f[\texttt{mv} [c](I) =  \texttt{src} (I)_c\f]
+If you need to extract a single channel or do some other sophisticated channel permutation, use
+mixChannels .
+
+The following example demonstrates how to split a 3-channel matrix into 3 single channel matrices.
+@snippet snippets/core_split.cpp example
+
+@param src input multi-channel array.
+@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
+reallocated, if needed.
+@sa merge, mixChannels, cvtColor
+*/
+CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
+
+/** @overload
+@param m input multi-channel array.
+@param mv output vector of arrays; the arrays themselves are reallocated, if needed.
+*/
+CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
+
+/** @brief Copies specified channels from input arrays to the specified channels of
+output arrays.
+
+The function cv::mixChannels provides an advanced mechanism for shuffling image channels.
+
+cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels.
+
+In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R
+channels swapped) and a separate alpha-channel image:
+@code{.cpp}
+    Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) );
+    Mat bgr( bgra.rows, bgra.cols, CV_8UC3 );
+    Mat alpha( bgra.rows, bgra.cols, CV_8UC1 );
+
+    // forming an array of matrices is a quite efficient operation,
+    // because the matrix data is not copied, only the headers
+    Mat out[] = { bgr, alpha };
+    // bgra[0] -> bgr[2], bgra[1] -> bgr[1],
+    // bgra[2] -> bgr[0], bgra[3] -> alpha[0]
+    int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
+    mixChannels( &bgra, 1, out, 2, from_to, 4 );
+@endcode
+@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
+Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the
+function.
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param nsrcs number of matrices in `src`.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in `src[0]`.
+@param ndsts number of matrices in `dst`.
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+@param npairs number of index pairs in `fromTo`.
+@sa split, merge, extractChannel, insertChannel, cvtColor
+*/
+CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
+                            const int* fromTo, size_t npairs);
+
+/** @overload
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in src[0].
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+@param npairs number of index pairs in fromTo.
+*/
+CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
+                            const int* fromTo, size_t npairs);
+
+/** @overload
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in src[0].
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+*/
+CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
+                              const std::vector<int>& fromTo);
+
+/** @brief Extracts a single channel from src (coi is 0-based index)
+@param src input array
+@param dst output array
+@param coi index of channel to extract
+@sa mixChannels, split
+*/
+CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
+
+/** @brief Inserts a single channel to dst (coi is 0-based index)
+@param src input array
+@param dst output array
+@param coi index of channel for insertion
+@sa mixChannels, merge
+*/
+CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
+
+/** @brief Flips a 2D array around vertical, horizontal, or both axes.
+
+The function cv::flip flips the array in one of three different ways (row
+and column indices are 0-based):
+\f[\texttt{dst} _{ij} =
+\left\{
+\begin{array}{l l}
+\texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
+\texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
+\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
+\end{array}
+\right.\f]
+The example scenarios of using the function are the following:
+*   Vertical flipping of the image (flipCode == 0) to switch between
+    top-left and bottom-left image origin. This is a typical operation
+    in video processing on Microsoft Windows\* OS.
+*   Horizontal flipping of the image with the subsequent horizontal
+    shift and absolute difference calculation to check for a
+    vertical-axis symmetry (flipCode \> 0).
+*   Simultaneous horizontal and vertical flipping of the image with
+    the subsequent shift and absolute difference calculation to check
+    for a central symmetry (flipCode \< 0).
+*   Reversing the order of point arrays (flipCode \> 0 or
+    flipCode == 0).
+@param src input array.
+@param dst output array of the same size and type as src.
+@param flipCode a flag to specify how to flip the array; 0 means
+flipping around the x-axis and positive value (for example, 1) means
+flipping around y-axis. Negative value (for example, -1) means flipping
+around both axes.
+@sa transpose , repeat , completeSymm
+*/
+CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
+
+enum RotateFlags {
+    ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
+    ROTATE_180 = 1, //Rotate 180 degrees clockwise
+    ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
+};
+/** @brief Rotates a 2D array in multiples of 90 degrees.
+The function rotate rotates the array in one of three different ways:
+*   Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
+*   Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
+*   Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
+@param src input array.
+@param dst output array of the same type as src.  The size is the same with ROTATE_180,
+and the rows and cols are switched for ROTATE_90 and ROTATE_270.
+@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
+@sa transpose , repeat , completeSymm, flip, RotateFlags
+*/
+CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
+
+/** @brief Fills the output array with repeated copies of the input array.
+
+The function cv::repeat duplicates the input array one or more times along each of the two axes:
+\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
+The second variant of the function is more convenient to use with @ref MatrixExpressions.
+@param src input array to replicate.
+@param ny Flag to specify how many times the `src` is repeated along the
+vertical axis.
+@param nx Flag to specify how many times the `src` is repeated along the
+horizontal axis.
+@param dst output array of the same type as `src`.
+@sa cv::reduce
+*/
+CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
+
+/** @overload
+@param src input array to replicate.
+@param ny Flag to specify how many times the `src` is repeated along the
+vertical axis.
+@param nx Flag to specify how many times the `src` is repeated along the
+horizontal axis.
+  */
+CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
+
+/** @brief Applies horizontal concatenation to given matrices.
+
+The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
+@code{.cpp}
+    cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
+                           cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
+                           cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
+
+    cv::Mat out;
+    cv::hconcat( matArray, 3, out );
+    //out:
+    //[1, 2, 3;
+    // 1, 2, 3;
+    // 1, 2, 3;
+    // 1, 2, 3]
+@endcode
+@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
+@param nsrc number of matrices in src.
+@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
+@sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
+*/
+CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
+/** @overload
+ @code{.cpp}
+    cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
+                                                  2, 5,
+                                                  3, 6);
+    cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
+                                                  8, 11,
+                                                  9, 12);
+
+    cv::Mat C;
+    cv::hconcat(A, B, C);
+    //C:
+    //[1, 4, 7, 10;
+    // 2, 5, 8, 11;
+    // 3, 6, 9, 12]
+ @endcode
+ @param src1 first input array to be considered for horizontal concatenation.
+ @param src2 second input array to be considered for horizontal concatenation.
+ @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
+ */
+CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+ @code{.cpp}
+    std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
+                                      cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
+                                      cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
+
+    cv::Mat out;
+    cv::hconcat( matrices, out );
+    //out:
+    //[1, 2, 3;
+    // 1, 2, 3;
+    // 1, 2, 3;
+    // 1, 2, 3]
+ @endcode
+ @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
+ @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
+same depth.
+ */
+CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
+
+/** @brief Applies vertical concatenation to given matrices.
+
+The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
+@code{.cpp}
+    cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
+                           cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
+                           cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
+
+    cv::Mat out;
+    cv::vconcat( matArray, 3, out );
+    //out:
+    //[1,   1,   1,   1;
+    // 2,   2,   2,   2;
+    // 3,   3,   3,   3]
+@endcode
+@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
+@param nsrc number of matrices in src.
+@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
+@sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
+*/
+CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
+/** @overload
+ @code{.cpp}
+    cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
+                                                  2, 8,
+                                                  3, 9);
+    cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
+                                                  5, 11,
+                                                  6, 12);
+
+    cv::Mat C;
+    cv::vconcat(A, B, C);
+    //C:
+    //[1, 7;
+    // 2, 8;
+    // 3, 9;
+    // 4, 10;
+    // 5, 11;
+    // 6, 12]
+ @endcode
+ @param src1 first input array to be considered for vertical concatenation.
+ @param src2 second input array to be considered for vertical concatenation.
+ @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
+ */
+CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+ @code{.cpp}
+    std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
+                                      cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
+                                      cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
+
+    cv::Mat out;
+    cv::vconcat( matrices, out );
+    //out:
+    //[1,   1,   1,   1;
+    // 2,   2,   2,   2;
+    // 3,   3,   3,   3]
+ @endcode
+ @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
+ @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
+same depth.
+ */
+CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
+
+/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
+Calculates the per-element bit-wise conjunction of two arrays or an
+array and a scalar.
+
+The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
+*   Two arrays when src1 and src2 have the same size:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+*   An array and a scalar when src2 is constructed from Scalar or has
+    the same number of elements as `src1.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+*   A scalar and an array when src1 is constructed from Scalar or has
+    the same number of elements as `src2.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the second and third cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
+                              OutputArray dst, InputArray mask = noArray());
+
+/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
+array and a scalar.
+
+The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
+*   Two arrays when src1 and src2 have the same size:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+*   An array and a scalar when src2 is constructed from Scalar or has
+    the same number of elements as `src1.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+*   A scalar and an array when src1 is constructed from Scalar or has
+    the same number of elements as `src2.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the second and third cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
+                             OutputArray dst, InputArray mask = noArray());
+
+/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
+arrays or an array and a scalar.
+
+The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
+operation for:
+*   Two arrays when src1 and src2 have the same size:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+*   An array and a scalar when src2 is constructed from Scalar or has
+    the same number of elements as `src1.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+*   A scalar and an array when src1 is constructed from Scalar or has
+    the same number of elements as `src2.channels()`:
+    \f[\texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the 2nd and 3rd cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
+                              OutputArray dst, InputArray mask = noArray());
+
+/** @brief  Inverts every bit of an array.
+
+The function cv::bitwise_not calculates per-element bit-wise inversion of the input
+array:
+\f[\texttt{dst} (I) =  \neg \texttt{src} (I)\f]
+In case of a floating-point input array, its machine-specific bit
+representation (usually IEEE754-compliant) is used for the operation. In
+case of multi-channel arrays, each channel is processed independently.
+@param src input array.
+@param dst output array that has the same size and type as the input
+array.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
+                              InputArray mask = noArray());
+
+/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
+
+The function cv::absdiff calculates:
+*   Absolute difference between two arrays when they have the same
+    size and type:
+    \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)\f]
+*   Absolute difference between an array and a scalar when the second
+    array is constructed from Scalar or has as many elements as the
+    number of channels in `src1`:
+    \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)\f]
+*   Absolute difference between a scalar and an array when the first
+    array is constructed from Scalar or has as many elements as the
+    number of channels in `src2`:
+    \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)\f]
+    where I is a multi-dimensional index of array elements. In case of
+    multi-channel arrays, each channel is processed independently.
+@note Saturation is not applied when the arrays have the depth CV_32S.
+You may even get a negative value in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as input arrays.
+@sa cv::abs(const Mat&)
+*/
+CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
+
+/** @brief  Checks if array elements lie between the elements of two other arrays.
+
+The function checks the range as follows:
+-   For every element of a single-channel input array:
+    \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0\f]
+-   For two-channel arrays:
+    \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1\f]
+-   and so forth.
+
+That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
+specified 1D, 2D, 3D, ... box and 0 otherwise.
+
+When the lower and/or upper boundary parameters are scalars, the indexes
+(I) at lowerb and upperb in the above formulas should be omitted.
+@param src first input array.
+@param lowerb inclusive lower boundary array or a scalar.
+@param upperb inclusive upper boundary array or a scalar.
+@param dst output array of the same size as src and CV_8U type.
+*/
+CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
+                          InputArray upperb, OutputArray dst);
+
+/** @brief Performs the per-element comparison of two arrays or an array and scalar value.
+
+The function compares:
+*   Elements of two arrays when src1 and src2 have the same size:
+    \f[\texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
+*   Elements of src1 with a scalar src2 when src2 is constructed from
+    Scalar or has a single element:
+    \f[\texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}\f]
+*   src1 with elements of src2 when src1 is constructed from Scalar or
+    has a single element:
+    \f[\texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
+When the comparison result is true, the corresponding element of output
+array is set to 255. The comparison operations can be replaced with the
+equivalent matrix expressions:
+@code{.cpp}
+    Mat dst1 = src1 >= src2;
+    Mat dst2 = src1 < 8;
+    ...
+@endcode
+@param src1 first input array or a scalar; when it is an array, it must have a single channel.
+@param src2 second input array or a scalar; when it is an array, it must have a single channel.
+@param dst output array of type ref CV_8U that has the same size and the same number of channels as
+    the input arrays.
+@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
+@sa checkRange, min, max, threshold
+*/
+CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
+
+/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
+
+The function cv::min calculates the per-element minimum of two arrays:
+\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
+or array and a scalar:
+\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1.
+@param dst output array of the same size and type as src1.
+@sa max, compare, inRange, minMaxLoc
+*/
+CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
+
+/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
+
+The function cv::max calculates the per-element maximum of two arrays:
+\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
+or array and a scalar:
+\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1 .
+@param dst output array of the same size and type as src1.
+@sa  min, compare, inRange, minMaxLoc, @ref MatrixExpressions
+*/
+CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
+
+/** @brief Calculates a square root of array elements.
+
+The function cv::sqrt calculates a square root of each input array element.
+In case of multi-channel arrays, each channel is processed
+independently. The accuracy is approximately the same as of the built-in
+std::sqrt .
+@param src input floating-point array.
+@param dst output array of the same size and type as src.
+*/
+CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
+
+/** @brief Raises every array element to a power.
+
+The function cv::pow raises every element of the input array to power :
+\f[\texttt{dst} (I) =  \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
+
+So, for a non-integer power exponent, the absolute values of input array
+elements are used. However, it is possible to get true values for
+negative values using some extra operations. In the example below,
+computing the 5th root of array src shows:
+@code{.cpp}
+    Mat mask = src < 0;
+    pow(src, 1./5, dst);
+    subtract(Scalar::all(0), dst, dst, mask);
+@endcode
+For some values of power, such as integer values, 0.5 and -0.5,
+specialized faster algorithms are used.
+
+Special values (NaN, Inf) are not handled.
+@param src input array.
+@param power exponent of power.
+@param dst output array of the same size and type as src.
+@sa sqrt, exp, log, cartToPolar, polarToCart
+*/
+CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
+
+/** @brief Calculates the exponent of every array element.
+
+The function cv::exp calculates the exponent of every element of the input
+array:
+\f[\texttt{dst} [I] = e^{ src(I) }\f]
+
+The maximum relative error is about 7e-6 for single-precision input and
+less than 1e-10 for double-precision input. Currently, the function
+converts denormalized values to zeros on output. Special values (NaN,
+Inf) are not handled.
+@param src input array.
+@param dst output array of the same size and type as src.
+@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
+*/
+CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
+
+/** @brief Calculates the natural logarithm of every array element.
+
+The function cv::log calculates the natural logarithm of every element of the input array:
+\f[\texttt{dst} (I) =  \log (\texttt{src}(I)) \f]
+
+Output on zero, negative and special (NaN, Inf) values is undefined.
+
+@param src input array.
+@param dst output array of the same size and type as src .
+@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
+*/
+CV_EXPORTS_W void log(InputArray src, OutputArray dst);
+
+/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
+
+The function cv::polarToCart calculates the Cartesian coordinates of each 2D
+vector represented by the corresponding elements of magnitude and angle:
+\f[\begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
+
+The relative accuracy of the estimated coordinates is about 1e-6.
+@param magnitude input floating-point array of magnitudes of 2D vectors;
+it can be an empty matrix (=Mat()), in this case, the function assumes
+that all the magnitudes are =1; if it is not empty, it must have the
+same size and type as angle.
+@param angle input floating-point array of angles of 2D vectors.
+@param x output array of x-coordinates of 2D vectors; it has the same
+size and type as angle.
+@param y output array of y-coordinates of 2D vectors; it has the same
+size and type as angle.
+@param angleInDegrees when true, the input angles are measured in
+degrees, otherwise, they are measured in radians.
+@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
+*/
+CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
+                              OutputArray x, OutputArray y, bool angleInDegrees = false);
+
+/** @brief Calculates the magnitude and angle of 2D vectors.
+
+The function cv::cartToPolar calculates either the magnitude, angle, or both
+for every 2D vector (x(I),y(I)):
+\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
+
+The angles are calculated with accuracy about 0.3 degrees. For the point
+(0,0), the angle is set to 0.
+@param x array of x-coordinates; this must be a single-precision or
+double-precision floating-point array.
+@param y array of y-coordinates, that must have the same size and same type as x.
+@param magnitude output array of magnitudes of the same size and type as x.
+@param angle output array of angles that has the same size and type as
+x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
+@param angleInDegrees a flag, indicating whether the angles are measured
+in radians (which is by default), or in degrees.
+@sa Sobel, Scharr
+*/
+CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
+                              OutputArray magnitude, OutputArray angle,
+                              bool angleInDegrees = false);
+
+/** @brief Calculates the rotation angle of 2D vectors.
+
+The function cv::phase calculates the rotation angle of each 2D vector that
+is formed from the corresponding elements of x and y :
+\f[\texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
+
+The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
+the corresponding angle(I) is set to 0.
+@param x input floating-point array of x-coordinates of 2D vectors.
+@param y input array of y-coordinates of 2D vectors; it must have the
+same size and the same type as x.
+@param angle output array of vector angles; it has the same size and
+same type as x .
+@param angleInDegrees when true, the function calculates the angle in
+degrees, otherwise, they are measured in radians.
+*/
+CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
+                        bool angleInDegrees = false);
+
+/** @brief Calculates the magnitude of 2D vectors.
+
+The function cv::magnitude calculates the magnitude of 2D vectors formed
+from the corresponding elements of x and y arrays:
+\f[\texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
+@param x floating-point array of x-coordinates of the vectors.
+@param y floating-point array of y-coordinates of the vectors; it must
+have the same size as x.
+@param magnitude output array of the same size and type as x.
+@sa cartToPolar, polarToCart, phase, sqrt
+*/
+CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
+
+/** @brief Checks every element of an input array for invalid values.
+
+The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
+-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
+maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
+are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
+function either returns false (when quiet=true) or throws an exception.
+@param a input array.
+@param quiet a flag, indicating whether the functions quietly return false when the array elements
+are out of range or they throw an exception.
+@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
+elements.
+@param minVal inclusive lower boundary of valid values range.
+@param maxVal exclusive upper boundary of valid values range.
+*/
+CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
+                            double minVal = -DBL_MAX, double maxVal = DBL_MAX);
+
+/** @brief converts NaN's to the given number
+*/
+CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
+
+/** @brief Performs generalized matrix multiplication.
+
+The function cv::gemm performs generalized matrix multiplication similar to the
+gemm functions in BLAS level 3. For example,
+`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
+corresponds to
+\f[\texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T\f]
+
+In case of complex (two-channel) data, performed a complex matrix
+multiplication.
+
+The function can be replaced with a matrix expression. For example, the
+above call can be replaced with:
+@code{.cpp}
+    dst = alpha*src1.t()*src2 + beta*src3.t();
+@endcode
+@param src1 first multiplied input matrix that could be real(CV_32FC1,
+CV_64FC1) or complex(CV_32FC2, CV_64FC2).
+@param src2 second multiplied input matrix of the same type as src1.
+@param alpha weight of the matrix product.
+@param src3 third optional delta matrix added to the matrix product; it
+should have the same type as src1 and src2.
+@param beta weight of src3.
+@param dst output matrix; it has the proper size and the same type as
+input matrices.
+@param flags operation flags (cv::GemmFlags)
+@sa mulTransposed , transform
+*/
+CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
+                       InputArray src3, double beta, OutputArray dst, int flags = 0);
+
+/** @brief Calculates the product of a matrix and its transposition.
+
+The function cv::mulTransposed calculates the product of src and its
+transposition:
+\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
+if aTa=true , and
+\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
+otherwise. The function is used to calculate the covariance matrix. With
+zero delta, it can be used as a faster substitute for general matrix
+product A\*B when B=A'
+@param src input single-channel matrix. Note that unlike gemm, the
+function can multiply not only floating-point matrices.
+@param dst output square matrix.
+@param aTa Flag specifying the multiplication ordering. See the
+description below.
+@param delta Optional delta matrix subtracted from src before the
+multiplication. When the matrix is empty ( delta=noArray() ), it is
+assumed to be zero, that is, nothing is subtracted. If it has the same
+size as src , it is simply subtracted. Otherwise, it is "repeated" (see
+repeat ) to cover the full src and then subtracted. Type of the delta
+matrix, when it is not empty, must be the same as the type of created
+output matrix. See the dtype parameter description below.
+@param scale Optional scale factor for the matrix product.
+@param dtype Optional type of the output matrix. When it is negative,
+the output matrix will have the same type as src . Otherwise, it will be
+type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
+@sa calcCovarMatrix, gemm, repeat, reduce
+*/
+CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
+                                 InputArray delta = noArray(),
+                                 double scale = 1, int dtype = -1 );
+
+/** @brief Transposes a matrix.
+
+The function cv::transpose transposes the matrix src :
+\f[\texttt{dst} (i,j) =  \texttt{src} (j,i)\f]
+@note No complex conjugation is done in case of a complex matrix. It
+should be done separately if needed.
+@param src input array.
+@param dst output array of the same type as src.
+*/
+CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
+
+/** @brief Performs the matrix transformation of every array element.
+
+The function cv::transform performs the matrix transformation of every
+element of the array src and stores the results in dst :
+\f[\texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)\f]
+(when m.cols=src.channels() ), or
+\f[\texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
+(when m.cols=src.channels()+1 )
+
+Every element of the N -channel array src is interpreted as N -element
+vector that is transformed using the M x N or M x (N+1) matrix m to
+M-element vector - the corresponding element of the output array dst .
+
+The function may be used for geometrical transformation of
+N -dimensional points, arbitrary linear color space transformation (such
+as various kinds of RGB to YUV transforms), shuffling the image
+channels, and so forth.
+@param src input array that must have as many channels (1 to 4) as
+m.cols or m.cols-1.
+@param dst output array of the same size and depth as src; it has as
+many channels as m.rows.
+@param m transformation 2x2 or 2x3 floating-point matrix.
+@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
+*/
+CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
+
+/** @brief Performs the perspective matrix transformation of vectors.
+
+The function cv::perspectiveTransform transforms every element of src by
+treating it as a 2D or 3D vector, in the following way:
+\f[(x, y, z)  \rightarrow (x'/w, y'/w, z'/w)\f]
+where
+\f[(x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}\f]
+and
+\f[w =  \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
+
+Here a 3D vector transformation is shown. In case of a 2D vector
+transformation, the z component is omitted.
+
+@note The function transforms a sparse set of 2D or 3D vectors. If you
+want to transform an image using perspective transformation, use
+warpPerspective . If you have an inverse problem, that is, you want to
+compute the most probable perspective transformation out of several
+pairs of corresponding points, you can use getPerspectiveTransform or
+findHomography .
+@param src input two-channel or three-channel floating-point array; each
+element is a 2D/3D vector to be transformed.
+@param dst output array of the same size and type as src.
+@param m 3x3 or 4x4 floating-point transformation matrix.
+@sa  transform, warpPerspective, getPerspectiveTransform, findHomography
+*/
+CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
+
+/** @brief Copies the lower or the upper half of a square matrix to another half.
+
+The function cv::completeSymm copies the lower half of a square matrix to
+its another half. The matrix diagonal remains unchanged:
+*   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
+    lowerToUpper=false
+*   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
+    lowerToUpper=true
+@param mtx input-output floating-point square matrix.
+@param lowerToUpper operation flag; if true, the lower half is copied to
+the upper half. Otherwise, the upper half is copied to the lower half.
+@sa flip, transpose
+*/
+CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
+
+/** @brief Initializes a scaled identity matrix.
+
+The function cv::setIdentity initializes a scaled identity matrix:
+\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
+
+The function can also be emulated using the matrix initializers and the
+matrix expressions:
+@code
+    Mat A = Mat::eye(4, 3, CV_32F)*5;
+    // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
+@endcode
+@param mtx matrix to initialize (not necessarily square).
+@param s value to assign to diagonal elements.
+@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
+*/
+CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
+
+/** @brief Returns the determinant of a square floating-point matrix.
+
+The function cv::determinant calculates and returns the determinant of the
+specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
+direct method is used. For larger matrices, the function uses LU
+factorization with partial pivoting.
+
+For symmetric positively-determined matrices, it is also possible to use
+eigen decomposition to calculate the determinant.
+@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
+square size.
+@sa trace, invert, solve, eigen, @ref MatrixExpressions
+*/
+CV_EXPORTS_W double determinant(InputArray mtx);
+
+/** @brief Returns the trace of a matrix.
+
+The function cv::trace returns the sum of the diagonal elements of the
+matrix mtx .
+\f[\mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)\f]
+@param mtx input matrix.
+*/
+CV_EXPORTS_W Scalar trace(InputArray mtx);
+
+/** @brief Finds the inverse or pseudo-inverse of a matrix.
+
+The function cv::invert inverts the matrix src and stores the result in dst
+. When the matrix src is singular or non-square, the function calculates
+the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
+minimal, where I is an identity matrix.
+
+In case of the DECOMP_LU method, the function returns non-zero value if
+the inverse has been successfully calculated and 0 if src is singular.
+
+In case of the DECOMP_SVD method, the function returns the inverse
+condition number of src (the ratio of the smallest singular value to the
+largest singular value) and 0 if src is singular. The SVD method
+calculates a pseudo-inverse matrix if src is singular.
+
+Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
+non-singular square matrices that should also be symmetrical and
+positively defined. In this case, the function stores the inverted
+matrix in dst and returns non-zero. Otherwise, it returns 0.
+
+@param src input floating-point M x N matrix.
+@param dst output matrix of N x M size and the same type as src.
+@param flags inversion method (cv::DecompTypes)
+@sa solve, SVD
+*/
+CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
+
+/** @brief Solves one or more linear systems or least-squares problems.
+
+The function cv::solve solves a linear system or least-squares problem (the
+latter is possible with SVD or QR methods, or by specifying the flag
+DECOMP_NORMAL ):
+\f[\texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|\f]
+
+If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
+if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
+it returns 0. In the latter case, dst is not valid. Other methods find a
+pseudo-solution in case of a singular left-hand side part.
+
+@note If you want to find a unity-norm solution of an under-defined
+singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
+will not do the work. Use SVD::solveZ instead.
+
+@param src1 input matrix on the left-hand side of the system.
+@param src2 input matrix on the right-hand side of the system.
+@param dst output solution.
+@param flags solution (matrix inversion) method (cv::DecompTypes)
+@sa invert, SVD, eigen
+*/
+CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
+                        OutputArray dst, int flags = DECOMP_LU);
+
+/** @brief Sorts each row or each column of a matrix.
+
+The function cv::sort sorts each matrix row or each matrix column in
+ascending or descending order. So you should pass two operation flags to
+get desired behaviour. If you want to sort matrix rows or columns
+lexicographically, you can use STL std::sort generic function with the
+proper comparison predicate.
+
+@param src input single-channel array.
+@param dst output array of the same size and type as src.
+@param flags operation flags, a combination of cv::SortFlags
+@sa sortIdx, randShuffle
+*/
+CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
+
+/** @brief Sorts each row or each column of a matrix.
+
+The function cv::sortIdx sorts each matrix row or each matrix column in the
+ascending or descending order. So you should pass two operation flags to
+get desired behaviour. Instead of reordering the elements themselves, it
+stores the indices of sorted elements in the output array. For example:
+@code
+    Mat A = Mat::eye(3,3,CV_32F), B;
+    sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
+    // B will probably contain
+    // (because of equal elements in A some permutations are possible):
+    // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
+@endcode
+@param src input single-channel array.
+@param dst output integer array of the same size as src.
+@param flags operation flags that could be a combination of cv::SortFlags
+@sa sort, randShuffle
+*/
+CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
+
+/** @brief Finds the real roots of a cubic equation.
+
+The function solveCubic finds the real roots of a cubic equation:
+-   if coeffs is a 4-element vector:
+\f[\texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0\f]
+-   if coeffs is a 3-element vector:
+\f[x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0\f]
+
+The roots are stored in the roots array.
+@param coeffs equation coefficients, an array of 3 or 4 elements.
+@param roots output array of real roots that has 1 or 3 elements.
+*/
+CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
+
+/** @brief Finds the real or complex roots of a polynomial equation.
+
+The function cv::solvePoly finds real and complex roots of a polynomial equation:
+\f[\texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0\f]
+@param coeffs array of polynomial coefficients.
+@param roots output (complex) array of roots.
+@param maxIters maximum number of iterations the algorithm does.
+*/
+CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
+
+/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
+
+The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
+matrix src:
+@code
+    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
+@endcode
+
+@note Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
+
+@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
+(src ^T^ == src).
+@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
+in the descending order.
+@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
+eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
+eigenvalues.
+@sa eigenNonSymmetric, completeSymm , PCA
+*/
+CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
+                        OutputArray eigenvectors = noArray());
+
+/** @brief Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
+
+@note Assumes real eigenvalues.
+
+The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
+@code
+    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
+@endcode
+
+@param src input matrix (CV_32FC1 or CV_64FC1 type).
+@param eigenvalues output vector of eigenvalues (type is the same type as src).
+@param eigenvectors output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
+@sa eigen
+*/
+CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
+                                    OutputArray eigenvectors);
+
+/** @brief Calculates the covariance matrix of a set of vectors.
+
+The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
+the set of input vectors.
+@param samples samples stored as separate matrices
+@param nsamples number of samples
+@param covar output covariance matrix of the type ctype and square size.
+@param mean input or output (depending on the flags) array as the average value of the input vectors.
+@param flags operation flags as a combination of cv::CovarFlags
+@param ctype type of the matrixl; it equals 'CV_64F' by default.
+@sa PCA, mulTransposed, Mahalanobis
+@todo InputArrayOfArrays
+*/
+CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
+                                 int flags, int ctype = CV_64F);
+
+/** @overload
+@note use cv::COVAR_ROWS or cv::COVAR_COLS flag
+@param samples samples stored as rows/columns of a single matrix.
+@param covar output covariance matrix of the type ctype and square size.
+@param mean input or output (depending on the flags) array as the average value of the input vectors.
+@param flags operation flags as a combination of cv::CovarFlags
+@param ctype type of the matrixl; it equals 'CV_64F' by default.
+*/
+CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
+                                   InputOutputArray mean, int flags, int ctype = CV_64F);
+
+/** wrap PCA::operator() */
+CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
+                             OutputArray eigenvectors, int maxComponents = 0);
+
+/** wrap PCA::operator() */
+CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
+                             OutputArray eigenvectors, double retainedVariance);
+
+/** wrap PCA::project */
+CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
+                             InputArray eigenvectors, OutputArray result);
+
+/** wrap PCA::backProject */
+CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
+                                 InputArray eigenvectors, OutputArray result);
+
+/** wrap SVD::compute */
+CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
+
+/** wrap SVD::backSubst */
+CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
+                               InputArray rhs, OutputArray dst );
+
+/** @brief Calculates the Mahalanobis distance between two vectors.
+
+The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
+\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
+The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
+the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
+@param v1 first 1D input vector.
+@param v2 second 1D input vector.
+@param icovar inverse covariance matrix.
+*/
+CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
+
+/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
+
+The function cv::dft performs one of the following:
+-   Forward the Fourier transform of a 1D vector of N elements:
+    \f[Y = F^{(N)}  \cdot X,\f]
+    where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
+-   Inverse the Fourier transform of a 1D vector of N elements:
+    \f[\begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}\f]
+    where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
+-   Forward the 2D Fourier transform of a M x N matrix:
+    \f[Y = F^{(M)}  \cdot X  \cdot F^{(N)}\f]
+-   Inverse the 2D Fourier transform of a M x N matrix:
+    \f[\begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}\f]
+
+In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
+spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
+(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
+is how 2D *CCS* spectrum looks:
+\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
+
+In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
+
+So, the function chooses an operation mode depending on the flags and size of the input array:
+-   If DFT_ROWS is set or the input array has a single row or single column, the function
+    performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
+    Otherwise, it performs a 2D transform.
+-   If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
+    2D transform:
+    -   When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
+        input.
+    -   When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
+        input. In case of 2D transform, it uses the packed format as shown above. In case of a
+        single 1D transform, it looks like the first row of the matrix above. In case of
+        multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
+        looks like the first row of the matrix above.
+-   If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
+    output is a complex array of the same size as input. The function performs a forward or
+    inverse 1D or 2D transform of the whole input array or each row of the input array
+    independently, depending on the flags DFT_INVERSE and DFT_ROWS.
+-   When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
+    is set, the output is a real array of the same size as input. The function performs a 1D or 2D
+    inverse transformation of the whole input array or each individual row, depending on the flags
+    DFT_INVERSE and DFT_ROWS.
+
+If DFT_SCALE is set, the scaling is done after the transformation.
+
+Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
+efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
+current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
+method.
+
+The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
+@code
+    void convolveDFT(InputArray A, InputArray B, OutputArray C)
+    {
+        // reallocate the output array if needed
+        C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
+        Size dftSize;
+        // calculate the size of DFT transform
+        dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
+        dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
+
+        // allocate temporary buffers and initialize them with 0's
+        Mat tempA(dftSize, A.type(), Scalar::all(0));
+        Mat tempB(dftSize, B.type(), Scalar::all(0));
+
+        // copy A and B to the top-left corners of tempA and tempB, respectively
+        Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
+        A.copyTo(roiA);
+        Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
+        B.copyTo(roiB);
+
+        // now transform the padded A & B in-place;
+        // use "nonzeroRows" hint for faster processing
+        dft(tempA, tempA, 0, A.rows);
+        dft(tempB, tempB, 0, B.rows);
+
+        // multiply the spectrums;
+        // the function handles packed spectrum representations well
+        mulSpectrums(tempA, tempB, tempA);
+
+        // transform the product back from the frequency domain.
+        // Even though all the result rows will be non-zero,
+        // you need only the first C.rows of them, and thus you
+        // pass nonzeroRows == C.rows
+        dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
+
+        // now copy the result back to C.
+        tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
+
+        // all the temporary buffers will be deallocated automatically
+    }
+@endcode
+To optimize this sample, consider the following approaches:
+-   Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
+    the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
+    tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
+    rightmost columns of the matrices.
+-   This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
+    is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
+    To do this, you need to split the output array C into multiple tiles. For each tile, estimate
+    which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
+    too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
+    each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
+    algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
+    there is also a slowdown because of bad cache locality. So, there is an optimal tile size
+    somewhere in the middle.
+-   If different tiles in C can be calculated in parallel and, thus, the convolution is done by
+    parts, the loop can be threaded.
+
+All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
+using them, you can get the performance even better than with the above theoretically optimal
+implementation. Though, those two functions actually calculate cross-correlation, not convolution,
+so you need to "flip" the second convolution operand B vertically and horizontally using flip .
+@note
+-   An example using the discrete fourier transform can be found at
+    opencv_source_code/samples/cpp/dft.cpp
+-   (Python) An example using the dft functionality to perform Wiener deconvolution can be found
+    at opencv_source/samples/python/deconvolution.py
+-   (Python) An example rearranging the quadrants of a Fourier image can be found at
+    opencv_source/samples/python/dft.py
+@param src input array that could be real or complex.
+@param dst output array whose size and type depends on the flags .
+@param flags transformation flags, representing a combination of the cv::DftFlags
+@param nonzeroRows when the parameter is not zero, the function assumes that only the first
+nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
+output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
+rows more efficiently and save some time; this technique is very useful for calculating array
+cross-correlation or convolution using DFT.
+@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
+magnitude , phase
+*/
+CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
+
+/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
+
+idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
+@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
+dft or idft explicitly to make these transforms mutually inverse.
+@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
+@param src input floating-point real or complex array.
+@param dst output array whose size and type depend on the flags.
+@param flags operation flags (see dft and cv::DftFlags).
+@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
+the convolution sample in dft description.
+*/
+CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
+
+/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
+
+The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
+floating-point array:
+-   Forward Cosine transform of a 1D vector of N elements:
+    \f[Y = C^{(N)}  \cdot X\f]
+    where
+    \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
+    and
+    \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
+-   Inverse Cosine transform of a 1D vector of N elements:
+    \f[X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y\f]
+    (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
+-   Forward 2D Cosine transform of M x N matrix:
+    \f[Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T\f]
+-   Inverse 2D Cosine transform of M x N matrix:
+    \f[X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}\f]
+
+The function chooses the mode of operation by looking at the flags and size of the input array:
+-   If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
+    is an inverse 1D or 2D transform.
+-   If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
+-   If the array is a single column or a single row, the function performs a 1D transform.
+-   If none of the above is true, the function performs a 2D transform.
+
+@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
+can pad the array when necessary.
+Also, the function performance depends very much, and not monotonically, on the array size (see
+getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
+of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
+@code
+    size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
+    N1 = getOptimalDCTSize(N);
+@endcode
+@param src input floating-point array.
+@param dst output array of the same size and type as src .
+@param flags transformation flags as a combination of cv::DftFlags (DCT_*)
+@sa dft , getOptimalDFTSize , idct
+*/
+CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
+
+/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
+
+idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
+@param src input floating-point single-channel array.
+@param dst output array of the same size and type as src.
+@param flags operation flags.
+@sa  dct, dft, idft, getOptimalDFTSize
+*/
+CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
+
+/** @brief Performs the per-element multiplication of two Fourier spectrums.
+
+The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
+matrices that are results of a real or complex Fourier transform.
+
+The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
+or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
+simply multiplied (per element) with an optional conjugation of the second-array elements. When the
+arrays are real, they are assumed to be CCS-packed (see dft for details).
+@param a first input array.
+@param b second input array of the same size and type as src1 .
+@param c output array of the same size and type as src1 .
+@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
+each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
+@param conjB optional flag that conjugates the second input array before the multiplication (true)
+or not (false).
+*/
+CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
+                               int flags, bool conjB = false);
+
+/** @brief Returns the optimal DFT size for a given vector size.
+
+DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
+convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
+pad the input data with zeros to get a bit larger array that can be transformed much faster than the
+original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
+Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
+are also processed quite efficiently.
+
+The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
+so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
+= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
+
+The function returns a negative number if vecsize is too large (very close to INT_MAX ).
+
+While the function cannot be used directly to estimate the optimal vector size for DCT transform
+(since the current DCT implementation supports only even-size vectors), it can be easily processed
+as getOptimalDFTSize((vecsize+1)/2)\*2.
+@param vecsize vector size.
+@sa dft , dct , idft , idct , mulSpectrums
+*/
+CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
+
+/** @brief Returns the default random number generator.
+
+The function cv::theRNG returns the default random number generator. For each thread, there is a
+separate random number generator, so you can use the function safely in multi-thread environments.
+If you just need to get a single random number using this generator or initialize an array, you can
+use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
+is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
+@sa RNG, randu, randn
+*/
+CV_EXPORTS RNG& theRNG();
+
+/** @brief Sets state of default random number generator.
+
+The function cv::setRNGSeed sets state of default random number generator to custom value.
+@param seed new state for default random number generator
+@sa RNG, randu, randn
+*/
+CV_EXPORTS_W void setRNGSeed(int seed);
+
+/** @brief Generates a single uniformly-distributed random number or an array of random numbers.
+
+Non-template variant of the function fills the matrix dst with uniformly-distributed
+random numbers from the specified range:
+\f[\texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c\f]
+@param dst output array of random numbers; the array must be pre-allocated.
+@param low inclusive lower boundary of the generated random numbers.
+@param high exclusive upper boundary of the generated random numbers.
+@sa RNG, randn, theRNG
+*/
+CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
+
+/** @brief Fills the array with normally distributed random numbers.
+
+The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
+mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
+value range of the output array data type.
+@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
+@param mean mean value (expectation) of the generated random numbers.
+@param stddev standard deviation of the generated random numbers; it can be either a vector (in
+which case a diagonal standard deviation matrix is assumed) or a square matrix.
+@sa RNG, randu
+*/
+CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
+
+/** @brief Shuffles the array elements randomly.
+
+The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
+swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
+@param dst input/output numerical 1D array.
+@param iterFactor scale factor that determines the number of random swap operations (see the details
+below).
+@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
+instead.
+@sa RNG, sort
+*/
+CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
+
+/** @brief Principal Component Analysis
+
+The class is used to calculate a special basis for a set of vectors. The
+basis will consist of eigenvectors of the covariance matrix calculated
+from the input set of vectors. The class %PCA can also transform
+vectors to/from the new coordinate space defined by the basis. Usually,
+in this new coordinate system, each vector from the original set (and
+any linear combination of such vectors) can be quite accurately
+approximated by taking its first few components, corresponding to the
+eigenvectors of the largest eigenvalues of the covariance matrix.
+Geometrically it means that you calculate a projection of the vector to
+a subspace formed by a few eigenvectors corresponding to the dominant
+eigenvalues of the covariance matrix. And usually such a projection is
+very close to the original vector. So, you can represent the original
+vector from a high-dimensional space with a much shorter vector
+consisting of the projected vector's coordinates in the subspace. Such a
+transformation is also known as Karhunen-Loeve Transform, or KLT.
+See http://en.wikipedia.org/wiki/Principal_component_analysis
+
+The sample below is the function that takes two matrices. The first
+function stores a set of vectors (a row per vector) that is used to
+calculate PCA. The second function stores another "test" set of vectors
+(a row per vector). First, these vectors are compressed with PCA, then
+reconstructed back, and then the reconstruction error norm is computed
+and printed for each vector. :
+
+@code{.cpp}
+using namespace cv;
+
+PCA compressPCA(const Mat& pcaset, int maxComponents,
+                const Mat& testset, Mat& compressed)
+{
+    PCA pca(pcaset, // pass the data
+            Mat(), // we do not have a pre-computed mean vector,
+                   // so let the PCA engine to compute it
+            PCA::DATA_AS_ROW, // indicate that the vectors
+                                // are stored as matrix rows
+                                // (use PCA::DATA_AS_COL if the vectors are
+                                // the matrix columns)
+            maxComponents // specify, how many principal components to retain
+            );
+    // if there is no test data, just return the computed basis, ready-to-use
+    if( !testset.data )
+        return pca;
+    CV_Assert( testset.cols == pcaset.cols );
+
+    compressed.create(testset.rows, maxComponents, testset.type());
+
+    Mat reconstructed;
+    for( int i = 0; i < testset.rows; i++ )
+    {
+        Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
+        // compress the vector, the result will be stored
+        // in the i-th row of the output matrix
+        pca.project(vec, coeffs);
+        // and then reconstruct it
+        pca.backProject(coeffs, reconstructed);
+        // and measure the error
+        printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
+    }
+    return pca;
+}
+@endcode
+@sa calcCovarMatrix, mulTransposed, SVD, dft, dct
+*/
+class CV_EXPORTS PCA
+{
+public:
+    enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
+                 DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
+                 USE_AVG     = 2  //!
+               };
+
+    /** @brief default constructor
+
+    The default constructor initializes an empty %PCA structure. The other
+    constructors initialize the structure and call PCA::operator()().
+    */
+    PCA();
+
+    /** @overload
+    @param data input samples stored as matrix rows or matrix columns.
+    @param mean optional mean value; if the matrix is empty (@c noArray()),
+    the mean is computed from the data.
+    @param flags operation flags; currently the parameter is only used to
+    specify the data layout (PCA::Flags)
+    @param maxComponents maximum number of components that %PCA should
+    retain; by default, all the components are retained.
+    */
+    PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
+
+    /** @overload
+    @param data input samples stored as matrix rows or matrix columns.
+    @param mean optional mean value; if the matrix is empty (noArray()),
+    the mean is computed from the data.
+    @param flags operation flags; currently the parameter is only used to
+    specify the data layout (PCA::Flags)
+    @param retainedVariance Percentage of variance that PCA should retain.
+    Using this parameter will let the PCA decided how many components to
+    retain but it will always keep at least 2.
+    */
+    PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
+
+    /** @brief performs %PCA
+
+    The operator performs %PCA of the supplied dataset. It is safe to reuse
+    the same PCA structure for multiple datasets. That is, if the structure
+    has been previously used with another dataset, the existing internal
+    data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref
+    mean are allocated and computed.
+
+    The computed @ref eigenvalues are sorted from the largest to the smallest and
+    the corresponding @ref eigenvectors are stored as eigenvectors rows.
+
+    @param data input samples stored as the matrix rows or as the matrix
+    columns.
+    @param mean optional mean value; if the matrix is empty (noArray()),
+    the mean is computed from the data.
+    @param flags operation flags; currently the parameter is only used to
+    specify the data layout. (Flags)
+    @param maxComponents maximum number of components that PCA should
+    retain; by default, all the components are retained.
+    */
+    PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
+
+    /** @overload
+    @param data input samples stored as the matrix rows or as the matrix
+    columns.
+    @param mean optional mean value; if the matrix is empty (noArray()),
+    the mean is computed from the data.
+    @param flags operation flags; currently the parameter is only used to
+    specify the data layout. (PCA::Flags)
+    @param retainedVariance Percentage of variance that %PCA should retain.
+    Using this parameter will let the %PCA decided how many components to
+    retain but it will always keep at least 2.
+     */
+    PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
+
+    /** @brief Projects vector(s) to the principal component subspace.
+
+    The methods project one or more vectors to the principal component
+    subspace, where each vector projection is represented by coefficients in
+    the principal component basis. The first form of the method returns the
+    matrix that the second form writes to the result. So the first form can
+    be used as a part of expression while the second form can be more
+    efficient in a processing loop.
+    @param vec input vector(s); must have the same dimensionality and the
+    same layout as the input data used at %PCA phase, that is, if
+    DATA_AS_ROW are specified, then `vec.cols==data.cols`
+    (vector dimensionality) and `vec.rows` is the number of vectors to
+    project, and the same is true for the PCA::DATA_AS_COL case.
+    */
+    Mat project(InputArray vec) const;
+
+    /** @overload
+    @param vec input vector(s); must have the same dimensionality and the
+    same layout as the input data used at PCA phase, that is, if
+    DATA_AS_ROW are specified, then `vec.cols==data.cols`
+    (vector dimensionality) and `vec.rows` is the number of vectors to
+    project, and the same is true for the PCA::DATA_AS_COL case.
+    @param result output vectors; in case of PCA::DATA_AS_COL, the
+    output matrix has as many columns as the number of input vectors, this
+    means that `result.cols==vec.cols` and the number of rows match the
+    number of principal components (for example, `maxComponents` parameter
+    passed to the constructor).
+     */
+    void project(InputArray vec, OutputArray result) const;
+
+    /** @brief Reconstructs vectors from their PC projections.
+
+    The methods are inverse operations to PCA::project. They take PC
+    coordinates of projected vectors and reconstruct the original vectors.
+    Unless all the principal components have been retained, the
+    reconstructed vectors are different from the originals. But typically,
+    the difference is small if the number of components is large enough (but
+    still much smaller than the original vector dimensionality). As a
+    result, PCA is used.
+    @param vec coordinates of the vectors in the principal component
+    subspace, the layout and size are the same as of PCA::project output
+    vectors.
+     */
+    Mat backProject(InputArray vec) const;
+
+    /** @overload
+    @param vec coordinates of the vectors in the principal component
+    subspace, the layout and size are the same as of PCA::project output
+    vectors.
+    @param result reconstructed vectors; the layout and size are the same as
+    of PCA::project input vectors.
+     */
+    void backProject(InputArray vec, OutputArray result) const;
+
+    /** @brief write PCA objects
+
+    Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage
+     */
+    void write(FileStorage& fs) const;
+
+    /** @brief load PCA objects
+
+    Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode
+     */
+    void read(const FileNode& fn);
+
+    Mat eigenvectors; //!< eigenvectors of the covariation matrix
+    Mat eigenvalues; //!< eigenvalues of the covariation matrix
+    Mat mean; //!< mean value subtracted before the projection and added after the back projection
+};
+
+/** @example pca.cpp
+  An example using %PCA for dimensionality reduction while maintaining an amount of variance
+ */
+
+/**
+   @brief Linear Discriminant Analysis
+   @todo document this class
+ */
+class CV_EXPORTS LDA
+{
+public:
+    /** @brief constructor
+    Initializes a LDA with num_components (default 0).
+    */
+    explicit LDA(int num_components = 0);
+
+    /** Initializes and performs a Discriminant Analysis with Fisher's
+     Optimization Criterion on given data in src and corresponding labels
+     in labels. If 0 (or less) number of components are given, they are
+     automatically determined for given data in computation.
+    */
+    LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
+
+    /** Serializes this object to a given filename.
+      */
+    void save(const String& filename) const;
+
+    /** Deserializes this object from a given filename.
+      */
+    void load(const String& filename);
+
+    /** Serializes this object to a given cv::FileStorage.
+      */
+    void save(FileStorage& fs) const;
+
+    /** Deserializes this object from a given cv::FileStorage.
+      */
+    void load(const FileStorage& node);
+
+    /** destructor
+      */
+    ~LDA();
+
+    /** Compute the discriminants for data in src (row aligned) and labels.
+      */
+    void compute(InputArrayOfArrays src, InputArray labels);
+
+    /** Projects samples into the LDA subspace.
+        src may be one or more row aligned samples.
+      */
+    Mat project(InputArray src);
+
+    /** Reconstructs projections from the LDA subspace.
+        src may be one or more row aligned projections.
+      */
+    Mat reconstruct(InputArray src);
+
+    /** Returns the eigenvectors of this LDA.
+      */
+    Mat eigenvectors() const { return _eigenvectors; }
+
+    /** Returns the eigenvalues of this LDA.
+      */
+    Mat eigenvalues() const { return _eigenvalues; }
+
+    static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
+    static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
+
+protected:
+    bool _dataAsRow; // unused, but needed for 3.0 ABI compatibility.
+    int _num_components;
+    Mat _eigenvectors;
+    Mat _eigenvalues;
+    void lda(InputArrayOfArrays src, InputArray labels);
+};
+
+/** @brief Singular Value Decomposition
+
+Class for computing Singular Value Decomposition of a floating-point
+matrix. The Singular Value Decomposition is used to solve least-square
+problems, under-determined linear systems, invert matrices, compute
+condition numbers, and so on.
+
+If you want to compute a condition number of a matrix or an absolute value of
+its determinant, you do not need `u` and `vt`. You can pass
+flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
+and vt must be computed, which is not necessary most of the time.
+
+@sa invert, solve, eigen, determinant
+*/
+class CV_EXPORTS SVD
+{
+public:
+    enum Flags {
+        /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
+            processing. currently ignored. */
+        MODIFY_A = 1,
+        /** indicates that only a vector of singular values `w` is to be processed, while u and vt
+            will be set to empty matrices */
+        NO_UV    = 2,
+        /** when the matrix is not square, by default the algorithm produces u and vt matrices of
+            sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
+            specified, u and vt will be full-size square orthogonal matrices.*/
+        FULL_UV  = 4
+    };
+
+    /** @brief the default constructor
+
+    initializes an empty SVD structure
+      */
+    SVD();
+
+    /** @overload
+    initializes an empty SVD structure and then calls SVD::operator()
+    @param src decomposed matrix.
+    @param flags operation flags (SVD::Flags)
+      */
+    SVD( InputArray src, int flags = 0 );
+
+    /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
+
+    The operator performs the singular value decomposition of the supplied
+    matrix. The u,`vt` , and the vector of singular values w are stored in
+    the structure. The same SVD structure can be reused many times with
+    different matrices. Each time, if needed, the previous u,`vt` , and w
+    are reclaimed and the new matrices are created, which is all handled by
+    Mat::create.
+    @param src decomposed matrix.
+    @param flags operation flags (SVD::Flags)
+      */
+    SVD& operator ()( InputArray src, int flags = 0 );
+
+    /** @brief decomposes matrix and stores the results to user-provided matrices
+
+    The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
+    and SVD::operator(), they store the results to the user-provided
+    matrices:
+
+    @code{.cpp}
+    Mat A, w, u, vt;
+    SVD::compute(A, w, u, vt);
+    @endcode
+
+    @param src decomposed matrix
+    @param w calculated singular values
+    @param u calculated left singular vectors
+    @param vt transposed matrix of right singular values
+    @param flags operation flags - see SVD::SVD.
+      */
+    static void compute( InputArray src, OutputArray w,
+                         OutputArray u, OutputArray vt, int flags = 0 );
+
+    /** @overload
+    computes singular values of a matrix
+    @param src decomposed matrix
+    @param w calculated singular values
+    @param flags operation flags - see SVD::Flags.
+      */
+    static void compute( InputArray src, OutputArray w, int flags = 0 );
+
+    /** @brief performs back substitution
+      */
+    static void backSubst( InputArray w, InputArray u,
+                           InputArray vt, InputArray rhs,
+                           OutputArray dst );
+
+    /** @brief solves an under-determined singular linear system
+
+    The method finds a unit-length solution x of a singular linear system
+    A\*x = 0. Depending on the rank of A, there can be no solutions, a
+    single solution or an infinite number of solutions. In general, the
+    algorithm solves the following problem:
+    \f[dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|\f]
+    @param src left-hand-side matrix.
+    @param dst found solution.
+      */
+    static void solveZ( InputArray src, OutputArray dst );
+
+    /** @brief performs a singular value back substitution.
+
+    The method calculates a back substitution for the specified right-hand
+    side:
+
+    \f[\texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}\f]
+
+    Using this technique you can either get a very accurate solution of the
+    convenient linear system, or the best (in the least-squares terms)
+    pseudo-solution of an overdetermined linear system.
+
+    @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
+    be solved, where A has been previously decomposed.
+
+    @param dst found solution of the system.
+
+    @note Explicit SVD with the further back substitution only makes sense
+    if you need to solve many linear systems with the same left-hand side
+    (for example, src ). If all you need is to solve a single system
+    (possibly with multiple rhs immediately available), simply call solve
+    add pass DECOMP_SVD there. It does absolutely the same thing.
+      */
+    void backSubst( InputArray rhs, OutputArray dst ) const;
+
+    /** @todo document */
+    template<typename _Tp, int m, int n, int nm> static
+    void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
+
+    /** @todo document */
+    template<typename _Tp, int m, int n, int nm> static
+    void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
+
+    /** @todo document */
+    template<typename _Tp, int m, int n, int nm, int nb> static
+    void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
+
+    Mat u, w, vt;
+};
+
+/** @brief Random Number Generator
+
+Random number generator. It encapsulates the state (currently, a 64-bit
+integer) and has methods to return scalar random values and to fill
+arrays with random values. Currently it supports uniform and Gaussian
+(normal) distributions. The generator uses Multiply-With-Carry
+algorithm, introduced by G. Marsaglia (
+<http://en.wikipedia.org/wiki/Multiply-with-carry> ).
+Gaussian-distribution random numbers are generated using the Ziggurat
+algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
+introduced by G. Marsaglia and W. W. Tsang.
+*/
+class CV_EXPORTS RNG
+{
+public:
+    enum { UNIFORM = 0,
+           NORMAL  = 1
+         };
+
+    /** @brief constructor
+
+    These are the RNG constructors. The first form sets the state to some
+    pre-defined value, equal to 2\*\*32-1 in the current implementation. The
+    second form sets the state to the specified value. If you passed state=0
+    , the constructor uses the above default value instead to avoid the
+    singular random number sequence, consisting of all zeros.
+    */
+    RNG();
+    /** @overload
+    @param state 64-bit value used to initialize the RNG.
+    */
+    RNG(uint64 state);
+    /**The method updates the state using the MWC algorithm and returns the
+    next 32-bit random number.*/
+    unsigned next();
+
+    /**Each of the methods updates the state using the MWC algorithm and
+    returns the next random number of the specified type. In case of integer
+    types, the returned number is from the available value range for the
+    specified type. In case of floating-point types, the returned value is
+    from [0,1) range.
+    */
+    operator uchar();
+    /** @overload */
+    operator schar();
+    /** @overload */
+    operator ushort();
+    /** @overload */
+    operator short();
+    /** @overload */
+    operator unsigned();
+    /** @overload */
+    operator int();
+    /** @overload */
+    operator float();
+    /** @overload */
+    operator double();
+
+    /** @brief returns a random integer sampled uniformly from [0, N).
+
+    The methods transform the state using the MWC algorithm and return the
+    next random number. The first form is equivalent to RNG::next . The
+    second form returns the random number modulo N , which means that the
+    result is in the range [0, N) .
+    */
+    unsigned operator ()();
+    /** @overload
+    @param N upper non-inclusive boundary of the returned random number.
+    */
+    unsigned operator ()(unsigned N);
+
+    /** @brief returns uniformly distributed integer random number from [a,b) range
+
+    The methods transform the state using the MWC algorithm and return the
+    next uniformly-distributed random number of the specified type, deduced
+    from the input parameter type, from the range [a, b) . There is a nuance
+    illustrated by the following sample:
+
+    @code{.cpp}
+    RNG rng;
+
+    // always produces 0
+    double a = rng.uniform(0, 1);
+
+    // produces double from [0, 1)
+    double a1 = rng.uniform((double)0, (double)1);
+
+    // produces float from [0, 1)
+    float b = rng.uniform(0.f, 1.f);
+
+    // produces double from [0, 1)
+    double c = rng.uniform(0., 1.);
+
+    // may cause compiler error because of ambiguity:
+    //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
+    double d = rng.uniform(0, 0.999999);
+    @endcode
+
+    The compiler does not take into account the type of the variable to
+    which you assign the result of RNG::uniform . The only thing that
+    matters to the compiler is the type of a and b parameters. So, if you
+    want a floating-point random number, but the range boundaries are
+    integer numbers, either put dots in the end, if they are constants, or
+    use explicit type cast operators, as in the a1 initialization above.
+    @param a lower inclusive boundary of the returned random number.
+    @param b upper non-inclusive boundary of the returned random number.
+      */
+    int uniform(int a, int b);
+    /** @overload */
+    float uniform(float a, float b);
+    /** @overload */
+    double uniform(double a, double b);
+
+    /** @brief Fills arrays with random numbers.
+
+    @param mat 2D or N-dimensional matrix; currently matrices with more than
+    4 channels are not supported by the methods, use Mat::reshape as a
+    possible workaround.
+    @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
+    @param a first distribution parameter; in case of the uniform
+    distribution, this is an inclusive lower boundary, in case of the normal
+    distribution, this is a mean value.
+    @param b second distribution parameter; in case of the uniform
+    distribution, this is a non-inclusive upper boundary, in case of the
+    normal distribution, this is a standard deviation (diagonal of the
+    standard deviation matrix or the full standard deviation matrix).
+    @param saturateRange pre-saturation flag; for uniform distribution only;
+    if true, the method will first convert a and b to the acceptable value
+    range (according to the mat datatype) and then will generate uniformly
+    distributed random numbers within the range [saturate(a), saturate(b)),
+    if saturateRange=false, the method will generate uniformly distributed
+    random numbers in the original range [a, b) and then will saturate them,
+    it means, for example, that
+    <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
+    produce array mostly filled with 0's and 255's, since the range (0, 255)
+    is significantly smaller than [-DBL_MAX, DBL_MAX).
+
+    Each of the methods fills the matrix with the random values from the
+    specified distribution. As the new numbers are generated, the RNG state
+    is updated accordingly. In case of multiple-channel images, every
+    channel is filled independently, which means that RNG cannot generate
+    samples from the multi-dimensional Gaussian distribution with
+    non-diagonal covariance matrix directly. To do that, the method
+    generates samples from multi-dimensional standard Gaussian distribution
+    with zero mean and identity covariation matrix, and then transforms them
+    using transform to get samples from the specified Gaussian distribution.
+    */
+    void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
+
+    /** @brief Returns the next random number sampled from the Gaussian distribution
+    @param sigma standard deviation of the distribution.
+
+    The method transforms the state using the MWC algorithm and returns the
+    next random number from the Gaussian distribution N(0,sigma) . That is,
+    the mean value of the returned random numbers is zero and the standard
+    deviation is the specified sigma .
+    */
+    double gaussian(double sigma);
+
+    uint64 state;
+
+    bool operator ==(const RNG& other) const;
+};
+
+/** @brief Mersenne Twister random number generator
+
+Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
+@todo document
+ */
+class CV_EXPORTS RNG_MT19937
+{
+public:
+    RNG_MT19937();
+    RNG_MT19937(unsigned s);
+    void seed(unsigned s);
+
+    unsigned next();
+
+    operator int();
+    operator unsigned();
+    operator float();
+    operator double();
+
+    unsigned operator ()(unsigned N);
+    unsigned operator ()();
+
+    /** @brief returns uniformly distributed integer random number from [a,b) range
+
+*/
+    int uniform(int a, int b);
+    /** @brief returns uniformly distributed floating-point random number from [a,b) range
+
+*/
+    float uniform(float a, float b);
+    /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
+
+*/
+    double uniform(double a, double b);
+
+private:
+    enum PeriodParameters {N = 624, M = 397};
+    unsigned state[N];
+    int mti;
+};
+
+//! @} core_array
+
+//! @addtogroup core_cluster
+//!  @{
+
+/** @example kmeans.cpp
+  An example on K-means clustering
+*/
+
+/** @brief Finds centers of clusters and groups input samples around the clusters.
+
+The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
+and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
+0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
+
+@note
+-   (Python) An example on K-means clustering can be found at
+    opencv_source_code/samples/python/kmeans.py
+@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
+Examples of this array can be:
+-   Mat points(count, 2, CV_32F);
+-   Mat points(count, 1, CV_32FC2);
+-   Mat points(1, count, CV_32FC2);
+-   std::vector\<cv::Point2f\> points(sampleCount);
+@param K Number of clusters to split the set by.
+@param bestLabels Input/output integer array that stores the cluster indices for every sample.
+@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
+the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
+centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
+@param attempts Flag to specify the number of times the algorithm is executed using different
+initial labellings. The algorithm returns the labels that yield the best compactness (see the last
+function parameter).
+@param flags Flag that can take values of cv::KmeansFlags
+@param centers Output matrix of the cluster centers, one row per each cluster center.
+@return The function returns the compactness measure that is computed as
+\f[\sum _i  \| \texttt{samples} _i -  \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
+after every attempt. The best (minimum) value is chosen and the corresponding labels and the
+compactness value are returned by the function. Basically, you can use only the core of the
+function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
+pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
+(most-compact) clustering.
+*/
+CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
+                            TermCriteria criteria, int attempts,
+                            int flags, OutputArray centers = noArray() );
+
+//! @} core_cluster
+
+//! @addtogroup core_basic
+//! @{
+
+/////////////////////////////// Formatted output of cv::Mat ///////////////////////////
+
+/** @todo document */
+class CV_EXPORTS Formatted
+{
+public:
+    virtual const char* next() = 0;
+    virtual void reset() = 0;
+    virtual ~Formatted();
+};
+
+/** @todo document */
+class CV_EXPORTS Formatter
+{
+public:
+    enum { FMT_DEFAULT = 0,
+           FMT_MATLAB  = 1,
+           FMT_CSV     = 2,
+           FMT_PYTHON  = 3,
+           FMT_NUMPY   = 4,
+           FMT_C       = 5
+         };
+
+    virtual ~Formatter();
+
+    virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
+
+    virtual void set32fPrecision(int p = 8) = 0;
+    virtual void set64fPrecision(int p = 16) = 0;
+    virtual void setMultiline(bool ml = true) = 0;
+
+    static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
+
+};
+
+static inline
+String& operator << (String& out, Ptr<Formatted> fmtd)
+{
+    fmtd->reset();
+    for(const char* str = fmtd->next(); str; str = fmtd->next())
+        out += cv::String(str);
+    return out;
+}
+
+static inline
+String& operator << (String& out, const Mat& mtx)
+{
+    return out << Formatter::get()->format(mtx);
+}
+
+//////////////////////////////////////// Algorithm ////////////////////////////////////
+
+class CV_EXPORTS Algorithm;
+
+template<typename _Tp> struct ParamType {};
+
+
+/** @brief This is a base class for all more or less complex algorithms in OpenCV
+
+especially for classes of algorithms, for which there can be multiple implementations. The examples
+are stereo correspondence (for which there are algorithms like block matching, semi-global block
+matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
+models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
+etc.).
+
+Here is example of SIFT use in your application via Algorithm interface:
+@code
+    #include "opencv2/opencv.hpp"
+    #include "opencv2/xfeatures2d.hpp"
+    using namespace cv::xfeatures2d;
+
+    Ptr<Feature2D> sift = SIFT::create();
+    FileStorage fs("sift_params.xml", FileStorage::READ);
+    if( fs.isOpened() ) // if we have file with parameters, read them
+    {
+        sift->read(fs["sift_params"]);
+        fs.release();
+    }
+    else // else modify the parameters and store them; user can later edit the file to use different parameters
+    {
+        sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
+        {
+            WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
+            sift->write(fs);
+        }
+    }
+    Mat image = imread("myimage.png", 0), descriptors;
+    vector<KeyPoint> keypoints;
+    sift->detectAndCompute(image, noArray(), keypoints, descriptors);
+@endcode
+ */
+class CV_EXPORTS_W Algorithm
+{
+public:
+    Algorithm();
+    virtual ~Algorithm();
+
+    /** @brief Clears the algorithm state
+    */
+    CV_WRAP virtual void clear() {}
+
+    /** @brief Stores algorithm parameters in a file storage
+    */
+    virtual void write(FileStorage& fs) const { (void)fs; }
+
+    /** @brief Reads algorithm parameters from a file storage
+    */
+    virtual void read(const FileNode& fn) { (void)fn; }
+
+    /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
+     */
+    virtual bool empty() const { return false; }
+
+    /** @brief Reads algorithm from the file node
+
+     This is static template method of Algorithm. It's usage is following (in the case of SVM):
+     @code
+     cv::FileStorage fsRead("example.xml", FileStorage::READ);
+     Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
+     @endcode
+     In order to make this method work, the derived class must overwrite Algorithm::read(const
+     FileNode& fn) and also have static create() method without parameters
+     (or with all the optional parameters)
+     */
+    template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
+    {
+        Ptr<_Tp> obj = _Tp::create();
+        obj->read(fn);
+        return !obj->empty() ? obj : Ptr<_Tp>();
+    }
+
+    /** @brief Loads algorithm from the file
+
+     @param filename Name of the file to read.
+     @param objname The optional name of the node to read (if empty, the first top-level node will be used)
+
+     This is static template method of Algorithm. It's usage is following (in the case of SVM):
+     @code
+     Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
+     @endcode
+     In order to make this method work, the derived class must overwrite Algorithm::read(const
+     FileNode& fn).
+     */
+    template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
+    {
+        FileStorage fs(filename, FileStorage::READ);
+        FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
+        if (fn.empty()) return Ptr<_Tp>();
+        Ptr<_Tp> obj = _Tp::create();
+        obj->read(fn);
+        return !obj->empty() ? obj : Ptr<_Tp>();
+    }
+
+    /** @brief Loads algorithm from a String
+
+     @param strModel The string variable containing the model you want to load.
+     @param objname The optional name of the node to read (if empty, the first top-level node will be used)
+
+     This is static template method of Algorithm. It's usage is following (in the case of SVM):
+     @code
+     Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
+     @endcode
+     */
+    template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
+    {
+        FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
+        FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
+        Ptr<_Tp> obj = _Tp::create();
+        obj->read(fn);
+        return !obj->empty() ? obj : Ptr<_Tp>();
+    }
+
+    /** Saves the algorithm to a file.
+     In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
+    CV_WRAP virtual void save(const String& filename) const;
+
+    /** Returns the algorithm string identifier.
+     This string is used as top level xml/yml node tag when the object is saved to a file or string. */
+    CV_WRAP virtual String getDefaultName() const;
+
+protected:
+    void writeFormat(FileStorage& fs) const;
+};
+
+struct Param {
+    enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
+           UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
+};
+
+
+
+template<> struct ParamType<bool>
+{
+    typedef bool const_param_type;
+    typedef bool member_type;
+
+    enum { type = Param::BOOLEAN };
+};
+
+template<> struct ParamType<int>
+{
+    typedef int const_param_type;
+    typedef int member_type;
+
+    enum { type = Param::INT };
+};
+
+template<> struct ParamType<double>
+{
+    typedef double const_param_type;
+    typedef double member_type;
+
+    enum { type = Param::REAL };
+};
+
+template<> struct ParamType<String>
+{
+    typedef const String& const_param_type;
+    typedef String member_type;
+
+    enum { type = Param::STRING };
+};
+
+template<> struct ParamType<Mat>
+{
+    typedef const Mat& const_param_type;
+    typedef Mat member_type;
+
+    enum { type = Param::MAT };
+};
+
+template<> struct ParamType<std::vector<Mat> >
+{
+    typedef const std::vector<Mat>& const_param_type;
+    typedef std::vector<Mat> member_type;
+
+    enum { type = Param::MAT_VECTOR };
+};
+
+template<> struct ParamType<Algorithm>
+{
+    typedef const Ptr<Algorithm>& const_param_type;
+    typedef Ptr<Algorithm> member_type;
+
+    enum { type = Param::ALGORITHM };
+};
+
+template<> struct ParamType<float>
+{
+    typedef float const_param_type;
+    typedef float member_type;
+
+    enum { type = Param::FLOAT };
+};
+
+template<> struct ParamType<unsigned>
+{
+    typedef unsigned const_param_type;
+    typedef unsigned member_type;
+
+    enum { type = Param::UNSIGNED_INT };
+};
+
+template<> struct ParamType<uint64>
+{
+    typedef uint64 const_param_type;
+    typedef uint64 member_type;
+
+    enum { type = Param::UINT64 };
+};
+
+template<> struct ParamType<uchar>
+{
+    typedef uchar const_param_type;
+    typedef uchar member_type;
+
+    enum { type = Param::UCHAR };
+};
+
+//! @} core_basic
+
+} //namespace cv
+
+#include "opencv2/core/operations.hpp"
+#include "opencv2/core/cvstd.inl.hpp"
+#include "opencv2/core/utility.hpp"
+#include "opencv2/core/optim.hpp"
+#include "opencv2/core/ovx.hpp"
+
+#endif /*OPENCV_CORE_HPP*/

+ 528 - 0
cv/include/opencv2/core/affine.hpp

@@ -0,0 +1,528 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_AFFINE3_HPP
+#define OPENCV_CORE_AFFINE3_HPP
+
+#ifdef __cplusplus
+
+#include <opencv2/core.hpp>
+
+namespace cv
+{
+
+//! @addtogroup core
+//! @{
+
+    /** @brief Affine transform
+      @todo document
+     */
+    template<typename T>
+    class Affine3
+    {
+    public:
+        typedef T float_type;
+        typedef Matx<float_type, 3, 3> Mat3;
+        typedef Matx<float_type, 4, 4> Mat4;
+        typedef Vec<float_type, 3> Vec3;
+
+        Affine3();
+
+        //! Augmented affine matrix
+        Affine3(const Mat4& affine);
+
+        //! Rotation matrix
+        Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));
+
+        //! Rodrigues vector
+        Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));
+
+        //! Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix
+        explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));
+
+        //! From 16th element array
+        explicit Affine3(const float_type* vals);
+
+        //! Create identity transform
+        static Affine3 Identity();
+
+        //! Rotation matrix
+        void rotation(const Mat3& R);
+
+        //! Rodrigues vector
+        void rotation(const Vec3& rvec);
+
+        //! Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
+        void rotation(const Mat& data);
+
+        void linear(const Mat3& L);
+        void translation(const Vec3& t);
+
+        Mat3 rotation() const;
+        Mat3 linear() const;
+        Vec3 translation() const;
+
+        //! Rodrigues vector
+        Vec3 rvec() const;
+
+        Affine3 inv(int method = cv::DECOMP_SVD) const;
+
+        //! a.rotate(R) is equivalent to Affine(R, 0) * a;
+        Affine3 rotate(const Mat3& R) const;
+
+        //! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a;
+        Affine3 rotate(const Vec3& rvec) const;
+
+        //! a.translate(t) is equivalent to Affine(E, t) * a;
+        Affine3 translate(const Vec3& t) const;
+
+        //! a.concatenate(affine) is equivalent to affine * a;
+        Affine3 concatenate(const Affine3& affine) const;
+
+        template <typename Y> operator Affine3<Y>() const;
+
+        template <typename Y> Affine3<Y> cast() const;
+
+        Mat4 matrix;
+
+#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
+        Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
+        Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
+        operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
+        operator Eigen::Transform<T, 3, Eigen::Affine>() const;
+#endif
+    };
+
+    template<typename T> static
+    Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);
+
+    template<typename T, typename V> static
+    V operator*(const Affine3<T>& affine, const V& vector);
+
+    typedef Affine3<float> Affine3f;
+    typedef Affine3<double> Affine3d;
+
+    static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
+    static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);
+
+    template<typename _Tp> class DataType< Affine3<_Tp> >
+    {
+    public:
+        typedef Affine3<_Tp>                               value_type;
+        typedef Affine3<typename DataType<_Tp>::work_type> work_type;
+        typedef _Tp                                        channel_type;
+
+        enum { generic_type = 0,
+               channels     = 16,
+               fmt          = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
+#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
+               ,depth        = DataType<channel_type>::depth
+               ,type         = CV_MAKETYPE(depth, channels)
+#endif
+             };
+
+        typedef Vec<channel_type, channels> vec_type;
+    };
+
+    namespace traits {
+    template<typename _Tp>
+    struct Depth< Affine3<_Tp> > { enum { value = Depth<_Tp>::value }; };
+    template<typename _Tp>
+    struct Type< Affine3<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 16) }; };
+    } // namespace
+
+//! @} core
+
+}
+
+//! @cond IGNORED
+
+///////////////////////////////////////////////////////////////////////////////////
+// Implementaiton
+
+template<typename T> inline
+cv::Affine3<T>::Affine3()
+    : matrix(Mat4::eye())
+{}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const Mat4& affine)
+    : matrix(affine)
+{}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
+{
+    rotation(R);
+    translation(t);
+    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
+    matrix.val[15] = 1;
+}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
+{
+    rotation(_rvec);
+    translation(t);
+    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
+    matrix.val[15] = 1;
+}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
+{
+    CV_Assert(data.type() == cv::traits::Type<T>::value);
+
+    if (data.cols == 4 && data.rows == 4)
+    {
+        data.copyTo(matrix);
+        return;
+    }
+    else if (data.cols == 4 && data.rows == 3)
+    {
+        rotation(data(Rect(0, 0, 3, 3)));
+        translation(data(Rect(3, 0, 1, 3)));
+    }
+    else
+    {
+        rotation(data);
+        translation(t);
+    }
+
+    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
+    matrix.val[15] = 1;
+}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
+{}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::Identity()
+{
+    return Affine3<T>(cv::Affine3<T>::Mat4::eye());
+}
+
+template<typename T> inline
+void cv::Affine3<T>::rotation(const Mat3& R)
+{
+    linear(R);
+}
+
+template<typename T> inline
+void cv::Affine3<T>::rotation(const Vec3& _rvec)
+{
+    double theta = norm(_rvec);
+
+    if (theta < DBL_EPSILON)
+        rotation(Mat3::eye());
+    else
+    {
+        double c = std::cos(theta);
+        double s = std::sin(theta);
+        double c1 = 1. - c;
+        double itheta = (theta != 0) ? 1./theta : 0.;
+
+        Point3_<T> r = _rvec*itheta;
+
+        Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z );
+        Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 );
+
+        // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
+        // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
+        Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x;
+
+        rotation(R);
+    }
+}
+
+//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
+template<typename T> inline
+void cv::Affine3<T>::rotation(const cv::Mat& data)
+{
+    CV_Assert(data.type() == cv::traits::Type<T>::value);
+
+    if (data.cols == 3 && data.rows == 3)
+    {
+        Mat3 R;
+        data.copyTo(R);
+        rotation(R);
+    }
+    else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
+    {
+        Vec3 _rvec;
+        data.reshape(1, 3).copyTo(_rvec);
+        rotation(_rvec);
+    }
+    else
+        CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1");
+}
+
+template<typename T> inline
+void cv::Affine3<T>::linear(const Mat3& L)
+{
+    matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1];  matrix.val[ 2] = L.val[2];
+    matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4];  matrix.val[ 6] = L.val[5];
+    matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7];  matrix.val[10] = L.val[8];
+}
+
+template<typename T> inline
+void cv::Affine3<T>::translation(const Vec3& t)
+{
+    matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
+}
+
+template<typename T> inline
+typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
+{
+    return linear();
+}
+
+template<typename T> inline
+typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
+{
+    typename cv::Affine3<T>::Mat3 R;
+    R.val[0] = matrix.val[0];  R.val[1] = matrix.val[1];  R.val[2] = matrix.val[ 2];
+    R.val[3] = matrix.val[4];  R.val[4] = matrix.val[5];  R.val[5] = matrix.val[ 6];
+    R.val[6] = matrix.val[8];  R.val[7] = matrix.val[9];  R.val[8] = matrix.val[10];
+    return R;
+}
+
+template<typename T> inline
+typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
+{
+    return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
+}
+
+template<typename T> inline
+typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
+{
+    cv::Vec3d w;
+    cv::Matx33d u, vt, R = rotation();
+    cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
+    R = u * vt;
+
+    double rx = R.val[7] - R.val[5];
+    double ry = R.val[2] - R.val[6];
+    double rz = R.val[3] - R.val[1];
+
+    double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
+    double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
+    c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
+    double theta = acos(c);
+
+    if( s < 1e-5 )
+    {
+        if( c > 0 )
+            rx = ry = rz = 0;
+        else
+        {
+            double t;
+            t = (R.val[0] + 1) * 0.5;
+            rx = std::sqrt(std::max(t, 0.0));
+            t = (R.val[4] + 1) * 0.5;
+            ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
+            t = (R.val[8] + 1) * 0.5;
+            rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);
+
+            if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
+                rz = -rz;
+            theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
+            rx *= theta;
+            ry *= theta;
+            rz *= theta;
+        }
+    }
+    else
+    {
+        double vth = 1/(2*s);
+        vth *= theta;
+        rx *= vth; ry *= vth; rz *= vth;
+    }
+
+    return cv::Vec3d(rx, ry, rz);
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::inv(int method) const
+{
+    return matrix.inv(method);
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
+{
+    Mat3 Lc = linear();
+    Vec3 tc = translation();
+    Mat4 result;
+    result.val[12] = result.val[13] = result.val[14] = 0;
+    result.val[15] = 1;
+
+    for(int j = 0; j < 3; ++j)
+    {
+        for(int i = 0; i < 3; ++i)
+        {
+            float_type value = 0;
+            for(int k = 0; k < 3; ++k)
+                value += R(j, k) * Lc(k, i);
+            result(j, i) = value;
+        }
+
+        result(j, 3) = R.row(j).dot(tc.t());
+    }
+    return result;
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
+{
+    return rotate(Affine3f(_rvec).rotation());
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
+{
+    Mat4 m = matrix;
+    m.val[ 3] += t[0];
+    m.val[ 7] += t[1];
+    m.val[11] += t[2];
+    return m;
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
+{
+    return (*this).rotate(affine.rotation()).translate(affine.translation());
+}
+
+template<typename T> template <typename Y> inline
+cv::Affine3<T>::operator Affine3<Y>() const
+{
+    return Affine3<Y>(matrix);
+}
+
+template<typename T> template <typename Y> inline
+cv::Affine3<Y> cv::Affine3<T>::cast() const
+{
+    return Affine3<Y>(matrix);
+}
+
+template<typename T> inline
+cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
+{
+    return affine2.concatenate(affine1);
+}
+
+template<typename T, typename V> inline
+V cv::operator*(const cv::Affine3<T>& affine, const V& v)
+{
+    const typename Affine3<T>::Mat4& m = affine.matrix;
+
+    V r;
+    r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
+    r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
+    r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
+    return r;
+}
+
+static inline
+cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
+{
+    const cv::Matx44f& m = affine.matrix;
+    cv::Vec3f r;
+    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
+    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
+    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
+    return r;
+}
+
+static inline
+cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
+{
+    const cv::Matx44d& m = affine.matrix;
+    cv::Vec3d r;
+    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
+    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
+    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
+    return r;
+}
+
+
+
+#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
+{
+    cv::Mat(4, 4, cv::traits::Type<T>::value, affine.matrix().data()).copyTo(matrix);
+}
+
+template<typename T> inline
+cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
+{
+    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
+    cv::Mat(4, 4, cv::traits::Type<T>::value, a.matrix().data()).copyTo(matrix);
+}
+
+template<typename T> inline
+cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
+{
+    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
+    cv::Mat hdr(4, 4, cv::traits::Type<T>::value, r.matrix().data());
+    cv::Mat(matrix, false).copyTo(hdr);
+    return r;
+}
+
+template<typename T> inline
+cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
+{
+    return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
+}
+
+#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */
+
+//! @endcond
+
+#endif /* __cplusplus */
+
+#endif /* OPENCV_CORE_AFFINE3_HPP */

+ 745 - 0
cv/include/opencv2/core/base.hpp

@@ -0,0 +1,745 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Copyright (C) 2014, Itseez Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_BASE_HPP
+#define OPENCV_CORE_BASE_HPP
+
+#ifndef __cplusplus
+#  error base.hpp header must be compiled as C++
+#endif
+
+#include "opencv2/opencv_modules.hpp"
+
+#include <climits>
+#include <algorithm>
+
+#include "opencv2/core/cvdef.h"
+#include "opencv2/core/cvstd.hpp"
+
+namespace cv
+{
+
+//! @addtogroup core_utils
+//! @{
+
+namespace Error {
+//! error codes
+enum Code {
+    StsOk=                       0,  //!< everything is ok
+    StsBackTrace=               -1,  //!< pseudo error for back trace
+    StsError=                   -2,  //!< unknown /unspecified error
+    StsInternal=                -3,  //!< internal error (bad state)
+    StsNoMem=                   -4,  //!< insufficient memory
+    StsBadArg=                  -5,  //!< function arg/param is bad
+    StsBadFunc=                 -6,  //!< unsupported function
+    StsNoConv=                  -7,  //!< iteration didn't converge
+    StsAutoTrace=               -8,  //!< tracing
+    HeaderIsNull=               -9,  //!< image header is NULL
+    BadImageSize=              -10,  //!< image size is invalid
+    BadOffset=                 -11,  //!< offset is invalid
+    BadDataPtr=                -12,  //!<
+    BadStep=                   -13,  //!< image step is wrong, this may happen for a non-continuous matrix.
+    BadModelOrChSeq=           -14,  //!<
+    BadNumChannels=            -15,  //!< bad number of channels, for example, some functions accept only single channel matrices.
+    BadNumChannel1U=           -16,  //!<
+    BadDepth=                  -17,  //!< input image depth is not supported by the function
+    BadAlphaChannel=           -18,  //!<
+    BadOrder=                  -19,  //!< number of dimensions is out of range
+    BadOrigin=                 -20,  //!< incorrect input origin
+    BadAlign=                  -21,  //!< incorrect input align
+    BadCallBack=               -22,  //!<
+    BadTileSize=               -23,  //!<
+    BadCOI=                    -24,  //!< input COI is not supported
+    BadROISize=                -25,  //!< incorrect input roi
+    MaskIsTiled=               -26,  //!<
+    StsNullPtr=                -27,  //!< null pointer
+    StsVecLengthErr=           -28,  //!< incorrect vector length
+    StsFilterStructContentErr= -29,  //!< incorrect filter structure content
+    StsKernelStructContentErr= -30,  //!< incorrect transform kernel content
+    StsFilterOffsetErr=        -31,  //!< incorrect filter offset value
+    StsBadSize=                -201, //!< the input/output structure size is incorrect
+    StsDivByZero=              -202, //!< division by zero
+    StsInplaceNotSupported=    -203, //!< in-place operation is not supported
+    StsObjectNotFound=         -204, //!< request can't be completed
+    StsUnmatchedFormats=       -205, //!< formats of input/output arrays differ
+    StsBadFlag=                -206, //!< flag is wrong or not supported
+    StsBadPoint=               -207, //!< bad CvPoint
+    StsBadMask=                -208, //!< bad format of mask (neither 8uC1 nor 8sC1)
+    StsUnmatchedSizes=         -209, //!< sizes of input/output structures do not match
+    StsUnsupportedFormat=      -210, //!< the data format/type is not supported by the function
+    StsOutOfRange=             -211, //!< some of parameters are out of range
+    StsParseError=             -212, //!< invalid syntax/structure of the parsed file
+    StsNotImplemented=         -213, //!< the requested function/feature is not implemented
+    StsBadMemBlock=            -214, //!< an allocated block has been corrupted
+    StsAssert=                 -215, //!< assertion failed
+    GpuNotSupported=           -216, //!< no CUDA support
+    GpuApiCallError=           -217, //!< GPU API call error
+    OpenGlNotSupported=        -218, //!< no OpenGL support
+    OpenGlApiCallError=        -219, //!< OpenGL API call error
+    OpenCLApiCallError=        -220, //!< OpenCL API call error
+    OpenCLDoubleNotSupported=  -221,
+    OpenCLInitError=           -222, //!< OpenCL initialization error
+    OpenCLNoAMDBlasFft=        -223
+};
+} //Error
+
+//! @} core_utils
+
+//! @addtogroup core_array
+//! @{
+
+//! matrix decomposition types
+enum DecompTypes {
+    /** Gaussian elimination with the optimal pivot element chosen. */
+    DECOMP_LU       = 0,
+    /** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix
+    src1 can be singular */
+    DECOMP_SVD      = 1,
+    /** eigenvalue decomposition; the matrix src1 must be symmetrical */
+    DECOMP_EIG      = 2,
+    /** Cholesky \f$LL^T\f$ factorization; the matrix src1 must be symmetrical and positively
+    defined */
+    DECOMP_CHOLESKY = 3,
+    /** QR factorization; the system can be over-defined and/or the matrix src1 can be singular */
+    DECOMP_QR       = 4,
+    /** while all the previous flags are mutually exclusive, this flag can be used together with
+    any of the previous; it means that the normal equations
+    \f$\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}\f$ are
+    solved instead of the original system
+    \f$\texttt{src1}\cdot\texttt{dst}=\texttt{src2}\f$ */
+    DECOMP_NORMAL   = 16
+};
+
+/** norm types
+
+src1 and src2 denote input arrays.
+*/
+
+enum NormTypes {
+                /**
+                \f[
+                norm =  \forkthree
+                {\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM_INF}\) }
+                {\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM_INF}\) }
+                {\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
+                \f]
+                */
+                NORM_INF       = 1,
+                /**
+                \f[
+                norm =  \forkthree
+                {\| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM_L1}\)}
+                { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM_L1}\) }
+                { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
+                \f]*/
+                 NORM_L1        = 2,
+                 /**
+                 \f[
+                 norm =  \forkthree
+                 { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  \(\texttt{normType} = \texttt{NORM_L2}\) }
+                 { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  \(\texttt{normType} = \texttt{NORM_L2}\) }
+                 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }
+                 \f]
+                 */
+                 NORM_L2        = 4,
+                 /**
+                 \f[
+                 norm =  \forkthree
+                 { \| \texttt{src1} \| _{L_2} ^{2} = \sum_I \texttt{src1}(I)^2} {if  \(\texttt{normType} = \texttt{NORM_L2SQR}\)}
+                 { \| \texttt{src1} - \texttt{src2} \| _{L_2} ^{2} =  \sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2 }{if  \(\texttt{normType} = \texttt{NORM_L2SQR}\) }
+                 { \left(\frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}}\right)^2 }{if  \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }
+                 \f]
+                 */
+                 NORM_L2SQR     = 5,
+                 /**
+                 In the case of one input array, calculates the Hamming distance of the array from zero,
+                 In the case of two input arrays, calculates the Hamming distance between the arrays.
+                 */
+                 NORM_HAMMING   = 6,
+                 /**
+                 Similar to NORM_HAMMING, but in the calculation, each two bits of the input sequence will
+                 be added and treated as a single bit to be used in the same calculation as NORM_HAMMING.
+                 */
+                 NORM_HAMMING2  = 7,
+                 NORM_TYPE_MASK = 7, //!< bit-mask which can be used to separate norm type from norm flags
+                 NORM_RELATIVE  = 8, //!< flag
+                 NORM_MINMAX    = 32 //!< flag
+               };
+
+//! comparison types
+enum CmpTypes { CMP_EQ = 0, //!< src1 is equal to src2.
+                CMP_GT = 1, //!< src1 is greater than src2.
+                CMP_GE = 2, //!< src1 is greater than or equal to src2.
+                CMP_LT = 3, //!< src1 is less than src2.
+                CMP_LE = 4, //!< src1 is less than or equal to src2.
+                CMP_NE = 5  //!< src1 is unequal to src2.
+              };
+
+//! generalized matrix multiplication flags
+enum GemmFlags { GEMM_1_T = 1, //!< transposes src1
+                 GEMM_2_T = 2, //!< transposes src2
+                 GEMM_3_T = 4 //!< transposes src3
+               };
+
+enum DftFlags {
+    /** performs an inverse 1D or 2D transform instead of the default forward
+        transform. */
+    DFT_INVERSE        = 1,
+    /** scales the result: divide it by the number of array elements. Normally, it is
+        combined with DFT_INVERSE. */
+    DFT_SCALE          = 2,
+    /** performs a forward or inverse transform of every individual row of the input
+        matrix; this flag enables you to transform multiple vectors simultaneously and can be used to
+        decrease the overhead (which is sometimes several times larger than the processing itself) to
+        perform 3D and higher-dimensional transformations and so forth.*/
+    DFT_ROWS           = 4,
+    /** performs a forward transformation of 1D or 2D real array; the result,
+        though being a complex array, has complex-conjugate symmetry (*CCS*, see the function
+        description below for details), and such an array can be packed into a real array of the same
+        size as input, which is the fastest option and which is what the function does by default;
+        however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) -
+        pass the flag to enable the function to produce a full-size complex output array. */
+    DFT_COMPLEX_OUTPUT = 16,
+    /** performs an inverse transformation of a 1D or 2D complex array; the
+        result is normally a complex array of the same size, however, if the input array has
+        conjugate-complex symmetry (for example, it is a result of forward transformation with
+        DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not
+        check whether the input is symmetrical or not, you can pass the flag and then the function
+        will assume the symmetry and produce the real output array (note that when the input is packed
+        into a real array and inverse transformation is executed, the function treats the input as a
+        packed complex-conjugate symmetrical array, and the output will also be a real array). */
+    DFT_REAL_OUTPUT    = 32,
+    /** specifies that input is complex input. If this flag is set, the input must have 2 channels.
+        On the other hand, for backwards compatibility reason, if input has 2 channels, input is
+        already considered complex. */
+    DFT_COMPLEX_INPUT  = 64,
+    /** performs an inverse 1D or 2D transform instead of the default forward transform. */
+    DCT_INVERSE        = DFT_INVERSE,
+    /** performs a forward or inverse transform of every individual row of the input
+        matrix. This flag enables you to transform multiple vectors simultaneously and can be used to
+        decrease the overhead (which is sometimes several times larger than the processing itself) to
+        perform 3D and higher-dimensional transforms and so forth.*/
+    DCT_ROWS           = DFT_ROWS
+};
+
+//! Various border types, image boundaries are denoted with `|`
+//! @see borderInterpolate, copyMakeBorder
+enum BorderTypes {
+    BORDER_CONSTANT    = 0, //!< `iiiiii|abcdefgh|iiiiiii`  with some specified `i`
+    BORDER_REPLICATE   = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`
+    BORDER_REFLECT     = 2, //!< `fedcba|abcdefgh|hgfedcb`
+    BORDER_WRAP        = 3, //!< `cdefgh|abcdefgh|abcdefg`
+    BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`
+    BORDER_TRANSPARENT = 5, //!< `uvwxyz|absdefgh|ijklmno`
+
+    BORDER_REFLECT101  = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
+    BORDER_DEFAULT     = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
+    BORDER_ISOLATED    = 16 //!< do not look outside of ROI
+};
+
+//! @} core_array
+
+//! @addtogroup core_utils
+//! @{
+
+//! @cond IGNORED
+
+//////////////// static assert /////////////////
+#define CVAUX_CONCAT_EXP(a, b) a##b
+#define CVAUX_CONCAT(a, b) CVAUX_CONCAT_EXP(a,b)
+
+#if defined(__clang__)
+#  ifndef __has_extension
+#    define __has_extension __has_feature /* compatibility, for older versions of clang */
+#  endif
+#  if __has_extension(cxx_static_assert)
+#    define CV_StaticAssert(condition, reason)    static_assert((condition), reason " " #condition)
+#  elif __has_extension(c_static_assert)
+#    define CV_StaticAssert(condition, reason)    _Static_assert((condition), reason " " #condition)
+#  endif
+#elif defined(__GNUC__)
+#  if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L)
+#    define CV_StaticAssert(condition, reason)    static_assert((condition), reason " " #condition)
+#  endif
+#elif defined(_MSC_VER)
+#  if _MSC_VER >= 1600 /* MSVC 10 */
+#    define CV_StaticAssert(condition, reason)    static_assert((condition), reason " " #condition)
+#  endif
+#endif
+#ifndef CV_StaticAssert
+#  if !defined(__clang__) && defined(__GNUC__) && (__GNUC__*100 + __GNUC_MINOR__ > 302)
+#    define CV_StaticAssert(condition, reason) ({ extern int __attribute__((error("CV_StaticAssert: " reason " " #condition))) CV_StaticAssert(); ((condition) ? 0 : CV_StaticAssert()); })
+#  else
+     template <bool x> struct CV_StaticAssert_failed;
+     template <> struct CV_StaticAssert_failed<true> { enum { val = 1 }; };
+     template<int x> struct CV_StaticAssert_test {};
+#    define CV_StaticAssert(condition, reason)\
+       typedef cv::CV_StaticAssert_test< sizeof(cv::CV_StaticAssert_failed< static_cast<bool>(condition) >) > CVAUX_CONCAT(CV_StaticAssert_failed_at_, __LINE__)
+#  endif
+#endif
+
+// Suppress warning "-Wdeprecated-declarations" / C4996
+#if defined(_MSC_VER)
+    #define CV_DO_PRAGMA(x) __pragma(x)
+#elif defined(__GNUC__)
+    #define CV_DO_PRAGMA(x) _Pragma (#x)
+#else
+    #define CV_DO_PRAGMA(x)
+#endif
+
+#ifdef _MSC_VER
+#define CV_SUPPRESS_DEPRECATED_START \
+    CV_DO_PRAGMA(warning(push)) \
+    CV_DO_PRAGMA(warning(disable: 4996))
+#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(warning(pop))
+#elif defined (__clang__) || ((__GNUC__)  && (__GNUC__*100 + __GNUC_MINOR__ > 405))
+#define CV_SUPPRESS_DEPRECATED_START \
+    CV_DO_PRAGMA(GCC diagnostic push) \
+    CV_DO_PRAGMA(GCC diagnostic ignored "-Wdeprecated-declarations")
+#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(GCC diagnostic pop)
+#else
+#define CV_SUPPRESS_DEPRECATED_START
+#define CV_SUPPRESS_DEPRECATED_END
+#endif
+#define CV_UNUSED(name) (void)name
+//! @endcond
+
+/*! @brief Signals an error and raises the exception.
+
+By default the function prints information about the error to stderr,
+then it either stops if setBreakOnError() had been called before or raises the exception.
+It is possible to alternate error processing by using redirectError().
+@param _code - error code (Error::Code)
+@param _err - error description
+@param _func - function name. Available only when the compiler supports getting it
+@param _file - source file name where the error has occurred
+@param _line - line number in the source file where the error has occurred
+@see CV_Error, CV_Error_, CV_ErrorNoReturn, CV_ErrorNoReturn_, CV_Assert, CV_DbgAssert
+ */
+CV_EXPORTS void error(int _code, const String& _err, const char* _func, const char* _file, int _line);
+
+#ifdef __GNUC__
+# if defined __clang__ || defined __APPLE__
+#   pragma GCC diagnostic push
+#   pragma GCC diagnostic ignored "-Winvalid-noreturn"
+# endif
+#endif
+
+/** same as cv::error, but does not return */
+CV_INLINE CV_NORETURN void errorNoReturn(int _code, const String& _err, const char* _func, const char* _file, int _line)
+{
+    error(_code, _err, _func, _file, _line);
+#ifdef __GNUC__
+# if !defined __clang__ && !defined __APPLE__
+    // this suppresses this warning: "noreturn" function does return [enabled by default]
+    __builtin_trap();
+    // or use infinite loop: for (;;) {}
+# endif
+#endif
+}
+#ifdef __GNUC__
+# if defined __clang__ || defined __APPLE__
+#   pragma GCC diagnostic pop
+# endif
+#endif
+
+#if defined __GNUC__
+#define CV_Func __func__
+#elif defined _MSC_VER
+#define CV_Func __FUNCTION__
+#else
+#define CV_Func ""
+#endif
+
+#ifdef CV_STATIC_ANALYSIS
+// In practice, some macro are not processed correctly (noreturn is not detected).
+// We need to use simplified definition for them.
+#define CV_Error(...) do { abort(); } while (0)
+#define CV_Error_(...) do { abort(); } while (0)
+#define CV_Assert(cond) do { if (!(cond)) abort(); } while (0)
+#define CV_ErrorNoReturn(...) do { abort(); } while (0)
+#define CV_ErrorNoReturn_(...) do { abort(); } while (0)
+
+#else // CV_STATIC_ANALYSIS
+
+/** @brief Call the error handler.
+
+Currently, the error handler prints the error code and the error message to the standard
+error stream `stderr`. In the Debug configuration, it then provokes memory access violation, so that
+the execution stack and all the parameters can be analyzed by the debugger. In the Release
+configuration, the exception is thrown.
+
+@param code one of Error::Code
+@param msg error message
+*/
+#define CV_Error( code, msg ) cv::error( code, msg, CV_Func, __FILE__, __LINE__ )
+
+/**  @brief Call the error handler.
+
+This macro can be used to construct an error message on-fly to include some dynamic information,
+for example:
+@code
+    // note the extra parentheses around the formatted text message
+    CV_Error_( CV_StsOutOfRange,
+    ("the value at (%d, %d)=%g is out of range", badPt.x, badPt.y, badValue));
+@endcode
+@param code one of Error::Code
+@param args printf-like formatted error message in parentheses
+*/
+#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ )
+
+/** @brief Checks a condition at runtime and throws exception if it fails
+
+The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros
+raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
+configurations while CV_DbgAssert is only retained in the Debug configuration.
+*/
+
+#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...)    N
+#define CV_VA_NUM_ARGS(...)      CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
+
+#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ )
+#define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2)
+#define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3)
+#define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4)
+#define CV_Assert_5( expr1, expr2, expr3, expr4, expr5 ) CV_Assert_4(expr1, expr2, expr3, expr4); CV_Assert_1(expr5)
+#define CV_Assert_6( expr1, expr2, expr3, expr4, expr5, expr6 ) CV_Assert_5(expr1, expr2, expr3, expr4, expr5); CV_Assert_1(expr6)
+#define CV_Assert_7( expr1, expr2, expr3, expr4, expr5, expr6, expr7 ) CV_Assert_6(expr1, expr2, expr3, expr4, expr5, expr6 ); CV_Assert_1(expr7)
+#define CV_Assert_8( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ) CV_Assert_7(expr1, expr2, expr3, expr4, expr5, expr6, expr7 ); CV_Assert_1(expr8)
+#define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9)
+#define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10)
+
+#define CV_Assert(...)               CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__)
+
+/** same as CV_Error(code,msg), but does not return */
+#define CV_ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ )
+
+/** same as CV_Error_(code,args), but does not return */
+#define CV_ErrorNoReturn_( code, args ) cv::errorNoReturn( code, cv::format args, CV_Func, __FILE__, __LINE__ )
+
+#endif // CV_STATIC_ANALYSIS
+
+/** replaced with CV_Assert(expr) in Debug configuration */
+#ifdef _DEBUG
+#  define CV_DbgAssert(expr) CV_Assert(expr)
+#else
+#  define CV_DbgAssert(expr)
+#endif
+
+/*
+ * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
+ * bit count of A exclusive XOR'ed with B
+ */
+struct CV_EXPORTS Hamming
+{
+    enum { normType = NORM_HAMMING };
+    typedef unsigned char ValueType;
+    typedef int ResultType;
+
+    /** this will count the bits in a ^ b
+     */
+    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const;
+};
+
+typedef Hamming HammingLUT;
+
+/////////////////////////////////// inline norms ////////////////////////////////////
+
+template<typename _Tp> inline _Tp cv_abs(_Tp x) { return std::abs(x); }
+inline int cv_abs(uchar x) { return x; }
+inline int cv_abs(schar x) { return std::abs(x); }
+inline int cv_abs(ushort x) { return x; }
+inline int cv_abs(short x) { return std::abs(x); }
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normL2Sqr(const _Tp* a, int n)
+{
+    _AccTp s = 0;
+    int i=0;
+#if CV_ENABLE_UNROLLED
+    for( ; i <= n - 4; i += 4 )
+    {
+        _AccTp v0 = a[i], v1 = a[i+1], v2 = a[i+2], v3 = a[i+3];
+        s += v0*v0 + v1*v1 + v2*v2 + v3*v3;
+    }
+#endif
+    for( ; i < n; i++ )
+    {
+        _AccTp v = a[i];
+        s += v*v;
+    }
+    return s;
+}
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normL1(const _Tp* a, int n)
+{
+    _AccTp s = 0;
+    int i = 0;
+#if CV_ENABLE_UNROLLED
+    for(; i <= n - 4; i += 4 )
+    {
+        s += (_AccTp)cv_abs(a[i]) + (_AccTp)cv_abs(a[i+1]) +
+            (_AccTp)cv_abs(a[i+2]) + (_AccTp)cv_abs(a[i+3]);
+    }
+#endif
+    for( ; i < n; i++ )
+        s += cv_abs(a[i]);
+    return s;
+}
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normInf(const _Tp* a, int n)
+{
+    _AccTp s = 0;
+    for( int i = 0; i < n; i++ )
+        s = std::max(s, (_AccTp)cv_abs(a[i]));
+    return s;
+}
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n)
+{
+    _AccTp s = 0;
+    int i= 0;
+#if CV_ENABLE_UNROLLED
+    for(; i <= n - 4; i += 4 )
+    {
+        _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]);
+        s += v0*v0 + v1*v1 + v2*v2 + v3*v3;
+    }
+#endif
+    for( ; i < n; i++ )
+    {
+        _AccTp v = _AccTp(a[i] - b[i]);
+        s += v*v;
+    }
+    return s;
+}
+
+static inline float normL2Sqr(const float* a, const float* b, int n)
+{
+    float s = 0.f;
+    for( int i = 0; i < n; i++ )
+    {
+        float v = a[i] - b[i];
+        s += v*v;
+    }
+    return s;
+}
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normL1(const _Tp* a, const _Tp* b, int n)
+{
+    _AccTp s = 0;
+    int i= 0;
+#if CV_ENABLE_UNROLLED
+    for(; i <= n - 4; i += 4 )
+    {
+        _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]);
+        s += std::abs(v0) + std::abs(v1) + std::abs(v2) + std::abs(v3);
+    }
+#endif
+    for( ; i < n; i++ )
+    {
+        _AccTp v = _AccTp(a[i] - b[i]);
+        s += std::abs(v);
+    }
+    return s;
+}
+
+inline float normL1(const float* a, const float* b, int n)
+{
+    float s = 0.f;
+    for( int i = 0; i < n; i++ )
+    {
+        s += std::abs(a[i] - b[i]);
+    }
+    return s;
+}
+
+inline int normL1(const uchar* a, const uchar* b, int n)
+{
+    int s = 0;
+    for( int i = 0; i < n; i++ )
+    {
+        s += std::abs(a[i] - b[i]);
+    }
+    return s;
+}
+
+template<typename _Tp, typename _AccTp> static inline
+_AccTp normInf(const _Tp* a, const _Tp* b, int n)
+{
+    _AccTp s = 0;
+    for( int i = 0; i < n; i++ )
+    {
+        _AccTp v0 = a[i] - b[i];
+        s = std::max(s, std::abs(v0));
+    }
+    return s;
+}
+
+/** @brief Computes the cube root of an argument.
+
+ The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
+ NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
+ single-precision data.
+ @param val A function argument.
+ */
+CV_EXPORTS_W float cubeRoot(float val);
+
+/** @brief Calculates the angle of a 2D vector in degrees.
+
+ The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
+ in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
+ @param x x-coordinate of the vector.
+ @param y y-coordinate of the vector.
+ */
+CV_EXPORTS_W float fastAtan2(float y, float x);
+
+/** proxy for hal::LU */
+CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n);
+/** proxy for hal::LU */
+CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n);
+/** proxy for hal::Cholesky */
+CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n);
+/** proxy for hal::Cholesky */
+CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n);
+
+////////////////// forward declarations for important OpenCV types //////////////////
+
+//! @cond IGNORED
+
+template<typename _Tp, int cn> class Vec;
+template<typename _Tp, int m, int n> class Matx;
+
+template<typename _Tp> class Complex;
+template<typename _Tp> class Point_;
+template<typename _Tp> class Point3_;
+template<typename _Tp> class Size_;
+template<typename _Tp> class Rect_;
+template<typename _Tp> class Scalar_;
+
+class CV_EXPORTS RotatedRect;
+class CV_EXPORTS Range;
+class CV_EXPORTS TermCriteria;
+class CV_EXPORTS KeyPoint;
+class CV_EXPORTS DMatch;
+class CV_EXPORTS RNG;
+
+class CV_EXPORTS Mat;
+class CV_EXPORTS MatExpr;
+
+class CV_EXPORTS UMat;
+
+class CV_EXPORTS SparseMat;
+typedef Mat MatND;
+
+template<typename _Tp> class Mat_;
+template<typename _Tp> class SparseMat_;
+
+class CV_EXPORTS MatConstIterator;
+class CV_EXPORTS SparseMatIterator;
+class CV_EXPORTS SparseMatConstIterator;
+template<typename _Tp> class MatIterator_;
+template<typename _Tp> class MatConstIterator_;
+template<typename _Tp> class SparseMatIterator_;
+template<typename _Tp> class SparseMatConstIterator_;
+
+namespace ogl
+{
+    class CV_EXPORTS Buffer;
+    class CV_EXPORTS Texture2D;
+    class CV_EXPORTS Arrays;
+}
+
+namespace cuda
+{
+    class CV_EXPORTS GpuMat;
+    class CV_EXPORTS HostMem;
+    class CV_EXPORTS Stream;
+    class CV_EXPORTS Event;
+}
+
+namespace cudev
+{
+    template <typename _Tp> class GpuMat_;
+}
+
+namespace ipp
+{
+#if OPENCV_ABI_COMPATIBILITY > 300
+CV_EXPORTS   unsigned long long getIppFeatures();
+#else
+CV_EXPORTS   int getIppFeatures();
+#endif
+CV_EXPORTS   void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL,
+                             int line = 0);
+CV_EXPORTS   int getIppStatus();
+CV_EXPORTS   String getIppErrorLocation();
+CV_EXPORTS_W bool   useIPP();
+CV_EXPORTS_W void   setUseIPP(bool flag);
+CV_EXPORTS_W String getIppVersion();
+
+// IPP Not-Exact mode. This function may force use of IPP then both IPP and OpenCV provide proper results
+// but have internal accuracy differences which have to much direct or indirect impact on accuracy tests.
+CV_EXPORTS_W bool useIPP_NE();
+CV_EXPORTS_W void setUseIPP_NE(bool flag);
+
+} // ipp
+
+//! @endcond
+
+//! @} core_utils
+
+
+
+
+} // cv
+
+#include "opencv2/core/neon_utils.hpp"
+#include "opencv2/core/vsx_utils.hpp"
+
+#endif //OPENCV_CORE_BASE_HPP

+ 40 - 0
cv/include/opencv2/core/bufferpool.hpp

@@ -0,0 +1,40 @@
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
+
+#ifndef OPENCV_CORE_BUFFER_POOL_HPP
+#define OPENCV_CORE_BUFFER_POOL_HPP
+
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable: 4265)
+#endif
+
+namespace cv
+{
+
+//! @addtogroup core
+//! @{
+
+class BufferPoolController
+{
+protected:
+    ~BufferPoolController() { }
+public:
+    virtual size_t getReservedSize() const = 0;
+    virtual size_t getMaxReservedSize() const = 0;
+    virtual void setMaxReservedSize(size_t size) = 0;
+    virtual void freeAllReservedBuffers() = 0;
+};
+
+//! @}
+
+}
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+#endif // OPENCV_CORE_BUFFER_POOL_HPP

+ 48 - 0
cv/include/opencv2/core/core.hpp

@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifdef __OPENCV_BUILD
+#error this is a compatibility header which should not be used inside the OpenCV library
+#endif
+
+#include "opencv2/core.hpp"

+ 3184 - 0
cv/include/opencv2/core/core_c.h

@@ -0,0 +1,3184 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+
+#ifndef OPENCV_CORE_C_H
+#define OPENCV_CORE_C_H
+
+#include "opencv2/core/types_c.h"
+
+#ifdef __cplusplus
+#  ifdef _MSC_VER
+/* disable warning C4190: 'function' has C-linkage specified, but returns UDT 'typename'
+                          which is incompatible with C
+
+   It is OK to disable it because we only extend few plain structures with
+   C++ construrtors for simpler interoperability with C++ API of the library
+*/
+#    pragma warning(disable:4190)
+#  elif defined __clang__ && __clang_major__ >= 3
+#    pragma GCC diagnostic ignored "-Wreturn-type-c-linkage"
+#  endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** @addtogroup core_c
+    @{
+*/
+
+/****************************************************************************************\
+*          Array allocation, deallocation, initialization and access to elements         *
+\****************************************************************************************/
+
+/** `malloc` wrapper.
+   If there is no enough memory, the function
+   (as well as other OpenCV functions that call cvAlloc)
+   raises an error. */
+CVAPI(void*)  cvAlloc( size_t size );
+
+/** `free` wrapper.
+   Here and further all the memory releasing functions
+   (that all call cvFree) take double pointer in order to
+   to clear pointer to the data after releasing it.
+   Passing pointer to NULL pointer is Ok: nothing happens in this case
+*/
+CVAPI(void)   cvFree_( void* ptr );
+#define cvFree(ptr) (cvFree_(*(ptr)), *(ptr)=0)
+
+/** @brief Creates an image header but does not allocate the image data.
+
+@param size Image width and height
+@param depth Image depth (see cvCreateImage )
+@param channels Number of channels (see cvCreateImage )
+ */
+CVAPI(IplImage*)  cvCreateImageHeader( CvSize size, int depth, int channels );
+
+/** @brief Initializes an image header that was previously allocated.
+
+The returned IplImage\* points to the initialized header.
+@param image Image header to initialize
+@param size Image width and height
+@param depth Image depth (see cvCreateImage )
+@param channels Number of channels (see cvCreateImage )
+@param origin Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL
+@param align Alignment for image rows, typically 4 or 8 bytes
+ */
+CVAPI(IplImage*) cvInitImageHeader( IplImage* image, CvSize size, int depth,
+                                   int channels, int origin CV_DEFAULT(0),
+                                   int align CV_DEFAULT(4));
+
+/** @brief Creates an image header and allocates the image data.
+
+This function call is equivalent to the following code:
+@code
+    header = cvCreateImageHeader(size, depth, channels);
+    cvCreateData(header);
+@endcode
+@param size Image width and height
+@param depth Bit depth of image elements. See IplImage for valid depths.
+@param channels Number of channels per pixel. See IplImage for details. This function only creates
+images with interleaved channels.
+ */
+CVAPI(IplImage*)  cvCreateImage( CvSize size, int depth, int channels );
+
+/** @brief Deallocates an image header.
+
+This call is an analogue of :
+@code
+    if(image )
+    {
+        iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
+        *image = 0;
+    }
+@endcode
+but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).
+@param image Double pointer to the image header
+ */
+CVAPI(void)  cvReleaseImageHeader( IplImage** image );
+
+/** @brief Deallocates the image header and the image data.
+
+This call is a shortened form of :
+@code
+    if(*image )
+    {
+        cvReleaseData(*image);
+        cvReleaseImageHeader(image);
+    }
+@endcode
+@param image Double pointer to the image header
+*/
+CVAPI(void)  cvReleaseImage( IplImage** image );
+
+/** Creates a copy of IPL image (widthStep may differ) */
+CVAPI(IplImage*) cvCloneImage( const IplImage* image );
+
+/** @brief Sets the channel of interest in an IplImage.
+
+If the ROI is set to NULL and the coi is *not* 0, the ROI is allocated. Most OpenCV functions do
+*not* support the COI setting, so to process an individual image/matrix channel one may copy (via
+cvCopy or cvSplit) the channel to a separate image/matrix, process it and then copy the result
+back (via cvCopy or cvMerge) if needed.
+@param image A pointer to the image header
+@param coi The channel of interest. 0 - all channels are selected, 1 - first channel is selected,
+etc. Note that the channel indices become 1-based.
+ */
+CVAPI(void)  cvSetImageCOI( IplImage* image, int coi );
+
+/** @brief Returns the index of the channel of interest.
+
+Returns the channel of interest of in an IplImage. Returned values correspond to the coi in
+cvSetImageCOI.
+@param image A pointer to the image header
+ */
+CVAPI(int)  cvGetImageCOI( const IplImage* image );
+
+/** @brief Sets an image Region Of Interest (ROI) for a given rectangle.
+
+If the original image ROI was NULL and the rect is not the whole image, the ROI structure is
+allocated.
+
+Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For
+example, all of the pixel coordinates are counted from the top-left (or bottom-left) corner of the
+ROI, not the original image.
+@param image A pointer to the image header
+@param rect The ROI rectangle
+ */
+CVAPI(void)  cvSetImageROI( IplImage* image, CvRect rect );
+
+/** @brief Resets the image ROI to include the entire image and releases the ROI structure.
+
+This produces a similar result to the following, but in addition it releases the ROI structure. :
+@code
+    cvSetImageROI(image, cvRect(0, 0, image->width, image->height ));
+    cvSetImageCOI(image, 0);
+@endcode
+@param image A pointer to the image header
+ */
+CVAPI(void)  cvResetImageROI( IplImage* image );
+
+/** @brief Returns the image ROI.
+
+If there is no ROI set, cvRect(0,0,image-\>width,image-\>height) is returned.
+@param image A pointer to the image header
+ */
+CVAPI(CvRect) cvGetImageROI( const IplImage* image );
+
+/** @brief Creates a matrix header but does not allocate the matrix data.
+
+The function allocates a new matrix header and returns a pointer to it. The matrix data can then be
+allocated using cvCreateData or set explicitly to user-allocated data via cvSetData.
+@param rows Number of rows in the matrix
+@param cols Number of columns in the matrix
+@param type Type of the matrix elements, see cvCreateMat
+ */
+CVAPI(CvMat*)  cvCreateMatHeader( int rows, int cols, int type );
+
+#define CV_AUTOSTEP  0x7fffffff
+
+/** @brief Initializes a pre-allocated matrix header.
+
+This function is often used to process raw data with OpenCV matrix functions. For example, the
+following code computes the matrix product of two matrices, stored as ordinary arrays:
+@code
+    double a[] = { 1, 2, 3, 4,
+                   5, 6, 7, 8,
+                   9, 10, 11, 12 };
+
+    double b[] = { 1, 5, 9,
+                   2, 6, 10,
+                   3, 7, 11,
+                   4, 8, 12 };
+
+    double c[9];
+    CvMat Ma, Mb, Mc ;
+
+    cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
+    cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);
+    cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);
+
+    cvMatMulAdd(&Ma, &Mb, 0, &Mc);
+    // the c array now contains the product of a (3x4) and b (4x3)
+@endcode
+@param mat A pointer to the matrix header to be initialized
+@param rows Number of rows in the matrix
+@param cols Number of columns in the matrix
+@param type Type of the matrix elements, see cvCreateMat .
+@param data Optional: data pointer assigned to the matrix header
+@param step Optional: full row width in bytes of the assigned data. By default, the minimal
+possible step is used which assumes there are no gaps between subsequent rows of the matrix.
+ */
+CVAPI(CvMat*) cvInitMatHeader( CvMat* mat, int rows, int cols,
+                              int type, void* data CV_DEFAULT(NULL),
+                              int step CV_DEFAULT(CV_AUTOSTEP) );
+
+/** @brief Creates a matrix header and allocates the matrix data.
+
+The function call is equivalent to the following code:
+@code
+    CvMat* mat = cvCreateMatHeader(rows, cols, type);
+    cvCreateData(mat);
+@endcode
+@param rows Number of rows in the matrix
+@param cols Number of columns in the matrix
+@param type The type of the matrix elements in the form
+CV_\<bit depth\>\<S|U|F\>C\<number of channels\> , where S=signed, U=unsigned, F=float. For
+example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1 channel, and CV _
+32SC2 means the elements are 32-bit signed and there are 2 channels.
+ */
+CVAPI(CvMat*)  cvCreateMat( int rows, int cols, int type );
+
+/** @brief Deallocates a matrix.
+
+The function decrements the matrix data reference counter and deallocates matrix header. If the data
+reference counter is 0, it also deallocates the data. :
+@code
+    if(*mat )
+        cvDecRefData(*mat);
+    cvFree((void**)mat);
+@endcode
+@param mat Double pointer to the matrix
+ */
+CVAPI(void)  cvReleaseMat( CvMat** mat );
+
+/** @brief Decrements an array data reference counter.
+
+The function decrements the data reference counter in a CvMat or CvMatND if the reference counter
+
+pointer is not NULL. If the counter reaches zero, the data is deallocated. In the current
+implementation the reference counter is not NULL only if the data was allocated using the
+cvCreateData function. The counter will be NULL in other cases such as: external data was assigned
+to the header using cvSetData, header is part of a larger matrix or image, or the header was
+converted from an image or n-dimensional matrix header.
+@param arr Pointer to an array header
+ */
+CV_INLINE  void  cvDecRefData( CvArr* arr )
+{
+    if( CV_IS_MAT( arr ))
+    {
+        CvMat* mat = (CvMat*)arr;
+        mat->data.ptr = NULL;
+        if( mat->refcount != NULL && --*mat->refcount == 0 )
+            cvFree( &mat->refcount );
+        mat->refcount = NULL;
+    }
+    else if( CV_IS_MATND( arr ))
+    {
+        CvMatND* mat = (CvMatND*)arr;
+        mat->data.ptr = NULL;
+        if( mat->refcount != NULL && --*mat->refcount == 0 )
+            cvFree( &mat->refcount );
+        mat->refcount = NULL;
+    }
+}
+
+/** @brief Increments array data reference counter.
+
+The function increments CvMat or CvMatND data reference counter and returns the new counter value if
+the reference counter pointer is not NULL, otherwise it returns zero.
+@param arr Array header
+ */
+CV_INLINE  int  cvIncRefData( CvArr* arr )
+{
+    int refcount = 0;
+    if( CV_IS_MAT( arr ))
+    {
+        CvMat* mat = (CvMat*)arr;
+        if( mat->refcount != NULL )
+            refcount = ++*mat->refcount;
+    }
+    else if( CV_IS_MATND( arr ))
+    {
+        CvMatND* mat = (CvMatND*)arr;
+        if( mat->refcount != NULL )
+            refcount = ++*mat->refcount;
+    }
+    return refcount;
+}
+
+
+/** Creates an exact copy of the input matrix (except, may be, step value) */
+CVAPI(CvMat*) cvCloneMat( const CvMat* mat );
+
+
+/** @brief Returns matrix header corresponding to the rectangular sub-array of input image or matrix.
+
+The function returns header, corresponding to a specified rectangle of the input array. In other
+
+words, it allows the user to treat a rectangular part of input array as a stand-alone array. ROI is
+taken into account by the function so the sub-array of ROI is actually extracted.
+@param arr Input array
+@param submat Pointer to the resultant sub-array header
+@param rect Zero-based coordinates of the rectangle of interest
+ */
+CVAPI(CvMat*) cvGetSubRect( const CvArr* arr, CvMat* submat, CvRect rect );
+#define cvGetSubArr cvGetSubRect
+
+/** @brief Returns array row or row span.
+
+The functions return the header, corresponding to a specified row/row span of the input array.
+cvGetRow(arr, submat, row) is a shortcut for cvGetRows(arr, submat, row, row+1).
+@param arr Input array
+@param submat Pointer to the resulting sub-array header
+@param start_row Zero-based index of the starting row (inclusive) of the span
+@param end_row Zero-based index of the ending row (exclusive) of the span
+@param delta_row Index step in the row span. That is, the function extracts every delta_row -th
+row from start_row and up to (but not including) end_row .
+ */
+CVAPI(CvMat*) cvGetRows( const CvArr* arr, CvMat* submat,
+                        int start_row, int end_row,
+                        int delta_row CV_DEFAULT(1));
+
+/** @overload
+@param arr Input array
+@param submat Pointer to the resulting sub-array header
+@param row Zero-based index of the selected row
+*/
+CV_INLINE  CvMat*  cvGetRow( const CvArr* arr, CvMat* submat, int row )
+{
+    return cvGetRows( arr, submat, row, row + 1, 1 );
+}
+
+
+/** @brief Returns one of more array columns.
+
+The functions return the header, corresponding to a specified column span of the input array. That
+
+is, no data is copied. Therefore, any modifications of the submatrix will affect the original array.
+If you need to copy the columns, use cvCloneMat. cvGetCol(arr, submat, col) is a shortcut for
+cvGetCols(arr, submat, col, col+1).
+@param arr Input array
+@param submat Pointer to the resulting sub-array header
+@param start_col Zero-based index of the starting column (inclusive) of the span
+@param end_col Zero-based index of the ending column (exclusive) of the span
+ */
+CVAPI(CvMat*) cvGetCols( const CvArr* arr, CvMat* submat,
+                        int start_col, int end_col );
+
+/** @overload
+@param arr Input array
+@param submat Pointer to the resulting sub-array header
+@param col Zero-based index of the selected column
+*/
+CV_INLINE  CvMat*  cvGetCol( const CvArr* arr, CvMat* submat, int col )
+{
+    return cvGetCols( arr, submat, col, col + 1 );
+}
+
+/** @brief Returns one of array diagonals.
+
+The function returns the header, corresponding to a specified diagonal of the input array.
+@param arr Input array
+@param submat Pointer to the resulting sub-array header
+@param diag Index of the array diagonal. Zero value corresponds to the main diagonal, -1
+corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and so
+forth.
+ */
+CVAPI(CvMat*) cvGetDiag( const CvArr* arr, CvMat* submat,
+                            int diag CV_DEFAULT(0));
+
+/** low-level scalar <-> raw data conversion functions */
+CVAPI(void) cvScalarToRawData( const CvScalar* scalar, void* data, int type,
+                              int extend_to_12 CV_DEFAULT(0) );
+
+CVAPI(void) cvRawDataToScalar( const void* data, int type, CvScalar* scalar );
+
+/** @brief Creates a new matrix header but does not allocate the matrix data.
+
+The function allocates a header for a multi-dimensional dense array. The array data can further be
+allocated using cvCreateData or set explicitly to user-allocated data via cvSetData.
+@param dims Number of array dimensions
+@param sizes Array of dimension sizes
+@param type Type of array elements, see cvCreateMat
+ */
+CVAPI(CvMatND*)  cvCreateMatNDHeader( int dims, const int* sizes, int type );
+
+/** @brief Creates the header and allocates the data for a multi-dimensional dense array.
+
+This function call is equivalent to the following code:
+@code
+    CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);
+    cvCreateData(mat);
+@endcode
+@param dims Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default, but can be
+changed at build time).
+@param sizes Array of dimension sizes.
+@param type Type of array elements, see cvCreateMat .
+ */
+CVAPI(CvMatND*)  cvCreateMatND( int dims, const int* sizes, int type );
+
+/** @brief Initializes a pre-allocated multi-dimensional array header.
+
+@param mat A pointer to the array header to be initialized
+@param dims The number of array dimensions
+@param sizes An array of dimension sizes
+@param type Type of array elements, see cvCreateMat
+@param data Optional data pointer assigned to the matrix header
+ */
+CVAPI(CvMatND*)  cvInitMatNDHeader( CvMatND* mat, int dims, const int* sizes,
+                                    int type, void* data CV_DEFAULT(NULL) );
+
+/** @brief Deallocates a multi-dimensional array.
+
+The function decrements the array data reference counter and releases the array header. If the
+reference counter reaches 0, it also deallocates the data. :
+@code
+    if(*mat )
+        cvDecRefData(*mat);
+    cvFree((void**)mat);
+@endcode
+@param mat Double pointer to the array
+ */
+CV_INLINE  void  cvReleaseMatND( CvMatND** mat )
+{
+    cvReleaseMat( (CvMat**)mat );
+}
+
+/** Creates a copy of CvMatND (except, may be, steps) */
+CVAPI(CvMatND*) cvCloneMatND( const CvMatND* mat );
+
+/** @brief Creates sparse array.
+
+The function allocates a multi-dimensional sparse array. Initially the array contain no elements,
+that is PtrND and other related functions will return 0 for every index.
+@param dims Number of array dimensions. In contrast to the dense matrix, the number of dimensions is
+practically unlimited (up to \f$2^{16}\f$ ).
+@param sizes Array of dimension sizes
+@param type Type of array elements. The same as for CvMat
+ */
+CVAPI(CvSparseMat*)  cvCreateSparseMat( int dims, const int* sizes, int type );
+
+/** @brief Deallocates sparse array.
+
+The function releases the sparse array and clears the array pointer upon exit.
+@param mat Double pointer to the array
+ */
+CVAPI(void)  cvReleaseSparseMat( CvSparseMat** mat );
+
+/** Creates a copy of CvSparseMat (except, may be, zero items) */
+CVAPI(CvSparseMat*) cvCloneSparseMat( const CvSparseMat* mat );
+
+/** @brief Initializes sparse array elements iterator.
+
+The function initializes iterator of sparse array elements and returns pointer to the first element,
+or NULL if the array is empty.
+@param mat Input array
+@param mat_iterator Initialized iterator
+ */
+CVAPI(CvSparseNode*) cvInitSparseMatIterator( const CvSparseMat* mat,
+                                              CvSparseMatIterator* mat_iterator );
+
+/** @brief Returns the next sparse matrix element
+
+The function moves iterator to the next sparse matrix element and returns pointer to it. In the
+current version there is no any particular order of the elements, because they are stored in the
+hash table. The sample below demonstrates how to iterate through the sparse matrix:
+@code
+    // print all the non-zero sparse matrix elements and compute their sum
+    double sum = 0;
+    int i, dims = cvGetDims(sparsemat);
+    CvSparseMatIterator it;
+    CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it);
+
+    for(; node != 0; node = cvGetNextSparseNode(&it))
+    {
+        int* idx = CV_NODE_IDX(array, node);
+        float val = *(float*)CV_NODE_VAL(array, node);
+        printf("M");
+        for(i = 0; i < dims; i++ )
+            printf("[%d]", idx[i]);
+        printf("=%g\n", val);
+
+        sum += val;
+    }
+
+    printf("nTotal sum = %g\n", sum);
+@endcode
+@param mat_iterator Sparse array iterator
+ */
+CV_INLINE CvSparseNode* cvGetNextSparseNode( CvSparseMatIterator* mat_iterator )
+{
+    if( mat_iterator->node->next )
+        return mat_iterator->node = mat_iterator->node->next;
+    else
+    {
+        int idx;
+        for( idx = ++mat_iterator->curidx; idx < mat_iterator->mat->hashsize; idx++ )
+        {
+            CvSparseNode* node = (CvSparseNode*)mat_iterator->mat->hashtable[idx];
+            if( node )
+            {
+                mat_iterator->curidx = idx;
+                return mat_iterator->node = node;
+            }
+        }
+        return NULL;
+    }
+}
+
+
+#define CV_MAX_ARR 10
+
+/** matrix iterator: used for n-ary operations on dense arrays */
+typedef struct CvNArrayIterator
+{
+    int count; /**< number of arrays */
+    int dims; /**< number of dimensions to iterate */
+    CvSize size; /**< maximal common linear size: { width = size, height = 1 } */
+    uchar* ptr[CV_MAX_ARR]; /**< pointers to the array slices */
+    int stack[CV_MAX_DIM]; /**< for internal use */
+    CvMatND* hdr[CV_MAX_ARR]; /**< pointers to the headers of the
+                                 matrices that are processed */
+}
+CvNArrayIterator;
+
+#define CV_NO_DEPTH_CHECK     1
+#define CV_NO_CN_CHECK        2
+#define CV_NO_SIZE_CHECK      4
+
+/** initializes iterator that traverses through several arrays simulteneously
+   (the function together with cvNextArraySlice is used for
+    N-ari element-wise operations) */
+CVAPI(int) cvInitNArrayIterator( int count, CvArr** arrs,
+                                 const CvArr* mask, CvMatND* stubs,
+                                 CvNArrayIterator* array_iterator,
+                                 int flags CV_DEFAULT(0) );
+
+/** returns zero value if iteration is finished, non-zero (slice length) otherwise */
+CVAPI(int) cvNextNArraySlice( CvNArrayIterator* array_iterator );
+
+
+/** @brief Returns type of array elements.
+
+The function returns type of the array elements. In the case of IplImage the type is converted to
+CvMat-like representation. For example, if the image has been created as:
+@code
+    IplImage* img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3);
+@endcode
+The code cvGetElemType(img) will return CV_8UC3.
+@param arr Input array
+ */
+CVAPI(int) cvGetElemType( const CvArr* arr );
+
+/** @brief Return number of array dimensions
+
+The function returns the array dimensionality and the array of dimension sizes. In the case of
+IplImage or CvMat it always returns 2 regardless of number of image/matrix rows. For example, the
+following code calculates total number of array elements:
+@code
+    int sizes[CV_MAX_DIM];
+    int i, total = 1;
+    int dims = cvGetDims(arr, size);
+    for(i = 0; i < dims; i++ )
+        total *= sizes[i];
+@endcode
+@param arr Input array
+@param sizes Optional output vector of the array dimension sizes. For 2d arrays the number of rows
+(height) goes first, number of columns (width) next.
+ */
+CVAPI(int) cvGetDims( const CvArr* arr, int* sizes CV_DEFAULT(NULL) );
+
+
+/** @brief Returns array size along the specified dimension.
+
+@param arr Input array
+@param index Zero-based dimension index (for matrices 0 means number of rows, 1 means number of
+columns; for images 0 means height, 1 means width)
+ */
+CVAPI(int) cvGetDimSize( const CvArr* arr, int index );
+
+
+/** @brief Return pointer to a particular array element.
+
+The functions return a pointer to a specific array element. Number of array dimension should match
+to the number of indices passed to the function except for cvPtr1D function that can be used for
+sequential access to 1D, 2D or nD dense arrays.
+
+The functions can be used for sparse arrays as well - if the requested node does not exist they
+create it and set it to zero.
+
+All these as well as other functions accessing array elements ( cvGetND , cvGetRealND , cvSet
+, cvSetND , cvSetRealND ) raise an error in case if the element index is out of range.
+@param arr Input array
+@param idx0 The first zero-based component of the element index
+@param type Optional output parameter: type of matrix elements
+ */
+CVAPI(uchar*) cvPtr1D( const CvArr* arr, int idx0, int* type CV_DEFAULT(NULL));
+/** @overload */
+CVAPI(uchar*) cvPtr2D( const CvArr* arr, int idx0, int idx1, int* type CV_DEFAULT(NULL) );
+/** @overload */
+CVAPI(uchar*) cvPtr3D( const CvArr* arr, int idx0, int idx1, int idx2,
+                      int* type CV_DEFAULT(NULL));
+/** @overload
+@param arr Input array
+@param idx Array of the element indices
+@param type Optional output parameter: type of matrix elements
+@param create_node Optional input parameter for sparse matrices. Non-zero value of the parameter
+means that the requested element is created if it does not exist already.
+@param precalc_hashval Optional input parameter for sparse matrices. If the pointer is not NULL,
+the function does not recalculate the node hash value, but takes it from the specified location.
+It is useful for speeding up pair-wise operations (TODO: provide an example)
+*/
+CVAPI(uchar*) cvPtrND( const CvArr* arr, const int* idx, int* type CV_DEFAULT(NULL),
+                      int create_node CV_DEFAULT(1),
+                      unsigned* precalc_hashval CV_DEFAULT(NULL));
+
+/** @brief Return a specific array element.
+
+The functions return a specific array element. In the case of a sparse array the functions return 0
+if the requested node does not exist (no new node is created by the functions).
+@param arr Input array
+@param idx0 The first zero-based component of the element index
+ */
+CVAPI(CvScalar) cvGet1D( const CvArr* arr, int idx0 );
+/** @overload */
+CVAPI(CvScalar) cvGet2D( const CvArr* arr, int idx0, int idx1 );
+/** @overload */
+CVAPI(CvScalar) cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );
+/** @overload
+@param arr Input array
+@param idx Array of the element indices
+*/
+CVAPI(CvScalar) cvGetND( const CvArr* arr, const int* idx );
+
+/** @brief Return a specific element of single-channel 1D, 2D, 3D or nD array.
+
+Returns a specific element of a single-channel array. If the array has multiple channels, a runtime
+error is raised. Note that Get?D functions can be used safely for both single-channel and
+multiple-channel arrays though they are a bit slower.
+
+In the case of a sparse array the functions return 0 if the requested node does not exist (no new
+node is created by the functions).
+@param arr Input array. Must have a single channel.
+@param idx0 The first zero-based component of the element index
+ */
+CVAPI(double) cvGetReal1D( const CvArr* arr, int idx0 );
+/** @overload */
+CVAPI(double) cvGetReal2D( const CvArr* arr, int idx0, int idx1 );
+/** @overload */
+CVAPI(double) cvGetReal3D( const CvArr* arr, int idx0, int idx1, int idx2 );
+/** @overload
+@param arr Input array. Must have a single channel.
+@param idx Array of the element indices
+*/
+CVAPI(double) cvGetRealND( const CvArr* arr, const int* idx );
+
+/** @brief Change the particular array element.
+
+The functions assign the new value to a particular array element. In the case of a sparse array the
+functions create the node if it does not exist yet.
+@param arr Input array
+@param idx0 The first zero-based component of the element index
+@param value The assigned value
+ */
+CVAPI(void) cvSet1D( CvArr* arr, int idx0, CvScalar value );
+/** @overload */
+CVAPI(void) cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );
+/** @overload */
+CVAPI(void) cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value );
+/** @overload
+@param arr Input array
+@param idx Array of the element indices
+@param value The assigned value
+*/
+CVAPI(void) cvSetND( CvArr* arr, const int* idx, CvScalar value );
+
+/** @brief Change a specific array element.
+
+The functions assign a new value to a specific element of a single-channel array. If the array has
+multiple channels, a runtime error is raised. Note that the Set\*D function can be used safely for
+both single-channel and multiple-channel arrays, though they are a bit slower.
+
+In the case of a sparse array the functions create the node if it does not yet exist.
+@param arr Input array
+@param idx0 The first zero-based component of the element index
+@param value The assigned value
+ */
+CVAPI(void) cvSetReal1D( CvArr* arr, int idx0, double value );
+/** @overload */
+CVAPI(void) cvSetReal2D( CvArr* arr, int idx0, int idx1, double value );
+/** @overload */
+CVAPI(void) cvSetReal3D( CvArr* arr, int idx0,
+                        int idx1, int idx2, double value );
+/** @overload
+@param arr Input array
+@param idx Array of the element indices
+@param value The assigned value
+*/
+CVAPI(void) cvSetRealND( CvArr* arr, const int* idx, double value );
+
+/** clears element of ND dense array,
+   in case of sparse arrays it deletes the specified node */
+CVAPI(void) cvClearND( CvArr* arr, const int* idx );
+
+/** @brief Returns matrix header for arbitrary array.
+
+The function returns a matrix header for the input array that can be a matrix - CvMat, an image -
+IplImage, or a multi-dimensional dense array - CvMatND (the third option is allowed only if
+allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of
+IplImage\* or CvMatND it initializes the header structure with parameters of the current image ROI
+and returns &header. Because COI is not supported by CvMat, it is returned separately.
+
+The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same
+code. Input array must have non-zero data pointer, otherwise the function will report an error.
+
+@note If the input array is IplImage with planar data layout and COI set, the function returns the
+pointer to the selected plane and COI == 0. This feature allows user to process IplImage structures
+with planar data layout, even though OpenCV does not support such images.
+@param arr Input array
+@param header Pointer to CvMat structure used as a temporary buffer
+@param coi Optional output parameter for storing COI
+@param allowND If non-zero, the function accepts multi-dimensional dense arrays (CvMatND\*) and
+returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or
+more than 2 dimensions). The CvMatND array must be continuous.
+@sa cvGetImage, cvarrToMat.
+ */
+CVAPI(CvMat*) cvGetMat( const CvArr* arr, CvMat* header,
+                       int* coi CV_DEFAULT(NULL),
+                       int allowND CV_DEFAULT(0));
+
+/** @brief Returns image header for arbitrary array.
+
+The function returns the image header for the input array that can be a matrix (CvMat) or image
+(IplImage). In the case of an image the function simply returns the input pointer. In the case of
+CvMat it initializes an image_header structure with the parameters of the input matrix. Note that
+if we transform IplImage to CvMat using cvGetMat and then transform CvMat back to IplImage using
+this function, we will get different headers if the ROI is set in the original image.
+@param arr Input array
+@param image_header Pointer to IplImage structure used as a temporary buffer
+ */
+CVAPI(IplImage*) cvGetImage( const CvArr* arr, IplImage* image_header );
+
+
+/** @brief Changes the shape of a multi-dimensional array without copying the data.
+
+The function is an advanced version of cvReshape that can work with multi-dimensional arrays as
+well (though it can work with ordinary images and matrices) and change the number of dimensions.
+
+Below are the two samples from the cvReshape description rewritten using cvReshapeMatND:
+@code
+    IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
+    IplImage gray_img_hdr, *gray_img;
+    gray_img = (IplImage*)cvReshapeMatND(color_img, sizeof(gray_img_hdr), &gray_img_hdr, 1, 0, 0);
+    ...
+    int size[] = { 2, 2, 2 };
+    CvMatND* mat = cvCreateMatND(3, size, CV_32F);
+    CvMat row_header, *row;
+    row = (CvMat*)cvReshapeMatND(mat, sizeof(row_header), &row_header, 0, 1, 0);
+@endcode
+In C, the header file for this function includes a convenient macro cvReshapeND that does away with
+the sizeof_header parameter. So, the lines containing the call to cvReshapeMatND in the examples
+may be replaced as follow:
+@code
+    gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);
+    ...
+    row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0);
+@endcode
+@param arr Input array
+@param sizeof_header Size of output header to distinguish between IplImage, CvMat and CvMatND
+output headers
+@param header Output header to be filled
+@param new_cn New number of channels. new_cn = 0 means that the number of channels remains
+unchanged.
+@param new_dims New number of dimensions. new_dims = 0 means that the number of dimensions
+remains the same.
+@param new_sizes Array of new dimension sizes. Only new_dims-1 values are used, because the
+total number of elements must remain the same. Thus, if new_dims = 1, new_sizes array is not
+used.
+ */
+CVAPI(CvArr*) cvReshapeMatND( const CvArr* arr,
+                             int sizeof_header, CvArr* header,
+                             int new_cn, int new_dims, int* new_sizes );
+
+#define cvReshapeND( arr, header, new_cn, new_dims, new_sizes )   \
+      cvReshapeMatND( (arr), sizeof(*(header)), (header),         \
+                      (new_cn), (new_dims), (new_sizes))
+
+/** @brief Changes shape of matrix/image without copying data.
+
+The function initializes the CvMat header so that it points to the same data as the original array
+but has a different shape - different number of channels, different number of rows, or both.
+
+The following example code creates one image buffer and two image headers, the first is for a
+320x240x3 image and the second is for a 960x240x1 image:
+@code
+    IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
+    CvMat gray_mat_hdr;
+    IplImage gray_img_hdr, *gray_img;
+    cvReshape(color_img, &gray_mat_hdr, 1);
+    gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);
+@endcode
+And the next example converts a 3x3 matrix to a single 1x9 vector:
+@code
+    CvMat* mat = cvCreateMat(3, 3, CV_32F);
+    CvMat row_header, *row;
+    row = cvReshape(mat, &row_header, 0, 1);
+@endcode
+@param arr Input array
+@param header Output header to be filled
+@param new_cn New number of channels. 'new_cn = 0' means that the number of channels remains
+unchanged.
+@param new_rows New number of rows. 'new_rows = 0' means that the number of rows remains
+unchanged unless it needs to be changed according to new_cn value.
+*/
+CVAPI(CvMat*) cvReshape( const CvArr* arr, CvMat* header,
+                        int new_cn, int new_rows CV_DEFAULT(0) );
+
+/** Repeats source 2d array several times in both horizontal and
+   vertical direction to fill destination array */
+CVAPI(void) cvRepeat( const CvArr* src, CvArr* dst );
+
+/** @brief Allocates array data
+
+The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of
+matrix types OpenCV allocation functions are used. In the case of IplImage they are used unless
+CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used
+to allocate the data.
+@param arr Array header
+ */
+CVAPI(void)  cvCreateData( CvArr* arr );
+
+/** @brief Releases array data.
+
+The function releases the array data. In the case of CvMat or CvMatND it simply calls
+cvDecRefData(), that is the function can not deallocate external data. See also the note to
+cvCreateData .
+@param arr Array header
+ */
+CVAPI(void)  cvReleaseData( CvArr* arr );
+
+/** @brief Assigns user data to the array header.
+
+The function assigns user data to the array header. Header should be initialized before using
+cvCreateMatHeader, cvCreateImageHeader, cvCreateMatNDHeader, cvInitMatHeader,
+cvInitImageHeader or cvInitMatNDHeader.
+@param arr Array header
+@param data User data
+@param step Full row length in bytes
+ */
+CVAPI(void)  cvSetData( CvArr* arr, void* data, int step );
+
+/** @brief Retrieves low-level information about the array.
+
+The function fills output variables with low-level information about the array data. All output
+
+parameters are optional, so some of the pointers may be set to NULL. If the array is IplImage with
+ROI set, the parameters of ROI are returned.
+
+The following example shows how to get access to array elements. It computes absolute values of the
+array elements :
+@code
+    float* data;
+    int step;
+    CvSize size;
+
+    cvGetRawData(array, (uchar**)&data, &step, &size);
+    step /= sizeof(data[0]);
+
+    for(int y = 0; y < size.height; y++, data += step )
+        for(int x = 0; x < size.width; x++ )
+            data[x] = (float)fabs(data[x]);
+@endcode
+@param arr Array header
+@param data Output pointer to the whole image origin or ROI origin if ROI is set
+@param step Output full row length in bytes
+@param roi_size Output ROI size
+ */
+CVAPI(void) cvGetRawData( const CvArr* arr, uchar** data,
+                         int* step CV_DEFAULT(NULL),
+                         CvSize* roi_size CV_DEFAULT(NULL));
+
+/** @brief Returns size of matrix or image ROI.
+
+The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the
+input matrix or image. In the case of image the size of ROI is returned.
+@param arr array header
+ */
+CVAPI(CvSize) cvGetSize( const CvArr* arr );
+
+/** @brief Copies one array to another.
+
+The function copies selected elements from an input array to an output array:
+
+\f[\texttt{dst} (I)= \texttt{src} (I)  \quad \text{if} \quad \texttt{mask} (I)  \ne 0.\f]
+
+If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays
+must have the same type, the same number of dimensions, and the same size. The function can also
+copy sparse arrays (mask is not supported in this case).
+@param src The source array
+@param dst The destination array
+@param mask Operation mask, 8-bit single channel array; specifies elements of the destination array
+to be changed
+ */
+CVAPI(void)  cvCopy( const CvArr* src, CvArr* dst,
+                     const CvArr* mask CV_DEFAULT(NULL) );
+
+/** @brief Sets every element of an array to a given value.
+
+The function copies the scalar value to every selected element of the destination array:
+\f[\texttt{arr} (I)= \texttt{value} \quad \text{if} \quad \texttt{mask} (I)  \ne 0\f]
+If array arr is of IplImage type, then is ROI used, but COI must not be set.
+@param arr The destination array
+@param value Fill value
+@param mask Operation mask, 8-bit single channel array; specifies elements of the destination
+array to be changed
+ */
+CVAPI(void)  cvSet( CvArr* arr, CvScalar value,
+                    const CvArr* mask CV_DEFAULT(NULL) );
+
+/** @brief Clears the array.
+
+The function clears the array. In the case of dense arrays (CvMat, CvMatND or IplImage),
+cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the
+elements are removed.
+@param arr Array to be cleared
+ */
+CVAPI(void)  cvSetZero( CvArr* arr );
+#define cvZero  cvSetZero
+
+
+/** Splits a multi-channel array into the set of single-channel arrays or
+   extracts particular [color] plane */
+CVAPI(void)  cvSplit( const CvArr* src, CvArr* dst0, CvArr* dst1,
+                      CvArr* dst2, CvArr* dst3 );
+
+/** Merges a set of single-channel arrays into the single multi-channel array
+   or inserts one particular [color] plane to the array */
+CVAPI(void)  cvMerge( const CvArr* src0, const CvArr* src1,
+                      const CvArr* src2, const CvArr* src3,
+                      CvArr* dst );
+
+/** Copies several channels from input arrays to
+   certain channels of output arrays */
+CVAPI(void)  cvMixChannels( const CvArr** src, int src_count,
+                            CvArr** dst, int dst_count,
+                            const int* from_to, int pair_count );
+
+/** @brief Converts one array to another with optional linear transformation.
+
+The function has several different purposes, and thus has several different names. It copies one
+array to another with optional scaling, which is performed first, and/or optional type conversion,
+performed after:
+
+\f[\texttt{dst} (I) =  \texttt{scale} \texttt{src} (I) + ( \texttt{shift} _0, \texttt{shift} _1,...)\f]
+
+All the channels of multi-channel arrays are processed independently.
+
+The type of conversion is done with rounding and saturation, that is if the result of scaling +
+conversion can not be represented exactly by a value of the destination array element type, it is
+set to the nearest representable value on the real axis.
+@param src Source array
+@param dst Destination array
+@param scale Scale factor
+@param shift Value added to the scaled source array elements
+ */
+CVAPI(void)  cvConvertScale( const CvArr* src, CvArr* dst,
+                             double scale CV_DEFAULT(1),
+                             double shift CV_DEFAULT(0) );
+#define cvCvtScale cvConvertScale
+#define cvScale  cvConvertScale
+#define cvConvert( src, dst )  cvConvertScale( (src), (dst), 1, 0 )
+
+
+/** Performs linear transformation on every source array element,
+   stores absolute value of the result:
+   dst(x,y,c) = abs(scale*src(x,y,c)+shift).
+   destination array must have 8u type.
+   In other cases one may use cvConvertScale + cvAbsDiffS */
+CVAPI(void)  cvConvertScaleAbs( const CvArr* src, CvArr* dst,
+                                double scale CV_DEFAULT(1),
+                                double shift CV_DEFAULT(0) );
+#define cvCvtScaleAbs  cvConvertScaleAbs
+
+
+/** checks termination criteria validity and
+   sets eps to default_eps (if it is not set),
+   max_iter to default_max_iters (if it is not set)
+*/
+CVAPI(CvTermCriteria) cvCheckTermCriteria( CvTermCriteria criteria,
+                                           double default_eps,
+                                           int default_max_iters );
+
+/****************************************************************************************\
+*                   Arithmetic, logic and comparison operations                          *
+\****************************************************************************************/
+
+/** dst(mask) = src1(mask) + src2(mask) */
+CVAPI(void)  cvAdd( const CvArr* src1, const CvArr* src2, CvArr* dst,
+                    const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(mask) = src(mask) + value */
+CVAPI(void)  cvAddS( const CvArr* src, CvScalar value, CvArr* dst,
+                     const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(mask) = src1(mask) - src2(mask) */
+CVAPI(void)  cvSub( const CvArr* src1, const CvArr* src2, CvArr* dst,
+                    const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(mask) = src(mask) - value = src(mask) + (-value) */
+CV_INLINE  void  cvSubS( const CvArr* src, CvScalar value, CvArr* dst,
+                         const CvArr* mask CV_DEFAULT(NULL))
+{
+    cvAddS( src, cvScalar( -value.val[0], -value.val[1], -value.val[2], -value.val[3]),
+            dst, mask );
+}
+
+/** dst(mask) = value - src(mask) */
+CVAPI(void)  cvSubRS( const CvArr* src, CvScalar value, CvArr* dst,
+                      const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src1(idx) * src2(idx) * scale
+   (scaled element-wise multiplication of 2 arrays) */
+CVAPI(void)  cvMul( const CvArr* src1, const CvArr* src2,
+                    CvArr* dst, double scale CV_DEFAULT(1) );
+
+/** element-wise division/inversion with scaling:
+    dst(idx) = src1(idx) * scale / src2(idx)
+    or dst(idx) = scale / src2(idx) if src1 == 0 */
+CVAPI(void)  cvDiv( const CvArr* src1, const CvArr* src2,
+                    CvArr* dst, double scale CV_DEFAULT(1));
+
+/** dst = src1 * scale + src2 */
+CVAPI(void)  cvScaleAdd( const CvArr* src1, CvScalar scale,
+                         const CvArr* src2, CvArr* dst );
+#define cvAXPY( A, real_scalar, B, C ) cvScaleAdd(A, cvRealScalar(real_scalar), B, C)
+
+/** dst = src1 * alpha + src2 * beta + gamma */
+CVAPI(void)  cvAddWeighted( const CvArr* src1, double alpha,
+                            const CvArr* src2, double beta,
+                            double gamma, CvArr* dst );
+
+/** @brief Calculates the dot product of two arrays in Euclidean metrics.
+
+The function calculates and returns the Euclidean dot product of two arrays.
+
+\f[src1  \bullet src2 =  \sum _I ( \texttt{src1} (I)  \texttt{src2} (I))\f]
+
+In the case of multiple channel arrays, the results for all channels are accumulated. In particular,
+cvDotProduct(a,a) where a is a complex vector, will return \f$||\texttt{a}||^2\f$. The function can
+process multi-dimensional arrays, row by row, layer by layer, and so on.
+@param src1 The first source array
+@param src2 The second source array
+ */
+CVAPI(double)  cvDotProduct( const CvArr* src1, const CvArr* src2 );
+
+/** dst(idx) = src1(idx) & src2(idx) */
+CVAPI(void) cvAnd( const CvArr* src1, const CvArr* src2,
+                  CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src(idx) & value */
+CVAPI(void) cvAndS( const CvArr* src, CvScalar value,
+                   CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src1(idx) | src2(idx) */
+CVAPI(void) cvOr( const CvArr* src1, const CvArr* src2,
+                 CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src(idx) | value */
+CVAPI(void) cvOrS( const CvArr* src, CvScalar value,
+                  CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src1(idx) ^ src2(idx) */
+CVAPI(void) cvXor( const CvArr* src1, const CvArr* src2,
+                  CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = src(idx) ^ value */
+CVAPI(void) cvXorS( const CvArr* src, CvScalar value,
+                   CvArr* dst, const CvArr* mask CV_DEFAULT(NULL));
+
+/** dst(idx) = ~src(idx) */
+CVAPI(void) cvNot( const CvArr* src, CvArr* dst );
+
+/** dst(idx) = lower(idx) <= src(idx) < upper(idx) */
+CVAPI(void) cvInRange( const CvArr* src, const CvArr* lower,
+                      const CvArr* upper, CvArr* dst );
+
+/** dst(idx) = lower <= src(idx) < upper */
+CVAPI(void) cvInRangeS( const CvArr* src, CvScalar lower,
+                       CvScalar upper, CvArr* dst );
+
+#define CV_CMP_EQ   0
+#define CV_CMP_GT   1
+#define CV_CMP_GE   2
+#define CV_CMP_LT   3
+#define CV_CMP_LE   4
+#define CV_CMP_NE   5
+
+/** The comparison operation support single-channel arrays only.
+   Destination image should be 8uC1 or 8sC1 */
+
+/** dst(idx) = src1(idx) _cmp_op_ src2(idx) */
+CVAPI(void) cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op );
+
+/** dst(idx) = src1(idx) _cmp_op_ value */
+CVAPI(void) cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op );
+
+/** dst(idx) = min(src1(idx),src2(idx)) */
+CVAPI(void) cvMin( const CvArr* src1, const CvArr* src2, CvArr* dst );
+
+/** dst(idx) = max(src1(idx),src2(idx)) */
+CVAPI(void) cvMax( const CvArr* src1, const CvArr* src2, CvArr* dst );
+
+/** dst(idx) = min(src(idx),value) */
+CVAPI(void) cvMinS( const CvArr* src, double value, CvArr* dst );
+
+/** dst(idx) = max(src(idx),value) */
+CVAPI(void) cvMaxS( const CvArr* src, double value, CvArr* dst );
+
+/** dst(x,y,c) = abs(src1(x,y,c) - src2(x,y,c)) */
+CVAPI(void) cvAbsDiff( const CvArr* src1, const CvArr* src2, CvArr* dst );
+
+/** dst(x,y,c) = abs(src(x,y,c) - value(c)) */
+CVAPI(void) cvAbsDiffS( const CvArr* src, CvArr* dst, CvScalar value );
+#define cvAbs( src, dst ) cvAbsDiffS( (src), (dst), cvScalarAll(0))
+
+/****************************************************************************************\
+*                                Math operations                                         *
+\****************************************************************************************/
+
+/** Does cartesian->polar coordinates conversion.
+   Either of output components (magnitude or angle) is optional */
+CVAPI(void)  cvCartToPolar( const CvArr* x, const CvArr* y,
+                            CvArr* magnitude, CvArr* angle CV_DEFAULT(NULL),
+                            int angle_in_degrees CV_DEFAULT(0));
+
+/** Does polar->cartesian coordinates conversion.
+   Either of output components (magnitude or angle) is optional.
+   If magnitude is missing it is assumed to be all 1's */
+CVAPI(void)  cvPolarToCart( const CvArr* magnitude, const CvArr* angle,
+                            CvArr* x, CvArr* y,
+                            int angle_in_degrees CV_DEFAULT(0));
+
+/** Does powering: dst(idx) = src(idx)^power */
+CVAPI(void)  cvPow( const CvArr* src, CvArr* dst, double power );
+
+/** Does exponention: dst(idx) = exp(src(idx)).
+   Overflow is not handled yet. Underflow is handled.
+   Maximal relative error is ~7e-6 for single-precision input */
+CVAPI(void)  cvExp( const CvArr* src, CvArr* dst );
+
+/** Calculates natural logarithms: dst(idx) = log(abs(src(idx))).
+   Logarithm of 0 gives large negative number(~-700)
+   Maximal relative error is ~3e-7 for single-precision output
+*/
+CVAPI(void)  cvLog( const CvArr* src, CvArr* dst );
+
+/** Fast arctangent calculation */
+CVAPI(float) cvFastArctan( float y, float x );
+
+/** Fast cubic root calculation */
+CVAPI(float)  cvCbrt( float value );
+
+#define  CV_CHECK_RANGE    1
+#define  CV_CHECK_QUIET    2
+/** Checks array values for NaNs, Infs or simply for too large numbers
+   (if CV_CHECK_RANGE is set). If CV_CHECK_QUIET is set,
+   no runtime errors is raised (function returns zero value in case of "bad" values).
+   Otherwise cvError is called */
+CVAPI(int)  cvCheckArr( const CvArr* arr, int flags CV_DEFAULT(0),
+                        double min_val CV_DEFAULT(0), double max_val CV_DEFAULT(0));
+#define cvCheckArray cvCheckArr
+
+#define CV_RAND_UNI      0
+#define CV_RAND_NORMAL   1
+
+/** @brief Fills an array with random numbers and updates the RNG state.
+
+The function fills the destination array with uniformly or normally distributed random numbers.
+@param rng CvRNG state initialized by cvRNG
+@param arr The destination array
+@param dist_type Distribution type
+> -   **CV_RAND_UNI** uniform distribution
+> -   **CV_RAND_NORMAL** normal or Gaussian distribution
+@param param1 The first parameter of the distribution. In the case of a uniform distribution it is
+the inclusive lower boundary of the random numbers range. In the case of a normal distribution it
+is the mean value of the random numbers.
+@param param2 The second parameter of the distribution. In the case of a uniform distribution it
+is the exclusive upper boundary of the random numbers range. In the case of a normal distribution
+it is the standard deviation of the random numbers.
+@sa randu, randn, RNG::fill.
+ */
+CVAPI(void) cvRandArr( CvRNG* rng, CvArr* arr, int dist_type,
+                      CvScalar param1, CvScalar param2 );
+
+CVAPI(void) cvRandShuffle( CvArr* mat, CvRNG* rng,
+                           double iter_factor CV_DEFAULT(1.));
+
+#define CV_SORT_EVERY_ROW 0
+#define CV_SORT_EVERY_COLUMN 1
+#define CV_SORT_ASCENDING 0
+#define CV_SORT_DESCENDING 16
+
+CVAPI(void) cvSort( const CvArr* src, CvArr* dst CV_DEFAULT(NULL),
+                    CvArr* idxmat CV_DEFAULT(NULL),
+                    int flags CV_DEFAULT(0));
+
+/** Finds real roots of a cubic equation */
+CVAPI(int) cvSolveCubic( const CvMat* coeffs, CvMat* roots );
+
+/** Finds all real and complex roots of a polynomial equation */
+CVAPI(void) cvSolvePoly(const CvMat* coeffs, CvMat *roots2,
+      int maxiter CV_DEFAULT(20), int fig CV_DEFAULT(100));
+
+/****************************************************************************************\
+*                                Matrix operations                                       *
+\****************************************************************************************/
+
+/** @brief Calculates the cross product of two 3D vectors.
+
+The function calculates the cross product of two 3D vectors:
+\f[\texttt{dst} =  \texttt{src1} \times \texttt{src2}\f]
+or:
+\f[\begin{array}{l} \texttt{dst} _1 =  \texttt{src1} _2  \texttt{src2} _3 -  \texttt{src1} _3  \texttt{src2} _2 \\ \texttt{dst} _2 =  \texttt{src1} _3  \texttt{src2} _1 -  \texttt{src1} _1  \texttt{src2} _3 \\ \texttt{dst} _3 =  \texttt{src1} _1  \texttt{src2} _2 -  \texttt{src1} _2  \texttt{src2} _1 \end{array}\f]
+@param src1 The first source vector
+@param src2 The second source vector
+@param dst The destination vector
+ */
+CVAPI(void)  cvCrossProduct( const CvArr* src1, const CvArr* src2, CvArr* dst );
+
+/** Matrix transform: dst = A*B + C, C is optional */
+#define cvMatMulAdd( src1, src2, src3, dst ) cvGEMM( (src1), (src2), 1., (src3), 1., (dst), 0 )
+#define cvMatMul( src1, src2, dst )  cvMatMulAdd( (src1), (src2), NULL, (dst))
+
+#define CV_GEMM_A_T 1
+#define CV_GEMM_B_T 2
+#define CV_GEMM_C_T 4
+/** Extended matrix transform:
+   dst = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X^T */
+CVAPI(void)  cvGEMM( const CvArr* src1, const CvArr* src2, double alpha,
+                     const CvArr* src3, double beta, CvArr* dst,
+                     int tABC CV_DEFAULT(0));
+#define cvMatMulAddEx cvGEMM
+
+/** Transforms each element of source array and stores
+   resultant vectors in destination array */
+CVAPI(void)  cvTransform( const CvArr* src, CvArr* dst,
+                          const CvMat* transmat,
+                          const CvMat* shiftvec CV_DEFAULT(NULL));
+#define cvMatMulAddS cvTransform
+
+/** Does perspective transform on every element of input array */
+CVAPI(void)  cvPerspectiveTransform( const CvArr* src, CvArr* dst,
+                                     const CvMat* mat );
+
+/** Calculates (A-delta)*(A-delta)^T (order=0) or (A-delta)^T*(A-delta) (order=1) */
+CVAPI(void) cvMulTransposed( const CvArr* src, CvArr* dst, int order,
+                             const CvArr* delta CV_DEFAULT(NULL),
+                             double scale CV_DEFAULT(1.) );
+
+/** Tranposes matrix. Square matrices can be transposed in-place */
+CVAPI(void)  cvTranspose( const CvArr* src, CvArr* dst );
+#define cvT cvTranspose
+
+/** Completes the symmetric matrix from the lower (LtoR=0) or from the upper (LtoR!=0) part */
+CVAPI(void)  cvCompleteSymm( CvMat* matrix, int LtoR CV_DEFAULT(0) );
+
+/** Mirror array data around horizontal (flip=0),
+   vertical (flip=1) or both(flip=-1) axises:
+   cvFlip(src) flips images vertically and sequences horizontally (inplace) */
+CVAPI(void)  cvFlip( const CvArr* src, CvArr* dst CV_DEFAULT(NULL),
+                     int flip_mode CV_DEFAULT(0));
+#define cvMirror cvFlip
+
+
+#define CV_SVD_MODIFY_A   1
+#define CV_SVD_U_T        2
+#define CV_SVD_V_T        4
+
+/** Performs Singular Value Decomposition of a matrix */
+CVAPI(void)   cvSVD( CvArr* A, CvArr* W, CvArr* U CV_DEFAULT(NULL),
+                     CvArr* V CV_DEFAULT(NULL), int flags CV_DEFAULT(0));
+
+/** Performs Singular Value Back Substitution (solves A*X = B):
+   flags must be the same as in cvSVD */
+CVAPI(void)   cvSVBkSb( const CvArr* W, const CvArr* U,
+                        const CvArr* V, const CvArr* B,
+                        CvArr* X, int flags );
+
+#define CV_LU  0
+#define CV_SVD 1
+#define CV_SVD_SYM 2
+#define CV_CHOLESKY 3
+#define CV_QR  4
+#define CV_NORMAL 16
+
+/** Inverts matrix */
+CVAPI(double)  cvInvert( const CvArr* src, CvArr* dst,
+                         int method CV_DEFAULT(CV_LU));
+#define cvInv cvInvert
+
+/** Solves linear system (src1)*(dst) = (src2)
+   (returns 0 if src1 is a singular and CV_LU method is used) */
+CVAPI(int)  cvSolve( const CvArr* src1, const CvArr* src2, CvArr* dst,
+                     int method CV_DEFAULT(CV_LU));
+
+/** Calculates determinant of input matrix */
+CVAPI(double) cvDet( const CvArr* mat );
+
+/** Calculates trace of the matrix (sum of elements on the main diagonal) */
+CVAPI(CvScalar) cvTrace( const CvArr* mat );
+
+/** Finds eigen values and vectors of a symmetric matrix */
+CVAPI(void)  cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals,
+                        double eps CV_DEFAULT(0),
+                        int lowindex CV_DEFAULT(-1),
+                        int highindex CV_DEFAULT(-1));
+
+///* Finds selected eigen values and vectors of a symmetric matrix */
+//CVAPI(void)  cvSelectedEigenVV( CvArr* mat, CvArr* evects, CvArr* evals,
+//                                int lowindex, int highindex );
+
+/** Makes an identity matrix (mat_ij = i == j) */
+CVAPI(void)  cvSetIdentity( CvArr* mat, CvScalar value CV_DEFAULT(cvRealScalar(1)) );
+
+/** Fills matrix with given range of numbers */
+CVAPI(CvArr*)  cvRange( CvArr* mat, double start, double end );
+
+/**   @anchor core_c_CovarFlags
+@name Flags for cvCalcCovarMatrix
+@see cvCalcCovarMatrix
+  @{
+*/
+
+/** flag for cvCalcCovarMatrix, transpose([v1-avg, v2-avg,...]) * [v1-avg,v2-avg,...] */
+#define CV_COVAR_SCRAMBLED 0
+
+/** flag for cvCalcCovarMatrix, [v1-avg, v2-avg,...] * transpose([v1-avg,v2-avg,...]) */
+#define CV_COVAR_NORMAL    1
+
+/** flag for cvCalcCovarMatrix, do not calc average (i.e. mean vector) - use the input vector instead
+   (useful for calculating covariance matrix by parts) */
+#define CV_COVAR_USE_AVG   2
+
+/** flag for cvCalcCovarMatrix, scale the covariance matrix coefficients by number of the vectors */
+#define CV_COVAR_SCALE     4
+
+/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its rows */
+#define CV_COVAR_ROWS      8
+
+/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its columns */
+#define CV_COVAR_COLS     16
+
+/** @} */
+
+/** Calculates covariation matrix for a set of vectors
+@see @ref core_c_CovarFlags "flags"
+*/
+CVAPI(void)  cvCalcCovarMatrix( const CvArr** vects, int count,
+                                CvArr* cov_mat, CvArr* avg, int flags );
+
+#define CV_PCA_DATA_AS_ROW 0
+#define CV_PCA_DATA_AS_COL 1
+#define CV_PCA_USE_AVG 2
+CVAPI(void)  cvCalcPCA( const CvArr* data, CvArr* mean,
+                        CvArr* eigenvals, CvArr* eigenvects, int flags );
+
+CVAPI(void)  cvProjectPCA( const CvArr* data, const CvArr* mean,
+                           const CvArr* eigenvects, CvArr* result );
+
+CVAPI(void)  cvBackProjectPCA( const CvArr* proj, const CvArr* mean,
+                               const CvArr* eigenvects, CvArr* result );
+
+/** Calculates Mahalanobis(weighted) distance */
+CVAPI(double)  cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat );
+#define cvMahalonobis  cvMahalanobis
+
+/****************************************************************************************\
+*                                    Array Statistics                                    *
+\****************************************************************************************/
+
+/** Finds sum of array elements */
+CVAPI(CvScalar)  cvSum( const CvArr* arr );
+
+/** Calculates number of non-zero pixels */
+CVAPI(int)  cvCountNonZero( const CvArr* arr );
+
+/** Calculates mean value of array elements */
+CVAPI(CvScalar)  cvAvg( const CvArr* arr, const CvArr* mask CV_DEFAULT(NULL) );
+
+/** Calculates mean and standard deviation of pixel values */
+CVAPI(void)  cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev,
+                       const CvArr* mask CV_DEFAULT(NULL) );
+
+/** Finds global minimum, maximum and their positions */
+CVAPI(void)  cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val,
+                          CvPoint* min_loc CV_DEFAULT(NULL),
+                          CvPoint* max_loc CV_DEFAULT(NULL),
+                          const CvArr* mask CV_DEFAULT(NULL) );
+
+/** @anchor core_c_NormFlags
+  @name Flags for cvNorm and cvNormalize
+  @{
+*/
+#define CV_C            1
+#define CV_L1           2
+#define CV_L2           4
+#define CV_NORM_MASK    7
+#define CV_RELATIVE     8
+#define CV_DIFF         16
+#define CV_MINMAX       32
+
+#define CV_DIFF_C       (CV_DIFF | CV_C)
+#define CV_DIFF_L1      (CV_DIFF | CV_L1)
+#define CV_DIFF_L2      (CV_DIFF | CV_L2)
+#define CV_RELATIVE_C   (CV_RELATIVE | CV_C)
+#define CV_RELATIVE_L1  (CV_RELATIVE | CV_L1)
+#define CV_RELATIVE_L2  (CV_RELATIVE | CV_L2)
+/** @} */
+
+/** Finds norm, difference norm or relative difference norm for an array (or two arrays)
+@see ref core_c_NormFlags "flags"
+*/
+CVAPI(double)  cvNorm( const CvArr* arr1, const CvArr* arr2 CV_DEFAULT(NULL),
+                       int norm_type CV_DEFAULT(CV_L2),
+                       const CvArr* mask CV_DEFAULT(NULL) );
+
+/** @see ref core_c_NormFlags "flags" */
+CVAPI(void)  cvNormalize( const CvArr* src, CvArr* dst,
+                          double a CV_DEFAULT(1.), double b CV_DEFAULT(0.),
+                          int norm_type CV_DEFAULT(CV_L2),
+                          const CvArr* mask CV_DEFAULT(NULL) );
+
+/** @anchor core_c_ReduceFlags
+  @name Flags for cvReduce
+  @{
+*/
+#define CV_REDUCE_SUM 0
+#define CV_REDUCE_AVG 1
+#define CV_REDUCE_MAX 2
+#define CV_REDUCE_MIN 3
+/** @} */
+
+/** @see @ref core_c_ReduceFlags "flags" */
+CVAPI(void)  cvReduce( const CvArr* src, CvArr* dst, int dim CV_DEFAULT(-1),
+                       int op CV_DEFAULT(CV_REDUCE_SUM) );
+
+/****************************************************************************************\
+*                      Discrete Linear Transforms and Related Functions                  *
+\****************************************************************************************/
+
+/** @anchor core_c_DftFlags
+  @name Flags for cvDFT, cvDCT and cvMulSpectrums
+  @{
+  */
+#define CV_DXT_FORWARD  0
+#define CV_DXT_INVERSE  1
+#define CV_DXT_SCALE    2 /**< divide result by size of array */
+#define CV_DXT_INV_SCALE (CV_DXT_INVERSE + CV_DXT_SCALE)
+#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE
+#define CV_DXT_ROWS     4 /**< transform each row individually */
+#define CV_DXT_MUL_CONJ 8 /**< conjugate the second argument of cvMulSpectrums */
+/** @} */
+
+/** Discrete Fourier Transform:
+    complex->complex,
+    real->ccs (forward),
+    ccs->real (inverse)
+@see core_c_DftFlags "flags"
+*/
+CVAPI(void)  cvDFT( const CvArr* src, CvArr* dst, int flags,
+                    int nonzero_rows CV_DEFAULT(0) );
+#define cvFFT cvDFT
+
+/** Multiply results of DFTs: DFT(X)*DFT(Y) or DFT(X)*conj(DFT(Y))
+@see core_c_DftFlags "flags"
+*/
+CVAPI(void)  cvMulSpectrums( const CvArr* src1, const CvArr* src2,
+                             CvArr* dst, int flags );
+
+/** Finds optimal DFT vector size >= size0 */
+CVAPI(int)  cvGetOptimalDFTSize( int size0 );
+
+/** Discrete Cosine Transform
+@see core_c_DftFlags "flags"
+*/
+CVAPI(void)  cvDCT( const CvArr* src, CvArr* dst, int flags );
+
+/****************************************************************************************\
+*                              Dynamic data structures                                   *
+\****************************************************************************************/
+
+/** Calculates length of sequence slice (with support of negative indices). */
+CVAPI(int) cvSliceLength( CvSlice slice, const CvSeq* seq );
+
+
+/** Creates new memory storage.
+   block_size == 0 means that default,
+   somewhat optimal size, is used (currently, it is 64K) */
+CVAPI(CvMemStorage*)  cvCreateMemStorage( int block_size CV_DEFAULT(0));
+
+
+/** Creates a memory storage that will borrow memory blocks from parent storage */
+CVAPI(CvMemStorage*)  cvCreateChildMemStorage( CvMemStorage* parent );
+
+
+/** Releases memory storage. All the children of a parent must be released before
+   the parent. A child storage returns all the blocks to parent when it is released */
+CVAPI(void)  cvReleaseMemStorage( CvMemStorage** storage );
+
+
+/** Clears memory storage. This is the only way(!!!) (besides cvRestoreMemStoragePos)
+   to reuse memory allocated for the storage - cvClearSeq,cvClearSet ...
+   do not free any memory.
+   A child storage returns all the blocks to the parent when it is cleared */
+CVAPI(void)  cvClearMemStorage( CvMemStorage* storage );
+
+/** Remember a storage "free memory" position */
+CVAPI(void)  cvSaveMemStoragePos( const CvMemStorage* storage, CvMemStoragePos* pos );
+
+/** Restore a storage "free memory" position */
+CVAPI(void)  cvRestoreMemStoragePos( CvMemStorage* storage, CvMemStoragePos* pos );
+
+/** Allocates continuous buffer of the specified size in the storage */
+CVAPI(void*) cvMemStorageAlloc( CvMemStorage* storage, size_t size );
+
+/** Allocates string in memory storage */
+CVAPI(CvString) cvMemStorageAllocString( CvMemStorage* storage, const char* ptr,
+                                         int len CV_DEFAULT(-1) );
+
+/** Creates new empty sequence that will reside in the specified storage */
+CVAPI(CvSeq*)  cvCreateSeq( int seq_flags, size_t header_size,
+                            size_t elem_size, CvMemStorage* storage );
+
+/** Changes default size (granularity) of sequence blocks.
+   The default size is ~1Kbyte */
+CVAPI(void)  cvSetSeqBlockSize( CvSeq* seq, int delta_elems );
+
+
+/** Adds new element to the end of sequence. Returns pointer to the element */
+CVAPI(schar*)  cvSeqPush( CvSeq* seq, const void* element CV_DEFAULT(NULL));
+
+
+/** Adds new element to the beginning of sequence. Returns pointer to it */
+CVAPI(schar*)  cvSeqPushFront( CvSeq* seq, const void* element CV_DEFAULT(NULL));
+
+
+/** Removes the last element from sequence and optionally saves it */
+CVAPI(void)  cvSeqPop( CvSeq* seq, void* element CV_DEFAULT(NULL));
+
+
+/** Removes the first element from sequence and optioanally saves it */
+CVAPI(void)  cvSeqPopFront( CvSeq* seq, void* element CV_DEFAULT(NULL));
+
+
+#define CV_FRONT 1
+#define CV_BACK 0
+/** Adds several new elements to the end of sequence */
+CVAPI(void)  cvSeqPushMulti( CvSeq* seq, const void* elements,
+                             int count, int in_front CV_DEFAULT(0) );
+
+/** Removes several elements from the end of sequence and optionally saves them */
+CVAPI(void)  cvSeqPopMulti( CvSeq* seq, void* elements,
+                            int count, int in_front CV_DEFAULT(0) );
+
+/** Inserts a new element in the middle of sequence.
+   cvSeqInsert(seq,0,elem) == cvSeqPushFront(seq,elem) */
+CVAPI(schar*)  cvSeqInsert( CvSeq* seq, int before_index,
+                            const void* element CV_DEFAULT(NULL));
+
+/** Removes specified sequence element */
+CVAPI(void)  cvSeqRemove( CvSeq* seq, int index );
+
+
+/** Removes all the elements from the sequence. The freed memory
+   can be reused later only by the same sequence unless cvClearMemStorage
+   or cvRestoreMemStoragePos is called */
+CVAPI(void)  cvClearSeq( CvSeq* seq );
+
+
+/** Retrieves pointer to specified sequence element.
+   Negative indices are supported and mean counting from the end
+   (e.g -1 means the last sequence element) */
+CVAPI(schar*)  cvGetSeqElem( const CvSeq* seq, int index );
+
+/** Calculates index of the specified sequence element.
+   Returns -1 if element does not belong to the sequence */
+CVAPI(int)  cvSeqElemIdx( const CvSeq* seq, const void* element,
+                         CvSeqBlock** block CV_DEFAULT(NULL) );
+
+/** Initializes sequence writer. The new elements will be added to the end of sequence */
+CVAPI(void)  cvStartAppendToSeq( CvSeq* seq, CvSeqWriter* writer );
+
+
+/** Combination of cvCreateSeq and cvStartAppendToSeq */
+CVAPI(void)  cvStartWriteSeq( int seq_flags, int header_size,
+                              int elem_size, CvMemStorage* storage,
+                              CvSeqWriter* writer );
+
+/** Closes sequence writer, updates sequence header and returns pointer
+   to the resultant sequence
+   (which may be useful if the sequence was created using cvStartWriteSeq))
+*/
+CVAPI(CvSeq*)  cvEndWriteSeq( CvSeqWriter* writer );
+
+
+/** Updates sequence header. May be useful to get access to some of previously
+   written elements via cvGetSeqElem or sequence reader */
+CVAPI(void)   cvFlushSeqWriter( CvSeqWriter* writer );
+
+
+/** Initializes sequence reader.
+   The sequence can be read in forward or backward direction */
+CVAPI(void) cvStartReadSeq( const CvSeq* seq, CvSeqReader* reader,
+                           int reverse CV_DEFAULT(0) );
+
+
+/** Returns current sequence reader position (currently observed sequence element) */
+CVAPI(int)  cvGetSeqReaderPos( CvSeqReader* reader );
+
+
+/** Changes sequence reader position. It may seek to an absolute or
+   to relative to the current position */
+CVAPI(void)   cvSetSeqReaderPos( CvSeqReader* reader, int index,
+                                 int is_relative CV_DEFAULT(0));
+
+/** Copies sequence content to a continuous piece of memory */
+CVAPI(void*)  cvCvtSeqToArray( const CvSeq* seq, void* elements,
+                               CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ) );
+
+/** Creates sequence header for array.
+   After that all the operations on sequences that do not alter the content
+   can be applied to the resultant sequence */
+CVAPI(CvSeq*) cvMakeSeqHeaderForArray( int seq_type, int header_size,
+                                       int elem_size, void* elements, int total,
+                                       CvSeq* seq, CvSeqBlock* block );
+
+/** Extracts sequence slice (with or without copying sequence elements) */
+CVAPI(CvSeq*) cvSeqSlice( const CvSeq* seq, CvSlice slice,
+                         CvMemStorage* storage CV_DEFAULT(NULL),
+                         int copy_data CV_DEFAULT(0));
+
+CV_INLINE CvSeq* cvCloneSeq( const CvSeq* seq, CvMemStorage* storage CV_DEFAULT(NULL))
+{
+    return cvSeqSlice( seq, CV_WHOLE_SEQ, storage, 1 );
+}
+
+/** Removes sequence slice */
+CVAPI(void)  cvSeqRemoveSlice( CvSeq* seq, CvSlice slice );
+
+/** Inserts a sequence or array into another sequence */
+CVAPI(void)  cvSeqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr );
+
+/** a < b ? -1 : a > b ? 1 : 0 */
+typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata );
+
+/** Sorts sequence in-place given element comparison function */
+CVAPI(void) cvSeqSort( CvSeq* seq, CvCmpFunc func, void* userdata CV_DEFAULT(NULL) );
+
+/** Finds element in a [sorted] sequence */
+CVAPI(schar*) cvSeqSearch( CvSeq* seq, const void* elem, CvCmpFunc func,
+                           int is_sorted, int* elem_idx,
+                           void* userdata CV_DEFAULT(NULL) );
+
+/** Reverses order of sequence elements in-place */
+CVAPI(void) cvSeqInvert( CvSeq* seq );
+
+/** Splits sequence into one or more equivalence classes using the specified criteria */
+CVAPI(int)  cvSeqPartition( const CvSeq* seq, CvMemStorage* storage,
+                            CvSeq** labels, CvCmpFunc is_equal, void* userdata );
+
+/************ Internal sequence functions ************/
+CVAPI(void)  cvChangeSeqBlock( void* reader, int direction );
+CVAPI(void)  cvCreateSeqBlock( CvSeqWriter* writer );
+
+
+/** Creates a new set */
+CVAPI(CvSet*)  cvCreateSet( int set_flags, int header_size,
+                            int elem_size, CvMemStorage* storage );
+
+/** Adds new element to the set and returns pointer to it */
+CVAPI(int)  cvSetAdd( CvSet* set_header, CvSetElem* elem CV_DEFAULT(NULL),
+                      CvSetElem** inserted_elem CV_DEFAULT(NULL) );
+
+/** Fast variant of cvSetAdd */
+CV_INLINE  CvSetElem* cvSetNew( CvSet* set_header )
+{
+    CvSetElem* elem = set_header->free_elems;
+    if( elem )
+    {
+        set_header->free_elems = elem->next_free;
+        elem->flags = elem->flags & CV_SET_ELEM_IDX_MASK;
+        set_header->active_count++;
+    }
+    else
+        cvSetAdd( set_header, NULL, &elem );
+    return elem;
+}
+
+/** Removes set element given its pointer */
+CV_INLINE  void cvSetRemoveByPtr( CvSet* set_header, void* elem )
+{
+    CvSetElem* _elem = (CvSetElem*)elem;
+    assert( _elem->flags >= 0 /*&& (elem->flags & CV_SET_ELEM_IDX_MASK) < set_header->total*/ );
+    _elem->next_free = set_header->free_elems;
+    _elem->flags = (_elem->flags & CV_SET_ELEM_IDX_MASK) | CV_SET_ELEM_FREE_FLAG;
+    set_header->free_elems = _elem;
+    set_header->active_count--;
+}
+
+/** Removes element from the set by its index  */
+CVAPI(void)   cvSetRemove( CvSet* set_header, int index );
+
+/** Returns a set element by index. If the element doesn't belong to the set,
+   NULL is returned */
+CV_INLINE CvSetElem* cvGetSetElem( const CvSet* set_header, int idx )
+{
+    CvSetElem* elem = (CvSetElem*)(void *)cvGetSeqElem( (CvSeq*)set_header, idx );
+    return elem && CV_IS_SET_ELEM( elem ) ? elem : 0;
+}
+
+/** Removes all the elements from the set */
+CVAPI(void)  cvClearSet( CvSet* set_header );
+
+/** Creates new graph */
+CVAPI(CvGraph*)  cvCreateGraph( int graph_flags, int header_size,
+                                int vtx_size, int edge_size,
+                                CvMemStorage* storage );
+
+/** Adds new vertex to the graph */
+CVAPI(int)  cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* vtx CV_DEFAULT(NULL),
+                           CvGraphVtx** inserted_vtx CV_DEFAULT(NULL) );
+
+
+/** Removes vertex from the graph together with all incident edges */
+CVAPI(int)  cvGraphRemoveVtx( CvGraph* graph, int index );
+CVAPI(int)  cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx );
+
+
+/** Link two vertices specifed by indices or pointers if they
+   are not connected or return pointer to already existing edge
+   connecting the vertices.
+   Functions return 1 if a new edge was created, 0 otherwise */
+CVAPI(int)  cvGraphAddEdge( CvGraph* graph,
+                            int start_idx, int end_idx,
+                            const CvGraphEdge* edge CV_DEFAULT(NULL),
+                            CvGraphEdge** inserted_edge CV_DEFAULT(NULL) );
+
+CVAPI(int)  cvGraphAddEdgeByPtr( CvGraph* graph,
+                               CvGraphVtx* start_vtx, CvGraphVtx* end_vtx,
+                               const CvGraphEdge* edge CV_DEFAULT(NULL),
+                               CvGraphEdge** inserted_edge CV_DEFAULT(NULL) );
+
+/** Remove edge connecting two vertices */
+CVAPI(void)  cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx );
+CVAPI(void)  cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx,
+                                     CvGraphVtx* end_vtx );
+
+/** Find edge connecting two vertices */
+CVAPI(CvGraphEdge*)  cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx );
+CVAPI(CvGraphEdge*)  cvFindGraphEdgeByPtr( const CvGraph* graph,
+                                           const CvGraphVtx* start_vtx,
+                                           const CvGraphVtx* end_vtx );
+#define cvGraphFindEdge cvFindGraphEdge
+#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr
+
+/** Remove all vertices and edges from the graph */
+CVAPI(void)  cvClearGraph( CvGraph* graph );
+
+
+/** Count number of edges incident to the vertex */
+CVAPI(int)  cvGraphVtxDegree( const CvGraph* graph, int vtx_idx );
+CVAPI(int)  cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vtx );
+
+
+/** Retrieves graph vertex by given index */
+#define cvGetGraphVtx( graph, idx ) (CvGraphVtx*)cvGetSetElem((CvSet*)(graph), (idx))
+
+/** Retrieves index of a graph vertex given its pointer */
+#define cvGraphVtxIdx( graph, vtx ) ((vtx)->flags & CV_SET_ELEM_IDX_MASK)
+
+/** Retrieves index of a graph edge given its pointer */
+#define cvGraphEdgeIdx( graph, edge ) ((edge)->flags & CV_SET_ELEM_IDX_MASK)
+
+#define cvGraphGetVtxCount( graph ) ((graph)->active_count)
+#define cvGraphGetEdgeCount( graph ) ((graph)->edges->active_count)
+
+#define  CV_GRAPH_VERTEX        1
+#define  CV_GRAPH_TREE_EDGE     2
+#define  CV_GRAPH_BACK_EDGE     4
+#define  CV_GRAPH_FORWARD_EDGE  8
+#define  CV_GRAPH_CROSS_EDGE    16
+#define  CV_GRAPH_ANY_EDGE      30
+#define  CV_GRAPH_NEW_TREE      32
+#define  CV_GRAPH_BACKTRACKING  64
+#define  CV_GRAPH_OVER          -1
+
+#define  CV_GRAPH_ALL_ITEMS    -1
+
+/** flags for graph vertices and edges */
+#define  CV_GRAPH_ITEM_VISITED_FLAG  (1 << 30)
+#define  CV_IS_GRAPH_VERTEX_VISITED(vtx) \
+    (((CvGraphVtx*)(vtx))->flags & CV_GRAPH_ITEM_VISITED_FLAG)
+#define  CV_IS_GRAPH_EDGE_VISITED(edge) \
+    (((CvGraphEdge*)(edge))->flags & CV_GRAPH_ITEM_VISITED_FLAG)
+#define  CV_GRAPH_SEARCH_TREE_NODE_FLAG   (1 << 29)
+#define  CV_GRAPH_FORWARD_EDGE_FLAG       (1 << 28)
+
+typedef struct CvGraphScanner
+{
+    CvGraphVtx* vtx;       /* current graph vertex (or current edge origin) */
+    CvGraphVtx* dst;       /* current graph edge destination vertex */
+    CvGraphEdge* edge;     /* current edge */
+
+    CvGraph* graph;        /* the graph */
+    CvSeq*   stack;        /* the graph vertex stack */
+    int      index;        /* the lower bound of certainly visited vertices */
+    int      mask;         /* event mask */
+}
+CvGraphScanner;
+
+/** Creates new graph scanner. */
+CVAPI(CvGraphScanner*)  cvCreateGraphScanner( CvGraph* graph,
+                                             CvGraphVtx* vtx CV_DEFAULT(NULL),
+                                             int mask CV_DEFAULT(CV_GRAPH_ALL_ITEMS));
+
+/** Releases graph scanner. */
+CVAPI(void) cvReleaseGraphScanner( CvGraphScanner** scanner );
+
+/** Get next graph element */
+CVAPI(int)  cvNextGraphItem( CvGraphScanner* scanner );
+
+/** Creates a copy of graph */
+CVAPI(CvGraph*) cvCloneGraph( const CvGraph* graph, CvMemStorage* storage );
+
+
+/** Does look-up transformation. Elements of the source array
+   (that should be 8uC1 or 8sC1) are used as indexes in lutarr 256-element table */
+CVAPI(void) cvLUT( const CvArr* src, CvArr* dst, const CvArr* lut );
+
+
+/******************* Iteration through the sequence tree *****************/
+typedef struct CvTreeNodeIterator
+{
+    const void* node;
+    int level;
+    int max_level;
+}
+CvTreeNodeIterator;
+
+CVAPI(void) cvInitTreeNodeIterator( CvTreeNodeIterator* tree_iterator,
+                                   const void* first, int max_level );
+CVAPI(void*) cvNextTreeNode( CvTreeNodeIterator* tree_iterator );
+CVAPI(void*) cvPrevTreeNode( CvTreeNodeIterator* tree_iterator );
+
+/** Inserts sequence into tree with specified "parent" sequence.
+   If parent is equal to frame (e.g. the most external contour),
+   then added contour will have null pointer to parent. */
+CVAPI(void) cvInsertNodeIntoTree( void* node, void* parent, void* frame );
+
+/** Removes contour from tree (together with the contour children). */
+CVAPI(void) cvRemoveNodeFromTree( void* node, void* frame );
+
+/** Gathers pointers to all the sequences,
+   accessible from the `first`, to the single sequence */
+CVAPI(CvSeq*) cvTreeToNodeSeq( const void* first, int header_size,
+                              CvMemStorage* storage );
+
+/** The function implements the K-means algorithm for clustering an array of sample
+   vectors in a specified number of classes */
+#define CV_KMEANS_USE_INITIAL_LABELS    1
+CVAPI(int) cvKMeans2( const CvArr* samples, int cluster_count, CvArr* labels,
+                      CvTermCriteria termcrit, int attempts CV_DEFAULT(1),
+                      CvRNG* rng CV_DEFAULT(0), int flags CV_DEFAULT(0),
+                      CvArr* _centers CV_DEFAULT(0), double* compactness CV_DEFAULT(0) );
+
+/****************************************************************************************\
+*                                    System functions                                    *
+\****************************************************************************************/
+
+/** Loads optimized functions from IPP, MKL etc. or switches back to pure C code */
+CVAPI(int)  cvUseOptimized( int on_off );
+
+typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader)
+                            (int,int,int,char*,char*,int,int,int,int,int,
+                            IplROI*,IplImage*,void*,IplTileInfo*);
+typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int);
+typedef void (CV_STDCALL* Cv_iplDeallocate)(IplImage*,int);
+typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int);
+typedef IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*);
+
+/** @brief Makes OpenCV use IPL functions for allocating IplImage and IplROI structures.
+
+Normally, the function is not called directly. Instead, a simple macro
+CV_TURN_ON_IPL_COMPATIBILITY() is used that calls cvSetIPLAllocators and passes there pointers
+to IPL allocation functions. :
+@code
+    ...
+    CV_TURN_ON_IPL_COMPATIBILITY()
+    ...
+@endcode
+@param create_header pointer to a function, creating IPL image header.
+@param allocate_data pointer to a function, allocating IPL image data.
+@param deallocate pointer to a function, deallocating IPL image.
+@param create_roi pointer to a function, creating IPL image ROI (i.e. Region of Interest).
+@param clone_image pointer to a function, cloning an IPL image.
+ */
+CVAPI(void) cvSetIPLAllocators( Cv_iplCreateImageHeader create_header,
+                               Cv_iplAllocateImageData allocate_data,
+                               Cv_iplDeallocate deallocate,
+                               Cv_iplCreateROI create_roi,
+                               Cv_iplCloneImage clone_image );
+
+#define CV_TURN_ON_IPL_COMPATIBILITY()                                  \
+    cvSetIPLAllocators( iplCreateImageHeader, iplAllocateImage,         \
+                        iplDeallocate, iplCreateROI, iplCloneImage )
+
+/****************************************************************************************\
+*                                    Data Persistence                                    *
+\****************************************************************************************/
+
+/********************************** High-level functions ********************************/
+
+/** @brief Opens file storage for reading or writing data.
+
+The function opens file storage for reading or writing data. In the latter case, a new file is
+created or an existing file is rewritten. The type of the read or written file is determined by the
+filename extension: .xml for XML, .yml or .yaml for YAML and .json for JSON.
+
+At the same time, it also supports adding parameters like "example.xml?base64". The three ways
+are the same:
+@snippet samples/cpp/filestorage_base64.cpp suffix_in_file_name
+@snippet samples/cpp/filestorage_base64.cpp flag_write_base64
+@snippet samples/cpp/filestorage_base64.cpp flag_write_and_flag_base64
+
+The function returns a pointer to the CvFileStorage structure.
+If the file cannot be opened then the function returns NULL.
+@param filename Name of the file associated with the storage
+@param memstorage Memory storage used for temporary data and for
+:   storing dynamic structures, such as CvSeq or CvGraph . If it is NULL, a temporary memory
+    storage is created and used.
+@param flags Can be one of the following:
+> -   **CV_STORAGE_READ** the storage is open for reading
+> -   **CV_STORAGE_WRITE** the storage is open for writing
+      (use **CV_STORAGE_WRITE | CV_STORAGE_WRITE_BASE64** to write rawdata in Base64)
+@param encoding
+ */
+CVAPI(CvFileStorage*)  cvOpenFileStorage( const char* filename, CvMemStorage* memstorage,
+                                          int flags, const char* encoding CV_DEFAULT(NULL) );
+
+/** @brief Releases file storage.
+
+The function closes the file associated with the storage and releases all the temporary structures.
+It must be called after all I/O operations with the storage are finished.
+@param fs Double pointer to the released file storage
+ */
+CVAPI(void) cvReleaseFileStorage( CvFileStorage** fs );
+
+/** returns attribute value or 0 (NULL) if there is no such attribute */
+CVAPI(const char*) cvAttrValue( const CvAttrList* attr, const char* attr_name );
+
+/** @brief Starts writing a new structure.
+
+The function starts writing a compound structure (collection) that can be a sequence or a map. After
+all the structure fields, which can be scalars or structures, are written, cvEndWriteStruct should
+be called. The function can be used to group some objects or to implement the write function for a
+some user object (see CvTypeInfo).
+@param fs File storage
+@param name Name of the written structure. The structure can be accessed by this name when the
+storage is read.
+@param struct_flags A combination one of the following values:
+-   **CV_NODE_SEQ** the written structure is a sequence (see discussion of CvFileStorage ),
+    that is, its elements do not have a name.
+-   **CV_NODE_MAP** the written structure is a map (see discussion of CvFileStorage ), that
+    is, all its elements have names.
+One and only one of the two above flags must be specified
+-   **CV_NODE_FLOW** the optional flag that makes sense only for YAML streams. It means that
+     the structure is written as a flow (not as a block), which is more compact. It is
+     recommended to use this flag for structures or arrays whose elements are all scalars.
+@param type_name Optional parameter - the object type name. In
+    case of XML it is written as a type_id attribute of the structure opening tag. In the case of
+    YAML it is written after a colon following the structure name (see the example in
+    CvFileStorage description). In case of JSON it is written as a name/value pair.
+    Mainly it is used with user objects. When the storage is read, the
+    encoded type name is used to determine the object type (see CvTypeInfo and cvFindType ).
+@param attributes This parameter is not used in the current implementation
+ */
+CVAPI(void) cvStartWriteStruct( CvFileStorage* fs, const char* name,
+                                int struct_flags, const char* type_name CV_DEFAULT(NULL),
+                                CvAttrList attributes CV_DEFAULT(cvAttrList()));
+
+/** @brief Finishes writing to a file node collection.
+@param fs File storage
+@sa cvStartWriteStruct.
+ */
+CVAPI(void) cvEndWriteStruct( CvFileStorage* fs );
+
+/** @brief Writes an integer value.
+
+The function writes a single integer value (with or without a name) to the file storage.
+@param fs File storage
+@param name Name of the written value. Should be NULL if and only if the parent structure is a
+sequence.
+@param value The written value
+ */
+CVAPI(void) cvWriteInt( CvFileStorage* fs, const char* name, int value );
+
+/** @brief Writes a floating-point value.
+
+The function writes a single floating-point value (with or without a name) to file storage. Special
+values are encoded as follows: NaN (Not A Number) as .NaN, infinity as +.Inf or -.Inf.
+
+The following example shows how to use the low-level writing functions to store custom structures,
+such as termination criteria, without registering a new type. :
+@code
+    void write_termcriteria( CvFileStorage* fs, const char* struct_name,
+                             CvTermCriteria* termcrit )
+    {
+        cvStartWriteStruct( fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0));
+        cvWriteComment( fs, "termination criteria", 1 ); // just a description
+        if( termcrit->type & CV_TERMCRIT_ITER )
+            cvWriteInteger( fs, "max_iterations", termcrit->max_iter );
+        if( termcrit->type & CV_TERMCRIT_EPS )
+            cvWriteReal( fs, "accuracy", termcrit->epsilon );
+        cvEndWriteStruct( fs );
+    }
+@endcode
+@param fs File storage
+@param name Name of the written value. Should be NULL if and only if the parent structure is a
+sequence.
+@param value The written value
+*/
+CVAPI(void) cvWriteReal( CvFileStorage* fs, const char* name, double value );
+
+/** @brief Writes a text string.
+
+The function writes a text string to file storage.
+@param fs File storage
+@param name Name of the written string . Should be NULL if and only if the parent structure is a
+sequence.
+@param str The written text string
+@param quote If non-zero, the written string is put in quotes, regardless of whether they are
+required. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when
+the string starts with a digit or contains spaces).
+ */
+CVAPI(void) cvWriteString( CvFileStorage* fs, const char* name,
+                           const char* str, int quote CV_DEFAULT(0) );
+
+/** @brief Writes a comment.
+
+The function writes a comment into file storage. The comments are skipped when the storage is read.
+@param fs File storage
+@param comment The written comment, single-line or multi-line
+@param eol_comment If non-zero, the function tries to put the comment at the end of current line.
+If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current
+line, the comment starts a new line.
+ */
+CVAPI(void) cvWriteComment( CvFileStorage* fs, const char* comment,
+                            int eol_comment );
+
+/** @brief Writes an object to file storage.
+
+The function writes an object to file storage. First, the appropriate type info is found using
+cvTypeOf. Then, the write method associated with the type info is called.
+
+Attributes are used to customize the writing procedure. The standard types support the following
+attributes (all the dt attributes have the same format as in cvWriteRawData):
+
+-# CvSeq
+    -   **header_dt** description of user fields of the sequence header that follow CvSeq, or
+        CvChain (if the sequence is a Freeman chain) or CvContour (if the sequence is a contour or
+        point sequence)
+    -   **dt** description of the sequence elements.
+    -   **recursive** if the attribute is present and is not equal to "0" or "false", the whole
+        tree of sequences (contours) is stored.
+-# CvGraph
+    -   **header_dt** description of user fields of the graph header that follows CvGraph;
+    -   **vertex_dt** description of user fields of graph vertices
+    -   **edge_dt** description of user fields of graph edges (note that the edge weight is
+        always written, so there is no need to specify it explicitly)
+
+Below is the code that creates the YAML file shown in the CvFileStorage description:
+@code
+    #include "cxcore.h"
+
+    int main( int argc, char** argv )
+    {
+        CvMat* mat = cvCreateMat( 3, 3, CV_32F );
+        CvFileStorage* fs = cvOpenFileStorage( "example.yml", 0, CV_STORAGE_WRITE );
+
+        cvSetIdentity( mat );
+        cvWrite( fs, "A", mat, cvAttrList(0,0) );
+
+        cvReleaseFileStorage( &fs );
+        cvReleaseMat( &mat );
+        return 0;
+    }
+@endcode
+@param fs File storage
+@param name Name of the written object. Should be NULL if and only if the parent structure is a
+sequence.
+@param ptr Pointer to the object
+@param attributes The attributes of the object. They are specific for each particular type (see
+the discussion below).
+ */
+CVAPI(void) cvWrite( CvFileStorage* fs, const char* name, const void* ptr,
+                         CvAttrList attributes CV_DEFAULT(cvAttrList()));
+
+/** @brief Starts the next stream.
+
+The function finishes the currently written stream and starts the next stream. In the case of XML
+the file with multiple streams looks like this:
+@code{.xml}
+    <opencv_storage>
+    <!-- stream #1 data -->
+    </opencv_storage>
+    <opencv_storage>
+    <!-- stream #2 data -->
+    </opencv_storage>
+    ...
+@endcode
+The YAML file will look like this:
+@code{.yaml}
+    %YAML 1.0
+    # stream #1 data
+    ...
+    ---
+    # stream #2 data
+@endcode
+This is useful for concatenating files or for resuming the writing process.
+@param fs File storage
+ */
+CVAPI(void) cvStartNextStream( CvFileStorage* fs );
+
+/** @brief Writes multiple numbers.
+
+The function writes an array, whose elements consist of single or multiple numbers. The function
+call can be replaced with a loop containing a few cvWriteInt and cvWriteReal calls, but a single
+call is more efficient. Note that because none of the elements have a name, they should be written
+to a sequence rather than a map.
+@param fs File storage
+@param src Pointer to the written array
+@param len Number of the array elements to write
+@param dt Specification of each array element, see @ref format_spec "format specification"
+ */
+CVAPI(void) cvWriteRawData( CvFileStorage* fs, const void* src,
+                                int len, const char* dt );
+
+/** @brief Writes multiple numbers in Base64.
+
+If either CV_STORAGE_WRITE_BASE64 or cv::FileStorage::WRITE_BASE64 is used,
+this function will be the same as cvWriteRawData. If neither, the main
+difference is that it outputs a sequence in Base64 encoding rather than
+in plain text.
+
+This function can only be used to write a sequence with a type "binary".
+
+Consider the following two examples where their output is the same:
+@snippet samples/cpp/filestorage_base64.cpp without_base64_flag
+and
+@snippet samples/cpp/filestorage_base64.cpp with_write_base64_flag
+
+@param fs File storage
+@param src Pointer to the written array
+@param len Number of the array elements to write
+@param dt Specification of each array element, see @ref format_spec "format specification"
+*/
+CVAPI(void) cvWriteRawDataBase64( CvFileStorage* fs, const void* src,
+                                 int len, const char* dt );
+
+/** @brief Returns a unique pointer for a given name.
+
+The function returns a unique pointer for each particular file node name. This pointer can be then
+passed to the cvGetFileNode function that is faster than cvGetFileNodeByName because it compares
+text strings by comparing pointers rather than the strings' content.
+
+Consider the following example where an array of points is encoded as a sequence of 2-entry maps:
+@code
+    points:
+      - { x: 10, y: 10 }
+      - { x: 20, y: 20 }
+      - { x: 30, y: 30 }
+      # ...
+@endcode
+Then, it is possible to get hashed "x" and "y" pointers to speed up decoding of the points. :
+@code
+    #include "cxcore.h"
+
+    int main( int argc, char** argv )
+    {
+        CvFileStorage* fs = cvOpenFileStorage( "points.yml", 0, CV_STORAGE_READ );
+        CvStringHashNode* x_key = cvGetHashedNode( fs, "x", -1, 1 );
+        CvStringHashNode* y_key = cvGetHashedNode( fs, "y", -1, 1 );
+        CvFileNode* points = cvGetFileNodeByName( fs, 0, "points" );
+
+        if( CV_NODE_IS_SEQ(points->tag) )
+        {
+            CvSeq* seq = points->data.seq;
+            int i, total = seq->total;
+            CvSeqReader reader;
+            cvStartReadSeq( seq, &reader, 0 );
+            for( i = 0; i < total; i++ )
+            {
+                CvFileNode* pt = (CvFileNode*)reader.ptr;
+    #if 1 // faster variant
+                CvFileNode* xnode = cvGetFileNode( fs, pt, x_key, 0 );
+                CvFileNode* ynode = cvGetFileNode( fs, pt, y_key, 0 );
+                assert( xnode && CV_NODE_IS_INT(xnode->tag) &&
+                        ynode && CV_NODE_IS_INT(ynode->tag));
+                int x = xnode->data.i; // or x = cvReadInt( xnode, 0 );
+                int y = ynode->data.i; // or y = cvReadInt( ynode, 0 );
+    #elif 1 // slower variant; does not use x_key & y_key
+                CvFileNode* xnode = cvGetFileNodeByName( fs, pt, "x" );
+                CvFileNode* ynode = cvGetFileNodeByName( fs, pt, "y" );
+                assert( xnode && CV_NODE_IS_INT(xnode->tag) &&
+                        ynode && CV_NODE_IS_INT(ynode->tag));
+                int x = xnode->data.i; // or x = cvReadInt( xnode, 0 );
+                int y = ynode->data.i; // or y = cvReadInt( ynode, 0 );
+    #else // the slowest yet the easiest to use variant
+                int x = cvReadIntByName( fs, pt, "x", 0 );
+                int y = cvReadIntByName( fs, pt, "y", 0 );
+    #endif
+                CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
+                printf("
+            }
+        }
+        cvReleaseFileStorage( &fs );
+        return 0;
+    }
+@endcode
+Please note that whatever method of accessing a map you are using, it is still much slower than
+using plain sequences; for example, in the above example, it is more efficient to encode the points
+as pairs of integers in a single numeric sequence.
+@param fs File storage
+@param name Literal node name
+@param len Length of the name (if it is known apriori), or -1 if it needs to be calculated
+@param create_missing Flag that specifies, whether an absent key should be added into the hash table
+*/
+CVAPI(CvStringHashNode*) cvGetHashedKey( CvFileStorage* fs, const char* name,
+                                        int len CV_DEFAULT(-1),
+                                        int create_missing CV_DEFAULT(0));
+
+/** @brief Retrieves one of the top-level nodes of the file storage.
+
+The function returns one of the top-level file nodes. The top-level nodes do not have a name, they
+correspond to the streams that are stored one after another in the file storage. If the index is out
+of range, the function returns a NULL pointer, so all the top-level nodes can be iterated by
+subsequent calls to the function with stream_index=0,1,..., until the NULL pointer is returned.
+This function can be used as a base for recursive traversal of the file storage.
+@param fs File storage
+@param stream_index Zero-based index of the stream. See cvStartNextStream . In most cases,
+there is only one stream in the file; however, there can be several.
+ */
+CVAPI(CvFileNode*) cvGetRootFileNode( const CvFileStorage* fs,
+                                     int stream_index CV_DEFAULT(0) );
+
+/** @brief Finds a node in a map or file storage.
+
+The function finds a file node. It is a faster version of cvGetFileNodeByName (see
+cvGetHashedKey discussion). Also, the function can insert a new node, if it is not in the map yet.
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches a top-level node. If both map and
+key are NULLs, the function returns the root file node - a map that contains top-level nodes.
+@param key Unique pointer to the node name, retrieved with cvGetHashedKey
+@param create_missing Flag that specifies whether an absent node should be added to the map
+ */
+CVAPI(CvFileNode*) cvGetFileNode( CvFileStorage* fs, CvFileNode* map,
+                                 const CvStringHashNode* key,
+                                 int create_missing CV_DEFAULT(0) );
+
+/** @brief Finds a node in a map or file storage.
+
+The function finds a file node by name. The node is searched either in map or, if the pointer is
+NULL, among the top-level file storage nodes. Using this function for maps and cvGetSeqElem (or
+sequence reader) for sequences, it is possible to navigate through the file storage. To speed up
+multiple queries for a certain key (e.g., in the case of an array of structures) one may use a
+combination of cvGetHashedKey and cvGetFileNode.
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches in all the top-level nodes
+(streams), starting with the first one.
+@param name The file node name
+ */
+CVAPI(CvFileNode*) cvGetFileNodeByName( const CvFileStorage* fs,
+                                       const CvFileNode* map,
+                                       const char* name );
+
+/** @brief Retrieves an integer value from a file node.
+
+The function returns an integer that is represented by the file node. If the file node is NULL, the
+default_value is returned (thus, it is convenient to call the function right after cvGetFileNode
+without checking for a NULL pointer). If the file node has type CV_NODE_INT, then node-\>data.i is
+returned. If the file node has type CV_NODE_REAL, then node-\>data.f is converted to an integer
+and returned. Otherwise the error is reported.
+@param node File node
+@param default_value The value that is returned if node is NULL
+ */
+CV_INLINE int cvReadInt( const CvFileNode* node, int default_value CV_DEFAULT(0) )
+{
+    return !node ? default_value :
+        CV_NODE_IS_INT(node->tag) ? node->data.i :
+        CV_NODE_IS_REAL(node->tag) ? cvRound(node->data.f) : 0x7fffffff;
+}
+
+/** @brief Finds a file node and returns its value.
+
+The function is a simple superposition of cvGetFileNodeByName and cvReadInt.
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches a top-level node.
+@param name The node name
+@param default_value The value that is returned if the file node is not found
+ */
+CV_INLINE int cvReadIntByName( const CvFileStorage* fs, const CvFileNode* map,
+                         const char* name, int default_value CV_DEFAULT(0) )
+{
+    return cvReadInt( cvGetFileNodeByName( fs, map, name ), default_value );
+}
+
+/** @brief Retrieves a floating-point value from a file node.
+
+The function returns a floating-point value that is represented by the file node. If the file node
+is NULL, the default_value is returned (thus, it is convenient to call the function right after
+cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_REAL ,
+then node-\>data.f is returned. If the file node has type CV_NODE_INT , then node-:math:\>data.f
+is converted to floating-point and returned. Otherwise the result is not determined.
+@param node File node
+@param default_value The value that is returned if node is NULL
+ */
+CV_INLINE double cvReadReal( const CvFileNode* node, double default_value CV_DEFAULT(0.) )
+{
+    return !node ? default_value :
+        CV_NODE_IS_INT(node->tag) ? (double)node->data.i :
+        CV_NODE_IS_REAL(node->tag) ? node->data.f : 1e300;
+}
+
+/** @brief Finds a file node and returns its value.
+
+The function is a simple superposition of cvGetFileNodeByName and cvReadReal .
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches a top-level node.
+@param name The node name
+@param default_value The value that is returned if the file node is not found
+ */
+CV_INLINE double cvReadRealByName( const CvFileStorage* fs, const CvFileNode* map,
+                        const char* name, double default_value CV_DEFAULT(0.) )
+{
+    return cvReadReal( cvGetFileNodeByName( fs, map, name ), default_value );
+}
+
+/** @brief Retrieves a text string from a file node.
+
+The function returns a text string that is represented by the file node. If the file node is NULL,
+the default_value is returned (thus, it is convenient to call the function right after
+cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_STR , then
+node-:math:\>data.str.ptr is returned. Otherwise the result is not determined.
+@param node File node
+@param default_value The value that is returned if node is NULL
+ */
+CV_INLINE const char* cvReadString( const CvFileNode* node,
+                        const char* default_value CV_DEFAULT(NULL) )
+{
+    return !node ? default_value : CV_NODE_IS_STRING(node->tag) ? node->data.str.ptr : 0;
+}
+
+/** @brief Finds a file node by its name and returns its value.
+
+The function is a simple superposition of cvGetFileNodeByName and cvReadString .
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches a top-level node.
+@param name The node name
+@param default_value The value that is returned if the file node is not found
+ */
+CV_INLINE const char* cvReadStringByName( const CvFileStorage* fs, const CvFileNode* map,
+                        const char* name, const char* default_value CV_DEFAULT(NULL) )
+{
+    return cvReadString( cvGetFileNodeByName( fs, map, name ), default_value );
+}
+
+
+/** @brief Decodes an object and returns a pointer to it.
+
+The function decodes a user object (creates an object in a native representation from the file
+storage subtree) and returns it. The object to be decoded must be an instance of a registered type
+that supports the read method (see CvTypeInfo). The type of the object is determined by the type
+name that is encoded in the file. If the object is a dynamic structure, it is created either in
+memory storage and passed to cvOpenFileStorage or, if a NULL pointer was passed, in temporary
+memory storage, which is released when cvReleaseFileStorage is called. Otherwise, if the object is
+not a dynamic structure, it is created in a heap and should be released with a specialized function
+or by using the generic cvRelease.
+@param fs File storage
+@param node The root object node
+@param attributes Unused parameter
+ */
+CVAPI(void*) cvRead( CvFileStorage* fs, CvFileNode* node,
+                        CvAttrList* attributes CV_DEFAULT(NULL));
+
+/** @brief Finds an object by name and decodes it.
+
+The function is a simple superposition of cvGetFileNodeByName and cvRead.
+@param fs File storage
+@param map The parent map. If it is NULL, the function searches a top-level node.
+@param name The node name
+@param attributes Unused parameter
+ */
+CV_INLINE void* cvReadByName( CvFileStorage* fs, const CvFileNode* map,
+                              const char* name, CvAttrList* attributes CV_DEFAULT(NULL) )
+{
+    return cvRead( fs, cvGetFileNodeByName( fs, map, name ), attributes );
+}
+
+
+/** @brief Initializes the file node sequence reader.
+
+The function initializes the sequence reader to read data from a file node. The initialized reader
+can be then passed to cvReadRawDataSlice.
+@param fs File storage
+@param src The file node (a sequence) to read numbers from
+@param reader Pointer to the sequence reader
+ */
+CVAPI(void) cvStartReadRawData( const CvFileStorage* fs, const CvFileNode* src,
+                               CvSeqReader* reader );
+
+/** @brief Initializes file node sequence reader.
+
+The function reads one or more elements from the file node, representing a sequence, to a
+user-specified array. The total number of read sequence elements is a product of total and the
+number of components in each array element. For example, if dt=2if, the function will read total\*3
+sequence elements. As with any sequence, some parts of the file node sequence can be skipped or read
+repeatedly by repositioning the reader using cvSetSeqReaderPos.
+@param fs File storage
+@param reader The sequence reader. Initialize it with cvStartReadRawData .
+@param count The number of elements to read
+@param dst Pointer to the destination array
+@param dt Specification of each array element. It has the same format as in cvWriteRawData .
+ */
+CVAPI(void) cvReadRawDataSlice( const CvFileStorage* fs, CvSeqReader* reader,
+                               int count, void* dst, const char* dt );
+
+/** @brief Reads multiple numbers.
+
+The function reads elements from a file node that represents a sequence of scalars.
+@param fs File storage
+@param src The file node (a sequence) to read numbers from
+@param dst Pointer to the destination array
+@param dt Specification of each array element. It has the same format as in cvWriteRawData .
+ */
+CVAPI(void) cvReadRawData( const CvFileStorage* fs, const CvFileNode* src,
+                          void* dst, const char* dt );
+
+/** @brief Writes a file node to another file storage.
+
+The function writes a copy of a file node to file storage. Possible applications of the function are
+merging several file storages into one and conversion between XML, YAML and JSON formats.
+@param fs Destination file storage
+@param new_node_name New name of the file node in the destination file storage. To keep the
+existing name, use cvcvGetFileNodeName
+@param node The written node
+@param embed If the written node is a collection and this parameter is not zero, no extra level of
+hierarchy is created. Instead, all the elements of node are written into the currently written
+structure. Of course, map elements can only be embedded into another map, and sequence elements
+can only be embedded into another sequence.
+ */
+CVAPI(void) cvWriteFileNode( CvFileStorage* fs, const char* new_node_name,
+                            const CvFileNode* node, int embed );
+
+/** @brief Returns the name of a file node.
+
+The function returns the name of a file node or NULL, if the file node does not have a name or if
+node is NULL.
+@param node File node
+ */
+CVAPI(const char*) cvGetFileNodeName( const CvFileNode* node );
+
+/*********************************** Adding own types ***********************************/
+
+/** @brief Registers a new type.
+
+The function registers a new type, which is described by info . The function creates a copy of the
+structure, so the user should delete it after calling the function.
+@param info Type info structure
+ */
+CVAPI(void) cvRegisterType( const CvTypeInfo* info );
+
+/** @brief Unregisters the type.
+
+The function unregisters a type with a specified name. If the name is unknown, it is possible to
+locate the type info by an instance of the type using cvTypeOf or by iterating the type list,
+starting from cvFirstType, and then calling cvUnregisterType(info-\>typeName).
+@param type_name Name of an unregistered type
+ */
+CVAPI(void) cvUnregisterType( const char* type_name );
+
+/** @brief Returns the beginning of a type list.
+
+The function returns the first type in the list of registered types. Navigation through the list can
+be done via the prev and next fields of the CvTypeInfo structure.
+ */
+CVAPI(CvTypeInfo*) cvFirstType(void);
+
+/** @brief Finds a type by its name.
+
+The function finds a registered type by its name. It returns NULL if there is no type with the
+specified name.
+@param type_name Type name
+ */
+CVAPI(CvTypeInfo*) cvFindType( const char* type_name );
+
+/** @brief Returns the type of an object.
+
+The function finds the type of a given object. It iterates through the list of registered types and
+calls the is_instance function/method for every type info structure with that object until one of
+them returns non-zero or until the whole list has been traversed. In the latter case, the function
+returns NULL.
+@param struct_ptr The object pointer
+ */
+CVAPI(CvTypeInfo*) cvTypeOf( const void* struct_ptr );
+
+/** @brief Releases an object.
+
+The function finds the type of a given object and calls release with the double pointer.
+@param struct_ptr Double pointer to the object
+ */
+CVAPI(void) cvRelease( void** struct_ptr );
+
+/** @brief Makes a clone of an object.
+
+The function finds the type of a given object and calls clone with the passed object. Of course, if
+you know the object type, for example, struct_ptr is CvMat\*, it is faster to call the specific
+function, like cvCloneMat.
+@param struct_ptr The object to clone
+ */
+CVAPI(void*) cvClone( const void* struct_ptr );
+
+/** @brief Saves an object to a file.
+
+The function saves an object to a file. It provides a simple interface to cvWrite .
+@param filename File name
+@param struct_ptr Object to save
+@param name Optional object name. If it is NULL, the name will be formed from filename .
+@param comment Optional comment to put in the beginning of the file
+@param attributes Optional attributes passed to cvWrite
+ */
+CVAPI(void) cvSave( const char* filename, const void* struct_ptr,
+                    const char* name CV_DEFAULT(NULL),
+                    const char* comment CV_DEFAULT(NULL),
+                    CvAttrList attributes CV_DEFAULT(cvAttrList()));
+
+/** @brief Loads an object from a file.
+
+The function loads an object from a file. It basically reads the specified file, find the first
+top-level node and calls cvRead for that node. If the file node does not have type information or
+the type information can not be found by the type name, the function returns NULL. After the object
+is loaded, the file storage is closed and all the temporary buffers are deleted. Thus, to load a
+dynamic structure, such as a sequence, contour, or graph, one should pass a valid memory storage
+destination to the function.
+@param filename File name
+@param memstorage Memory storage for dynamic structures, such as CvSeq or CvGraph . It is not used
+for matrices or images.
+@param name Optional object name. If it is NULL, the first top-level object in the storage will be
+loaded.
+@param real_name Optional output parameter that will contain the name of the loaded object
+(useful if name=NULL )
+ */
+CVAPI(void*) cvLoad( const char* filename,
+                     CvMemStorage* memstorage CV_DEFAULT(NULL),
+                     const char* name CV_DEFAULT(NULL),
+                     const char** real_name CV_DEFAULT(NULL) );
+
+/*********************************** Measuring Execution Time ***************************/
+
+/** helper functions for RNG initialization and accurate time measurement:
+   uses internal clock counter on x86 */
+CVAPI(int64)  cvGetTickCount( void );
+CVAPI(double) cvGetTickFrequency( void );
+
+/*********************************** CPU capabilities ***********************************/
+
+CVAPI(int) cvCheckHardwareSupport(int feature);
+
+/*********************************** Multi-Threading ************************************/
+
+/** retrieve/set the number of threads used in OpenMP implementations */
+CVAPI(int)  cvGetNumThreads( void );
+CVAPI(void) cvSetNumThreads( int threads CV_DEFAULT(0) );
+/** get index of the thread being executed */
+CVAPI(int)  cvGetThreadNum( void );
+
+
+/********************************** Error Handling **************************************/
+
+/** Get current OpenCV error status */
+CVAPI(int) cvGetErrStatus( void );
+
+/** Sets error status silently */
+CVAPI(void) cvSetErrStatus( int status );
+
+#define CV_ErrModeLeaf     0   /* Print error and exit program */
+#define CV_ErrModeParent   1   /* Print error and continue */
+#define CV_ErrModeSilent   2   /* Don't print and continue */
+
+/** Retrives current error processing mode */
+CVAPI(int)  cvGetErrMode( void );
+
+/** Sets error processing mode, returns previously used mode */
+CVAPI(int) cvSetErrMode( int mode );
+
+/** Sets error status and performs some additional actions (displaying message box,
+ writing message to stderr, terminating application etc.)
+ depending on the current error mode */
+CVAPI(void) cvError( int status, const char* func_name,
+                    const char* err_msg, const char* file_name, int line );
+
+/** Retrieves textual description of the error given its code */
+CVAPI(const char*) cvErrorStr( int status );
+
+/** Retrieves detailed information about the last error occurred */
+CVAPI(int) cvGetErrInfo( const char** errcode_desc, const char** description,
+                        const char** filename, int* line );
+
+/** Maps IPP error codes to the counterparts from OpenCV */
+CVAPI(int) cvErrorFromIppStatus( int ipp_status );
+
+typedef int (CV_CDECL *CvErrorCallback)( int status, const char* func_name,
+                                        const char* err_msg, const char* file_name, int line, void* userdata );
+
+/** Assigns a new error-handling function */
+CVAPI(CvErrorCallback) cvRedirectError( CvErrorCallback error_handler,
+                                       void* userdata CV_DEFAULT(NULL),
+                                       void** prev_userdata CV_DEFAULT(NULL) );
+
+/** Output nothing */
+CVAPI(int) cvNulDevReport( int status, const char* func_name, const char* err_msg,
+                          const char* file_name, int line, void* userdata );
+
+/** Output to console(fprintf(stderr,...)) */
+CVAPI(int) cvStdErrReport( int status, const char* func_name, const char* err_msg,
+                          const char* file_name, int line, void* userdata );
+
+/** Output to MessageBox(WIN32) */
+CVAPI(int) cvGuiBoxReport( int status, const char* func_name, const char* err_msg,
+                          const char* file_name, int line, void* userdata );
+
+#define OPENCV_ERROR(status,func,context)                           \
+cvError((status),(func),(context),__FILE__,__LINE__)
+
+#define OPENCV_ASSERT(expr,func,context)                            \
+{if (! (expr))                                      \
+{OPENCV_ERROR(CV_StsInternal,(func),(context));}}
+
+#define OPENCV_CALL( Func )                                         \
+{                                                                   \
+Func;                                                           \
+}
+
+
+/** CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro */
+#ifdef CV_NO_FUNC_NAMES
+#define CV_FUNCNAME( Name )
+#define cvFuncName ""
+#else
+#define CV_FUNCNAME( Name )  \
+static char cvFuncName[] = Name
+#endif
+
+
+/**
+ CV_ERROR macro unconditionally raises error with passed code and message.
+ After raising error, control will be transferred to the exit label.
+ */
+#define CV_ERROR( Code, Msg )                                       \
+{                                                                   \
+    cvError( (Code), cvFuncName, Msg, __FILE__, __LINE__ );        \
+    __CV_EXIT__;                                                   \
+}
+
+/**
+ CV_CHECK macro checks error status after CV (or IPL)
+ function call. If error detected, control will be transferred to the exit
+ label.
+ */
+#define CV_CHECK()                                                  \
+{                                                                   \
+    if( cvGetErrStatus() < 0 )                                      \
+        CV_ERROR( CV_StsBackTrace, "Inner function failed." );      \
+}
+
+
+/**
+ CV_CALL macro calls CV (or IPL) function, checks error status and
+ signals a error if the function failed. Useful in "parent node"
+ error procesing mode
+ */
+#define CV_CALL( Func )                                             \
+{                                                                   \
+    Func;                                                           \
+    CV_CHECK();                                                     \
+}
+
+
+/** Runtime assertion macro */
+#define CV_ASSERT( Condition )                                          \
+{                                                                       \
+    if( !(Condition) )                                                  \
+        CV_ERROR( CV_StsInternal, "Assertion: " #Condition " failed" ); \
+}
+
+#define __CV_BEGIN__       {
+#define __CV_END__         goto exit; exit: ; }
+#define __CV_EXIT__        goto exit
+
+/** @} core_c */
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#ifdef __cplusplus
+
+//! @addtogroup core_c_glue
+//! @{
+
+//! class for automatic module/RTTI data registration/unregistration
+struct CV_EXPORTS CvType
+{
+    CvType( const char* type_name,
+            CvIsInstanceFunc is_instance, CvReleaseFunc release=0,
+            CvReadFunc read=0, CvWriteFunc write=0, CvCloneFunc clone=0 );
+    ~CvType();
+    CvTypeInfo* info;
+
+    static CvTypeInfo* first;
+    static CvTypeInfo* last;
+};
+
+//! @}
+
+#include "opencv2/core/utility.hpp"
+
+namespace cv
+{
+
+//! @addtogroup core_c_glue
+//! @{
+
+/////////////////////////////////////////// glue ///////////////////////////////////////////
+
+//! converts array (CvMat or IplImage) to cv::Mat
+CV_EXPORTS Mat cvarrToMat(const CvArr* arr, bool copyData=false,
+                          bool allowND=true, int coiMode=0,
+                          AutoBuffer<double>* buf=0);
+
+static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0)
+{
+    return cvarrToMat(arr, copyData, true, coiMode);
+}
+
+
+//! extracts Channel of Interest from CvMat or IplImage and makes cv::Mat out of it.
+CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1);
+//! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage
+CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1);
+
+
+
+////// specialized implementations of DefaultDeleter::operator() for classic OpenCV types //////
+
+template<> CV_EXPORTS void DefaultDeleter<CvMat>::operator ()(CvMat* obj) const;
+template<> CV_EXPORTS void DefaultDeleter<IplImage>::operator ()(IplImage* obj) const;
+template<> CV_EXPORTS void DefaultDeleter<CvMatND>::operator ()(CvMatND* obj) const;
+template<> CV_EXPORTS void DefaultDeleter<CvSparseMat>::operator ()(CvSparseMat* obj) const;
+template<> CV_EXPORTS void DefaultDeleter<CvMemStorage>::operator ()(CvMemStorage* obj) const;
+
+////////////// convenient wrappers for operating old-style dynamic structures //////////////
+
+template<typename _Tp> class SeqIterator;
+
+typedef Ptr<CvMemStorage> MemStorage;
+
+/*!
+ Template Sequence Class derived from CvSeq
+
+ The class provides more convenient access to sequence elements,
+ STL-style operations and iterators.
+
+ \note The class is targeted for simple data types,
+    i.e. no constructors or destructors
+    are called for the sequence elements.
+*/
+template<typename _Tp> class Seq
+{
+public:
+    typedef SeqIterator<_Tp> iterator;
+    typedef SeqIterator<_Tp> const_iterator;
+
+    //! the default constructor
+    Seq();
+    //! the constructor for wrapping CvSeq structure. The real element type in CvSeq should match _Tp.
+    Seq(const CvSeq* seq);
+    //! creates the empty sequence that resides in the specified storage
+    Seq(MemStorage& storage, int headerSize = sizeof(CvSeq));
+    //! returns read-write reference to the specified element
+    _Tp& operator [](int idx);
+    //! returns read-only reference to the specified element
+    const _Tp& operator[](int idx) const;
+    //! returns iterator pointing to the beginning of the sequence
+    SeqIterator<_Tp> begin() const;
+    //! returns iterator pointing to the element following the last sequence element
+    SeqIterator<_Tp> end() const;
+    //! returns the number of elements in the sequence
+    size_t size() const;
+    //! returns the type of sequence elements (CV_8UC1 ... CV_64FC(CV_CN_MAX) ...)
+    int type() const;
+    //! returns the depth of sequence elements (CV_8U ... CV_64F)
+    int depth() const;
+    //! returns the number of channels in each sequence element
+    int channels() const;
+    //! returns the size of each sequence element
+    size_t elemSize() const;
+    //! returns index of the specified sequence element
+    size_t index(const _Tp& elem) const;
+    //! appends the specified element to the end of the sequence
+    void push_back(const _Tp& elem);
+    //! appends the specified element to the front of the sequence
+    void push_front(const _Tp& elem);
+    //! appends zero or more elements to the end of the sequence
+    void push_back(const _Tp* elems, size_t count);
+    //! appends zero or more elements to the front of the sequence
+    void push_front(const _Tp* elems, size_t count);
+    //! inserts the specified element to the specified position
+    void insert(int idx, const _Tp& elem);
+    //! inserts zero or more elements to the specified position
+    void insert(int idx, const _Tp* elems, size_t count);
+    //! removes element at the specified position
+    void remove(int idx);
+    //! removes the specified subsequence
+    void remove(const Range& r);
+
+    //! returns reference to the first sequence element
+    _Tp& front();
+    //! returns read-only reference to the first sequence element
+    const _Tp& front() const;
+    //! returns reference to the last sequence element
+    _Tp& back();
+    //! returns read-only reference to the last sequence element
+    const _Tp& back() const;
+    //! returns true iff the sequence contains no elements
+    bool empty() const;
+
+    //! removes all the elements from the sequence
+    void clear();
+    //! removes the first element from the sequence
+    void pop_front();
+    //! removes the last element from the sequence
+    void pop_back();
+    //! removes zero or more elements from the beginning of the sequence
+    void pop_front(_Tp* elems, size_t count);
+    //! removes zero or more elements from the end of the sequence
+    void pop_back(_Tp* elems, size_t count);
+
+    //! copies the whole sequence or the sequence slice to the specified vector
+    void copyTo(std::vector<_Tp>& vec, const Range& range=Range::all()) const;
+    //! returns the vector containing all the sequence elements
+    operator std::vector<_Tp>() const;
+
+    CvSeq* seq;
+};
+
+
+/*!
+ STL-style Sequence Iterator inherited from the CvSeqReader structure
+*/
+template<typename _Tp> class SeqIterator : public CvSeqReader
+{
+public:
+    //! the default constructor
+    SeqIterator();
+    //! the constructor setting the iterator to the beginning or to the end of the sequence
+    SeqIterator(const Seq<_Tp>& seq, bool seekEnd=false);
+    //! positions the iterator within the sequence
+    void seek(size_t pos);
+    //! reports the current iterator position
+    size_t tell() const;
+    //! returns reference to the current sequence element
+    _Tp& operator *();
+    //! returns read-only reference to the current sequence element
+    const _Tp& operator *() const;
+    //! moves iterator to the next sequence element
+    SeqIterator& operator ++();
+    //! moves iterator to the next sequence element
+    SeqIterator operator ++(int) const;
+    //! moves iterator to the previous sequence element
+    SeqIterator& operator --();
+    //! moves iterator to the previous sequence element
+    SeqIterator operator --(int) const;
+
+    //! moves iterator forward by the specified offset (possibly negative)
+    SeqIterator& operator +=(int);
+    //! moves iterator backward by the specified offset (possibly negative)
+    SeqIterator& operator -=(int);
+
+    // this is index of the current element module seq->total*2
+    // (to distinguish between 0 and seq->total)
+    int index;
+};
+
+
+
+// bridge C++ => C Seq API
+CV_EXPORTS schar*  seqPush( CvSeq* seq, const void* element=0);
+CV_EXPORTS schar*  seqPushFront( CvSeq* seq, const void* element=0);
+CV_EXPORTS void  seqPop( CvSeq* seq, void* element=0);
+CV_EXPORTS void  seqPopFront( CvSeq* seq, void* element=0);
+CV_EXPORTS void  seqPopMulti( CvSeq* seq, void* elements,
+                              int count, int in_front=0 );
+CV_EXPORTS void  seqRemove( CvSeq* seq, int index );
+CV_EXPORTS void  clearSeq( CvSeq* seq );
+CV_EXPORTS schar*  getSeqElem( const CvSeq* seq, int index );
+CV_EXPORTS void  seqRemoveSlice( CvSeq* seq, CvSlice slice );
+CV_EXPORTS void  seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr );
+
+template<typename _Tp> inline Seq<_Tp>::Seq() : seq(0) {}
+template<typename _Tp> inline Seq<_Tp>::Seq( const CvSeq* _seq ) : seq((CvSeq*)_seq)
+{
+    CV_Assert(!_seq || _seq->elem_size == sizeof(_Tp));
+}
+
+template<typename _Tp> inline Seq<_Tp>::Seq( MemStorage& storage,
+                                             int headerSize )
+{
+    CV_Assert(headerSize >= (int)sizeof(CvSeq));
+    seq = cvCreateSeq(DataType<_Tp>::type, headerSize, sizeof(_Tp), storage);
+}
+
+template<typename _Tp> inline _Tp& Seq<_Tp>::operator [](int idx)
+{ return *(_Tp*)getSeqElem(seq, idx); }
+
+template<typename _Tp> inline const _Tp& Seq<_Tp>::operator [](int idx) const
+{ return *(_Tp*)getSeqElem(seq, idx); }
+
+template<typename _Tp> inline SeqIterator<_Tp> Seq<_Tp>::begin() const
+{ return SeqIterator<_Tp>(*this); }
+
+template<typename _Tp> inline SeqIterator<_Tp> Seq<_Tp>::end() const
+{ return SeqIterator<_Tp>(*this, true); }
+
+template<typename _Tp> inline size_t Seq<_Tp>::size() const
+{ return seq ? seq->total : 0; }
+
+template<typename _Tp> inline int Seq<_Tp>::type() const
+{ return seq ? CV_MAT_TYPE(seq->flags) : 0; }
+
+template<typename _Tp> inline int Seq<_Tp>::depth() const
+{ return seq ? CV_MAT_DEPTH(seq->flags) : 0; }
+
+template<typename _Tp> inline int Seq<_Tp>::channels() const
+{ return seq ? CV_MAT_CN(seq->flags) : 0; }
+
+template<typename _Tp> inline size_t Seq<_Tp>::elemSize() const
+{ return seq ? seq->elem_size : 0; }
+
+template<typename _Tp> inline size_t Seq<_Tp>::index(const _Tp& elem) const
+{ return cvSeqElemIdx(seq, &elem); }
+
+template<typename _Tp> inline void Seq<_Tp>::push_back(const _Tp& elem)
+{ cvSeqPush(seq, &elem); }
+
+template<typename _Tp> inline void Seq<_Tp>::push_front(const _Tp& elem)
+{ cvSeqPushFront(seq, &elem); }
+
+template<typename _Tp> inline void Seq<_Tp>::push_back(const _Tp* elem, size_t count)
+{ cvSeqPushMulti(seq, elem, (int)count, 0); }
+
+template<typename _Tp> inline void Seq<_Tp>::push_front(const _Tp* elem, size_t count)
+{ cvSeqPushMulti(seq, elem, (int)count, 1); }
+
+template<typename _Tp> inline _Tp& Seq<_Tp>::back()
+{ return *(_Tp*)getSeqElem(seq, -1); }
+
+template<typename _Tp> inline const _Tp& Seq<_Tp>::back() const
+{ return *(const _Tp*)getSeqElem(seq, -1); }
+
+template<typename _Tp> inline _Tp& Seq<_Tp>::front()
+{ return *(_Tp*)getSeqElem(seq, 0); }
+
+template<typename _Tp> inline const _Tp& Seq<_Tp>::front() const
+{ return *(const _Tp*)getSeqElem(seq, 0); }
+
+template<typename _Tp> inline bool Seq<_Tp>::empty() const
+{ return !seq || seq->total == 0; }
+
+template<typename _Tp> inline void Seq<_Tp>::clear()
+{ if(seq) clearSeq(seq); }
+
+template<typename _Tp> inline void Seq<_Tp>::pop_back()
+{ seqPop(seq); }
+
+template<typename _Tp> inline void Seq<_Tp>::pop_front()
+{ seqPopFront(seq); }
+
+template<typename _Tp> inline void Seq<_Tp>::pop_back(_Tp* elem, size_t count)
+{ seqPopMulti(seq, elem, (int)count, 0); }
+
+template<typename _Tp> inline void Seq<_Tp>::pop_front(_Tp* elem, size_t count)
+{ seqPopMulti(seq, elem, (int)count, 1); }
+
+template<typename _Tp> inline void Seq<_Tp>::insert(int idx, const _Tp& elem)
+{ seqInsert(seq, idx, &elem); }
+
+template<typename _Tp> inline void Seq<_Tp>::insert(int idx, const _Tp* elems, size_t count)
+{
+    CvMat m = cvMat(1, count, DataType<_Tp>::type, elems);
+    seqInsertSlice(seq, idx, &m);
+}
+
+template<typename _Tp> inline void Seq<_Tp>::remove(int idx)
+{ seqRemove(seq, idx); }
+
+template<typename _Tp> inline void Seq<_Tp>::remove(const Range& r)
+{ seqRemoveSlice(seq, cvSlice(r.start, r.end)); }
+
+template<typename _Tp> inline void Seq<_Tp>::copyTo(std::vector<_Tp>& vec, const Range& range) const
+{
+    size_t len = !seq ? 0 : range == Range::all() ? seq->total : range.end - range.start;
+    vec.resize(len);
+    if( seq && len )
+        cvCvtSeqToArray(seq, &vec[0], range);
+}
+
+template<typename _Tp> inline Seq<_Tp>::operator std::vector<_Tp>() const
+{
+    std::vector<_Tp> vec;
+    copyTo(vec);
+    return vec;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp>::SeqIterator()
+{ memset(this, 0, sizeof(*this)); }
+
+template<typename _Tp> inline SeqIterator<_Tp>::SeqIterator(const Seq<_Tp>& _seq, bool seekEnd)
+{
+    cvStartReadSeq(_seq.seq, this);
+    index = seekEnd ? _seq.seq->total : 0;
+}
+
+template<typename _Tp> inline void SeqIterator<_Tp>::seek(size_t pos)
+{
+    cvSetSeqReaderPos(this, (int)pos, false);
+    index = pos;
+}
+
+template<typename _Tp> inline size_t SeqIterator<_Tp>::tell() const
+{ return index; }
+
+template<typename _Tp> inline _Tp& SeqIterator<_Tp>::operator *()
+{ return *(_Tp*)ptr; }
+
+template<typename _Tp> inline const _Tp& SeqIterator<_Tp>::operator *() const
+{ return *(const _Tp*)ptr; }
+
+template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator ++()
+{
+    CV_NEXT_SEQ_ELEM(sizeof(_Tp), *this);
+    if( ++index >= seq->total*2 )
+        index = 0;
+    return *this;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp> SeqIterator<_Tp>::operator ++(int) const
+{
+    SeqIterator<_Tp> it = *this;
+    ++*this;
+    return it;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator --()
+{
+    CV_PREV_SEQ_ELEM(sizeof(_Tp), *this);
+    if( --index < 0 )
+        index = seq->total*2-1;
+    return *this;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp> SeqIterator<_Tp>::operator --(int) const
+{
+    SeqIterator<_Tp> it = *this;
+    --*this;
+    return it;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator +=(int delta)
+{
+    cvSetSeqReaderPos(this, delta, 1);
+    index += delta;
+    int n = seq->total*2;
+    if( index < 0 )
+        index += n;
+    if( index >= n )
+        index -= n;
+    return *this;
+}
+
+template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator -=(int delta)
+{
+    return (*this += -delta);
+}
+
+template<typename _Tp> inline ptrdiff_t operator - (const SeqIterator<_Tp>& a,
+                                                    const SeqIterator<_Tp>& b)
+{
+    ptrdiff_t delta = a.index - b.index, n = a.seq->total;
+    if( delta > n || delta < -n )
+        delta += delta < 0 ? n : -n;
+    return delta;
+}
+
+template<typename _Tp> inline bool operator == (const SeqIterator<_Tp>& a,
+                                                const SeqIterator<_Tp>& b)
+{
+    return a.seq == b.seq && a.index == b.index;
+}
+
+template<typename _Tp> inline bool operator != (const SeqIterator<_Tp>& a,
+                                                const SeqIterator<_Tp>& b)
+{
+    return !(a == b);
+}
+
+//! @}
+
+} // cv
+
+#endif
+
+#endif

+ 906 - 0
cv/include/opencv2/core/cuda.hpp

@@ -0,0 +1,906 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_CUDA_HPP
+#define OPENCV_CORE_CUDA_HPP
+
+#ifndef __cplusplus
+#  error cuda.hpp header must be compiled as C++
+#endif
+
+#include "opencv2/core.hpp"
+#include "opencv2/core/cuda_types.hpp"
+
+/**
+  @defgroup cuda CUDA-accelerated Computer Vision
+  @{
+    @defgroup cudacore Core part
+    @{
+      @defgroup cudacore_init Initalization and Information
+      @defgroup cudacore_struct Data Structures
+    @}
+  @}
+ */
+
+namespace cv { namespace cuda {
+
+//! @addtogroup cudacore_struct
+//! @{
+
+//===================================================================================
+// GpuMat
+//===================================================================================
+
+/** @brief Base storage class for GPU memory with reference counting.
+
+Its interface matches the Mat interface with the following limitations:
+
+-   no arbitrary dimensions support (only 2D)
+-   no functions that return references to their data (because references on GPU are not valid for
+    CPU)
+-   no expression templates technique support
+
+Beware that the latter limitation may lead to overloaded matrix operators that cause memory
+allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be
+passed directly to the kernel.
+
+@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are
+aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.
+
+@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely
+on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory
+release function returns error if the CUDA context has been destroyed before.
+
+@sa Mat
+ */
+class CV_EXPORTS GpuMat
+{
+public:
+    class CV_EXPORTS Allocator
+    {
+    public:
+        virtual ~Allocator() {}
+
+        // allocator must fill data, step and refcount fields
+        virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0;
+        virtual void free(GpuMat* mat) = 0;
+    };
+
+    //! default allocator
+    static Allocator* defaultAllocator();
+    static void setDefaultAllocator(Allocator* allocator);
+
+    //! default constructor
+    explicit GpuMat(Allocator* allocator = defaultAllocator());
+
+    //! constructs GpuMat of the specified size and type
+    GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator());
+    GpuMat(Size size, int type, Allocator* allocator = defaultAllocator());
+
+    //! constucts GpuMat and fills it with the specified value _s
+    GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator());
+    GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator());
+
+    //! copy constructor
+    GpuMat(const GpuMat& m);
+
+    //! constructor for GpuMat headers pointing to user-allocated data
+    GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
+    GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
+
+    //! creates a GpuMat header for a part of the bigger matrix
+    GpuMat(const GpuMat& m, Range rowRange, Range colRange);
+    GpuMat(const GpuMat& m, Rect roi);
+
+    //! builds GpuMat from host memory (Blocking call)
+    explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator());
+
+    //! destructor - calls release()
+    ~GpuMat();
+
+    //! assignment operators
+    GpuMat& operator =(const GpuMat& m);
+
+    //! allocates new GpuMat data unless the GpuMat already has specified size and type
+    void create(int rows, int cols, int type);
+    void create(Size size, int type);
+
+    //! decreases reference counter, deallocate the data when reference counter reaches 0
+    void release();
+
+    //! swaps with other smart pointer
+    void swap(GpuMat& mat);
+
+    //! pefroms upload data to GpuMat (Blocking call)
+    void upload(InputArray arr);
+
+    //! pefroms upload data to GpuMat (Non-Blocking call)
+    void upload(InputArray arr, Stream& stream);
+
+    //! pefroms download data from device to host memory (Blocking call)
+    void download(OutputArray dst) const;
+
+    //! pefroms download data from device to host memory (Non-Blocking call)
+    void download(OutputArray dst, Stream& stream) const;
+
+    //! returns deep copy of the GpuMat, i.e. the data is copied
+    GpuMat clone() const;
+
+    //! copies the GpuMat content to device memory (Blocking call)
+    void copyTo(OutputArray dst) const;
+
+    //! copies the GpuMat content to device memory (Non-Blocking call)
+    void copyTo(OutputArray dst, Stream& stream) const;
+
+    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
+    void copyTo(OutputArray dst, InputArray mask) const;
+
+    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
+    void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
+
+    //! sets some of the GpuMat elements to s (Blocking call)
+    GpuMat& setTo(Scalar s);
+
+    //! sets some of the GpuMat elements to s (Non-Blocking call)
+    GpuMat& setTo(Scalar s, Stream& stream);
+
+    //! sets some of the GpuMat elements to s, according to the mask (Blocking call)
+    GpuMat& setTo(Scalar s, InputArray mask);
+
+    //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)
+    GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
+
+    //! converts GpuMat to another datatype (Blocking call)
+    void convertTo(OutputArray dst, int rtype) const;
+
+    //! converts GpuMat to another datatype (Non-Blocking call)
+    void convertTo(OutputArray dst, int rtype, Stream& stream) const;
+
+    //! converts GpuMat to another datatype with scaling (Blocking call)
+    void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;
+
+    //! converts GpuMat to another datatype with scaling (Non-Blocking call)
+    void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;
+
+    //! converts GpuMat to another datatype with scaling (Non-Blocking call)
+    void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
+
+    void assignTo(GpuMat& m, int type=-1) const;
+
+    //! returns pointer to y-th row
+    uchar* ptr(int y = 0);
+    const uchar* ptr(int y = 0) const;
+
+    //! template version of the above method
+    template<typename _Tp> _Tp* ptr(int y = 0);
+    template<typename _Tp> const _Tp* ptr(int y = 0) const;
+
+    template <typename _Tp> operator PtrStepSz<_Tp>() const;
+    template <typename _Tp> operator PtrStep<_Tp>() const;
+
+    //! returns a new GpuMat header for the specified row
+    GpuMat row(int y) const;
+
+    //! returns a new GpuMat header for the specified column
+    GpuMat col(int x) const;
+
+    //! ... for the specified row span
+    GpuMat rowRange(int startrow, int endrow) const;
+    GpuMat rowRange(Range r) const;
+
+    //! ... for the specified column span
+    GpuMat colRange(int startcol, int endcol) const;
+    GpuMat colRange(Range r) const;
+
+    //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
+    GpuMat operator ()(Range rowRange, Range colRange) const;
+    GpuMat operator ()(Rect roi) const;
+
+    //! creates alternative GpuMat header for the same data, with different
+    //! number of channels and/or different number of rows
+    GpuMat reshape(int cn, int rows = 0) const;
+
+    //! locates GpuMat header within a parent GpuMat
+    void locateROI(Size& wholeSize, Point& ofs) const;
+
+    //! moves/resizes the current GpuMat ROI inside the parent GpuMat
+    GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
+
+    //! returns true iff the GpuMat data is continuous
+    //! (i.e. when there are no gaps between successive rows)
+    bool isContinuous() const;
+
+    //! returns element size in bytes
+    size_t elemSize() const;
+
+    //! returns the size of element channel in bytes
+    size_t elemSize1() const;
+
+    //! returns element type
+    int type() const;
+
+    //! returns element type
+    int depth() const;
+
+    //! returns number of channels
+    int channels() const;
+
+    //! returns step/elemSize1()
+    size_t step1() const;
+
+    //! returns GpuMat size : width == number of columns, height == number of rows
+    Size size() const;
+
+    //! returns true if GpuMat data is NULL
+    bool empty() const;
+
+    /*! includes several bit-fields:
+    - the magic signature
+    - continuity flag
+    - depth
+    - number of channels
+    */
+    int flags;
+
+    //! the number of rows and columns
+    int rows, cols;
+
+    //! a distance between successive rows in bytes; includes the gap if any
+    size_t step;
+
+    //! pointer to the data
+    uchar* data;
+
+    //! pointer to the reference counter;
+    //! when GpuMat points to user-allocated data, the pointer is NULL
+    int* refcount;
+
+    //! helper fields used in locateROI and adjustROI
+    uchar* datastart;
+    const uchar* dataend;
+
+    //! allocator
+    Allocator* allocator;
+};
+
+/** @brief Creates a continuous matrix.
+
+@param rows Row count.
+@param cols Column count.
+@param type Type of the matrix.
+@param arr Destination matrix. This parameter changes only if it has a proper type and area (
+\f$\texttt{rows} \times \texttt{cols}\f$ ).
+
+Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
+end of each row.
+ */
+CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
+
+/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
+
+@param rows Minimum desired number of rows.
+@param cols Minimum desired number of columns.
+@param type Desired matrix type.
+@param arr Destination matrix.
+
+The function does not reallocate memory if the matrix has proper attributes already.
+ */
+CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
+
+/** @brief BufferPool for use with CUDA streams
+
+ * BufferPool utilizes cuda::Stream's allocator to create new buffers. It is
+ * particularly useful when BufferPoolUsage is set to true, or a custom
+ * allocator is specified for the cuda::Stream, and you want to implement your
+ * own stream based functions utilizing the same underlying GPU memory
+ * management.
+ */
+class CV_EXPORTS BufferPool
+{
+public:
+
+    //! Gets the BufferPool for the given stream.
+    explicit BufferPool(Stream& stream);
+
+    //! Allocates a new GpuMat of given size and type.
+    GpuMat getBuffer(int rows, int cols, int type);
+
+    //! Allocates a new GpuMat of given size and type.
+    GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
+
+    //! Returns the allocator associated with the stream.
+    Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
+
+private:
+    Ptr<GpuMat::Allocator> allocator_;
+};
+
+//! BufferPool management (must be called before Stream creation)
+CV_EXPORTS void setBufferPoolUsage(bool on);
+CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
+
+//===================================================================================
+// HostMem
+//===================================================================================
+
+/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
+
+Its interface is also Mat-like but with additional memory type parameters.
+
+-   **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
+    uploading/downloading data from/to GPU.
+-   **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
+    address space, if supported.
+-   **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
+    used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
+    utilization.
+
+@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
+Pinned Memory APIs* document or *CUDA C Programming Guide*.
+ */
+class CV_EXPORTS HostMem
+{
+public:
+    enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
+
+    static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);
+
+    explicit HostMem(AllocType alloc_type = PAGE_LOCKED);
+
+    HostMem(const HostMem& m);
+
+    HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
+    HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
+
+    //! creates from host memory with coping data
+    explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
+
+    ~HostMem();
+
+    HostMem& operator =(const HostMem& m);
+
+    //! swaps with other smart pointer
+    void swap(HostMem& b);
+
+    //! returns deep copy of the matrix, i.e. the data is copied
+    HostMem clone() const;
+
+    //! allocates new matrix data unless the matrix already has specified size and type.
+    void create(int rows, int cols, int type);
+    void create(Size size, int type);
+
+    //! creates alternative HostMem header for the same data, with different
+    //! number of channels and/or different number of rows
+    HostMem reshape(int cn, int rows = 0) const;
+
+    //! decrements reference counter and released memory if needed.
+    void release();
+
+    //! returns matrix header with disabled reference counting for HostMem data.
+    Mat createMatHeader() const;
+
+    /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
+    for it.
+
+    This can be done only if memory was allocated with the SHARED flag and if it is supported by the
+    hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
+    eliminates an extra copy.
+     */
+    GpuMat createGpuMatHeader() const;
+
+    // Please see cv::Mat for descriptions
+    bool isContinuous() const;
+    size_t elemSize() const;
+    size_t elemSize1() const;
+    int type() const;
+    int depth() const;
+    int channels() const;
+    size_t step1() const;
+    Size size() const;
+    bool empty() const;
+
+    // Please see cv::Mat for descriptions
+    int flags;
+    int rows, cols;
+    size_t step;
+
+    uchar* data;
+    int* refcount;
+
+    uchar* datastart;
+    const uchar* dataend;
+
+    AllocType alloc_type;
+};
+
+/** @brief Page-locks the memory of matrix and maps it for the device(s).
+
+@param m Input matrix.
+ */
+CV_EXPORTS void registerPageLocked(Mat& m);
+
+/** @brief Unmaps the memory of matrix and makes it pageable again.
+
+@param m Input matrix.
+ */
+CV_EXPORTS void unregisterPageLocked(Mat& m);
+
+//===================================================================================
+// Stream
+//===================================================================================
+
+/** @brief This class encapsulates a queue of asynchronous calls.
+
+@note Currently, you may face problems if an operation is enqueued twice with different data. Some
+functions use the constant GPU memory, and next call may update the memory before the previous one
+has been finished. But calling different operations asynchronously is safe because each operation
+has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
+also safe.
+
+@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads.
+
+@code
+void thread1()
+{
+    cv::cuda::Stream stream1;
+    cv::cuda::func1(..., stream1);
+}
+
+void thread2()
+{
+    cv::cuda::Stream stream2;
+    cv::cuda::func2(..., stream2);
+}
+@endcode
+
+@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.
+In multi-threading environment the stream objects must be passed explicitly (see previous note).
+ */
+class CV_EXPORTS Stream
+{
+    typedef void (Stream::*bool_type)() const;
+    void this_type_does_not_support_comparisons() const {}
+
+public:
+    typedef void (*StreamCallback)(int status, void* userData);
+
+    //! creates a new asynchronous stream
+    Stream();
+
+    //! creates a new asynchronous stream with custom allocator
+    Stream(const Ptr<GpuMat::Allocator>& allocator);
+
+    /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
+    */
+    bool queryIfComplete() const;
+
+    /** @brief Blocks the current CPU thread until all operations in the stream are complete.
+    */
+    void waitForCompletion();
+
+    /** @brief Makes a compute stream wait on an event.
+    */
+    void waitEvent(const Event& event);
+
+    /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
+    completed.
+
+    @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
+    that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
+    Callbacks without a mandated order (in independent streams) execute in undefined order and may be
+    serialized.
+     */
+    void enqueueHostCallback(StreamCallback callback, void* userData);
+
+    //! return Stream object for default CUDA stream
+    static Stream& Null();
+
+    //! returns true if stream object is not default (!= 0)
+    operator bool_type() const;
+
+    class Impl;
+
+private:
+    Ptr<Impl> impl_;
+    Stream(const Ptr<Impl>& impl);
+
+    friend struct StreamAccessor;
+    friend class BufferPool;
+    friend class DefaultDeviceInitializer;
+};
+
+class CV_EXPORTS Event
+{
+public:
+    enum CreateFlags
+    {
+        DEFAULT        = 0x00,  /**< Default event flag */
+        BLOCKING_SYNC  = 0x01,  /**< Event uses blocking synchronization */
+        DISABLE_TIMING = 0x02,  /**< Event will not record timing data */
+        INTERPROCESS   = 0x04   /**< Event is suitable for interprocess use. DisableTiming must be set */
+    };
+
+    explicit Event(CreateFlags flags = DEFAULT);
+
+    //! records an event
+    void record(Stream& stream = Stream::Null());
+
+    //! queries an event's status
+    bool queryIfComplete() const;
+
+    //! waits for an event to complete
+    void waitForCompletion();
+
+    //! computes the elapsed time between events
+    static float elapsedTime(const Event& start, const Event& end);
+
+    class Impl;
+
+private:
+    Ptr<Impl> impl_;
+    Event(const Ptr<Impl>& impl);
+
+    friend struct EventAccessor;
+};
+
+//! @} cudacore_struct
+
+//===================================================================================
+// Initialization & Info
+//===================================================================================
+
+//! @addtogroup cudacore_init
+//! @{
+
+/** @brief Returns the number of installed CUDA-enabled devices.
+
+Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
+this function returns 0. If the CUDA driver is not installed, or is incompatible, this function
+returns -1.
+ */
+CV_EXPORTS int getCudaEnabledDeviceCount();
+
+/** @brief Sets a device and initializes it for the current thread.
+
+@param device System index of a CUDA device starting with 0.
+
+If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
+ */
+CV_EXPORTS void setDevice(int device);
+
+/** @brief Returns the current device index set by cuda::setDevice or initialized by default.
+ */
+CV_EXPORTS int getDevice();
+
+/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current
+process.
+
+Any subsequent API call to this device will reinitialize the device.
+ */
+CV_EXPORTS void resetDevice();
+
+/** @brief Enumeration providing CUDA computing features.
+ */
+enum FeatureSet
+{
+    FEATURE_SET_COMPUTE_10 = 10,
+    FEATURE_SET_COMPUTE_11 = 11,
+    FEATURE_SET_COMPUTE_12 = 12,
+    FEATURE_SET_COMPUTE_13 = 13,
+    FEATURE_SET_COMPUTE_20 = 20,
+    FEATURE_SET_COMPUTE_21 = 21,
+    FEATURE_SET_COMPUTE_30 = 30,
+    FEATURE_SET_COMPUTE_32 = 32,
+    FEATURE_SET_COMPUTE_35 = 35,
+    FEATURE_SET_COMPUTE_50 = 50,
+
+    GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
+    SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
+    NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,
+    WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,
+    DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35
+};
+
+//! checks whether current device supports the given feature
+CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
+
+/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was
+built for.
+
+According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
+capability can always be compiled to binary code of greater or equal compute capability".
+ */
+class CV_EXPORTS TargetArchs
+{
+public:
+    /** @brief The following method checks whether the module was built with the support of the given feature:
+
+    @param feature_set Features to be checked. See :ocvcuda::FeatureSet.
+     */
+    static bool builtWith(FeatureSet feature_set);
+
+    /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
+    code for the given architecture(s):
+
+    @param major Major compute capability version.
+    @param minor Minor compute capability version.
+     */
+    static bool has(int major, int minor);
+    static bool hasPtx(int major, int minor);
+    static bool hasBin(int major, int minor);
+
+    static bool hasEqualOrLessPtx(int major, int minor);
+    static bool hasEqualOrGreater(int major, int minor);
+    static bool hasEqualOrGreaterPtx(int major, int minor);
+    static bool hasEqualOrGreaterBin(int major, int minor);
+};
+
+/** @brief Class providing functionality for querying the specified GPU properties.
+ */
+class CV_EXPORTS DeviceInfo
+{
+public:
+    //! creates DeviceInfo object for the current GPU
+    DeviceInfo();
+
+    /** @brief The constructors.
+
+    @param device_id System index of the CUDA device starting with 0.
+
+    Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
+    constructs an object for the current device.
+     */
+    DeviceInfo(int device_id);
+
+    /** @brief Returns system index of the CUDA device starting with 0.
+    */
+    int deviceID() const;
+
+    //! ASCII string identifying device
+    const char* name() const;
+
+    //! global memory available on device in bytes
+    size_t totalGlobalMem() const;
+
+    //! shared memory available per block in bytes
+    size_t sharedMemPerBlock() const;
+
+    //! 32-bit registers available per block
+    int regsPerBlock() const;
+
+    //! warp size in threads
+    int warpSize() const;
+
+    //! maximum pitch in bytes allowed by memory copies
+    size_t memPitch() const;
+
+    //! maximum number of threads per block
+    int maxThreadsPerBlock() const;
+
+    //! maximum size of each dimension of a block
+    Vec3i maxThreadsDim() const;
+
+    //! maximum size of each dimension of a grid
+    Vec3i maxGridSize() const;
+
+    //! clock frequency in kilohertz
+    int clockRate() const;
+
+    //! constant memory available on device in bytes
+    size_t totalConstMem() const;
+
+    //! major compute capability
+    int majorVersion() const;
+
+    //! minor compute capability
+    int minorVersion() const;
+
+    //! alignment requirement for textures
+    size_t textureAlignment() const;
+
+    //! pitch alignment requirement for texture references bound to pitched memory
+    size_t texturePitchAlignment() const;
+
+    //! number of multiprocessors on device
+    int multiProcessorCount() const;
+
+    //! specified whether there is a run time limit on kernels
+    bool kernelExecTimeoutEnabled() const;
+
+    //! device is integrated as opposed to discrete
+    bool integrated() const;
+
+    //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
+    bool canMapHostMemory() const;
+
+    enum ComputeMode
+    {
+        ComputeModeDefault,         /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */
+        ComputeModeExclusive,       /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */
+        ComputeModeProhibited,      /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */
+        ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */
+    };
+
+    //! compute mode
+    ComputeMode computeMode() const;
+
+    //! maximum 1D texture size
+    int maxTexture1D() const;
+
+    //! maximum 1D mipmapped texture size
+    int maxTexture1DMipmap() const;
+
+    //! maximum size for 1D textures bound to linear memory
+    int maxTexture1DLinear() const;
+
+    //! maximum 2D texture dimensions
+    Vec2i maxTexture2D() const;
+
+    //! maximum 2D mipmapped texture dimensions
+    Vec2i maxTexture2DMipmap() const;
+
+    //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory
+    Vec3i maxTexture2DLinear() const;
+
+    //! maximum 2D texture dimensions if texture gather operations have to be performed
+    Vec2i maxTexture2DGather() const;
+
+    //! maximum 3D texture dimensions
+    Vec3i maxTexture3D() const;
+
+    //! maximum Cubemap texture dimensions
+    int maxTextureCubemap() const;
+
+    //! maximum 1D layered texture dimensions
+    Vec2i maxTexture1DLayered() const;
+
+    //! maximum 2D layered texture dimensions
+    Vec3i maxTexture2DLayered() const;
+
+    //! maximum Cubemap layered texture dimensions
+    Vec2i maxTextureCubemapLayered() const;
+
+    //! maximum 1D surface size
+    int maxSurface1D() const;
+
+    //! maximum 2D surface dimensions
+    Vec2i maxSurface2D() const;
+
+    //! maximum 3D surface dimensions
+    Vec3i maxSurface3D() const;
+
+    //! maximum 1D layered surface dimensions
+    Vec2i maxSurface1DLayered() const;
+
+    //! maximum 2D layered surface dimensions
+    Vec3i maxSurface2DLayered() const;
+
+    //! maximum Cubemap surface dimensions
+    int maxSurfaceCubemap() const;
+
+    //! maximum Cubemap layered surface dimensions
+    Vec2i maxSurfaceCubemapLayered() const;
+
+    //! alignment requirements for surfaces
+    size_t surfaceAlignment() const;
+
+    //! device can possibly execute multiple kernels concurrently
+    bool concurrentKernels() const;
+
+    //! device has ECC support enabled
+    bool ECCEnabled() const;
+
+    //! PCI bus ID of the device
+    int pciBusID() const;
+
+    //! PCI device ID of the device
+    int pciDeviceID() const;
+
+    //! PCI domain ID of the device
+    int pciDomainID() const;
+
+    //! true if device is a Tesla device using TCC driver, false otherwise
+    bool tccDriver() const;
+
+    //! number of asynchronous engines
+    int asyncEngineCount() const;
+
+    //! device shares a unified address space with the host
+    bool unifiedAddressing() const;
+
+    //! peak memory clock frequency in kilohertz
+    int memoryClockRate() const;
+
+    //! global memory bus width in bits
+    int memoryBusWidth() const;
+
+    //! size of L2 cache in bytes
+    int l2CacheSize() const;
+
+    //! maximum resident threads per multiprocessor
+    int maxThreadsPerMultiProcessor() const;
+
+    //! gets free and total device memory
+    void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
+    size_t freeMemory() const;
+    size_t totalMemory() const;
+
+    /** @brief Provides information on CUDA feature support.
+
+    @param feature_set Features to be checked. See cuda::FeatureSet.
+
+    This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
+     */
+    bool supports(FeatureSet feature_set) const;
+
+    /** @brief Checks the CUDA module and device compatibility.
+
+    This function returns true if the CUDA module can be run on the specified device. Otherwise, it
+    returns false .
+     */
+    bool isCompatible() const;
+
+private:
+    int device_id_;
+};
+
+CV_EXPORTS void printCudaDeviceInfo(int device);
+CV_EXPORTS void printShortCudaDeviceInfo(int device);
+
+/** @brief Converts an array to half precision floating number.
+
+@param _src input array.
+@param _dst output array.
+@param stream Stream for the asynchronous version.
+@sa convertFp16
+*/
+CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null());
+
+//! @} cudacore_init
+
+}} // namespace cv { namespace cuda {
+
+
+#include "opencv2/core/cuda.inl.hpp"
+
+#endif /* OPENCV_CORE_CUDA_HPP */

+ 631 - 0
cv/include/opencv2/core/cuda.inl.hpp

@@ -0,0 +1,631 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_CUDAINL_HPP
+#define OPENCV_CORE_CUDAINL_HPP
+
+#include "opencv2/core/cuda.hpp"
+
+//! @cond IGNORED
+
+namespace cv { namespace cuda {
+
+//===================================================================================
+// GpuMat
+//===================================================================================
+
+inline
+GpuMat::GpuMat(Allocator* allocator_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{}
+
+inline
+GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{
+    if (rows_ > 0 && cols_ > 0)
+        create(rows_, cols_, type_);
+}
+
+inline
+GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{
+    if (size_.height > 0 && size_.width > 0)
+        create(size_.height, size_.width, type_);
+}
+
+inline
+GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{
+    if (rows_ > 0 && cols_ > 0)
+    {
+        create(rows_, cols_, type_);
+        setTo(s_);
+    }
+}
+
+inline
+GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{
+    if (size_.height > 0 && size_.width > 0)
+    {
+        create(size_.height, size_.width, type_);
+        setTo(s_);
+    }
+}
+
+inline
+GpuMat::GpuMat(const GpuMat& m)
+    : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator)
+{
+    if (refcount)
+        CV_XADD(refcount, 1);
+}
+
+inline
+GpuMat::GpuMat(InputArray arr, Allocator* allocator_) :
+    flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
+{
+    upload(arr);
+}
+
+inline
+GpuMat::~GpuMat()
+{
+    release();
+}
+
+inline
+GpuMat& GpuMat::operator =(const GpuMat& m)
+{
+    if (this != &m)
+    {
+        GpuMat temp(m);
+        swap(temp);
+    }
+
+    return *this;
+}
+
+inline
+void GpuMat::create(Size size_, int type_)
+{
+    create(size_.height, size_.width, type_);
+}
+
+inline
+void GpuMat::swap(GpuMat& b)
+{
+    std::swap(flags, b.flags);
+    std::swap(rows, b.rows);
+    std::swap(cols, b.cols);
+    std::swap(step, b.step);
+    std::swap(data, b.data);
+    std::swap(datastart, b.datastart);
+    std::swap(dataend, b.dataend);
+    std::swap(refcount, b.refcount);
+    std::swap(allocator, b.allocator);
+}
+
+inline
+GpuMat GpuMat::clone() const
+{
+    GpuMat m;
+    copyTo(m);
+    return m;
+}
+
+inline
+void GpuMat::copyTo(OutputArray dst, InputArray mask) const
+{
+    copyTo(dst, mask, Stream::Null());
+}
+
+inline
+GpuMat& GpuMat::setTo(Scalar s)
+{
+    return setTo(s, Stream::Null());
+}
+
+inline
+GpuMat& GpuMat::setTo(Scalar s, InputArray mask)
+{
+    return setTo(s, mask, Stream::Null());
+}
+
+inline
+void GpuMat::convertTo(OutputArray dst, int rtype) const
+{
+    convertTo(dst, rtype, Stream::Null());
+}
+
+inline
+void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const
+{
+    convertTo(dst, rtype, alpha, beta, Stream::Null());
+}
+
+inline
+void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const
+{
+    convertTo(dst, rtype, alpha, 0.0, stream);
+}
+
+inline
+void GpuMat::assignTo(GpuMat& m, int _type) const
+{
+    if (_type < 0)
+        m = *this;
+    else
+        convertTo(m, _type);
+}
+
+inline
+uchar* GpuMat::ptr(int y)
+{
+    CV_DbgAssert( (unsigned)y < (unsigned)rows );
+    return data + step * y;
+}
+
+inline
+const uchar* GpuMat::ptr(int y) const
+{
+    CV_DbgAssert( (unsigned)y < (unsigned)rows );
+    return data + step * y;
+}
+
+template<typename _Tp> inline
+_Tp* GpuMat::ptr(int y)
+{
+    return (_Tp*)ptr(y);
+}
+
+template<typename _Tp> inline
+const _Tp* GpuMat::ptr(int y) const
+{
+    return (const _Tp*)ptr(y);
+}
+
+template <class T> inline
+GpuMat::operator PtrStepSz<T>() const
+{
+    return PtrStepSz<T>(rows, cols, (T*)data, step);
+}
+
+template <class T> inline
+GpuMat::operator PtrStep<T>() const
+{
+    return PtrStep<T>((T*)data, step);
+}
+
+inline
+GpuMat GpuMat::row(int y) const
+{
+    return GpuMat(*this, Range(y, y+1), Range::all());
+}
+
+inline
+GpuMat GpuMat::col(int x) const
+{
+    return GpuMat(*this, Range::all(), Range(x, x+1));
+}
+
+inline
+GpuMat GpuMat::rowRange(int startrow, int endrow) const
+{
+    return GpuMat(*this, Range(startrow, endrow), Range::all());
+}
+
+inline
+GpuMat GpuMat::rowRange(Range r) const
+{
+    return GpuMat(*this, r, Range::all());
+}
+
+inline
+GpuMat GpuMat::colRange(int startcol, int endcol) const
+{
+    return GpuMat(*this, Range::all(), Range(startcol, endcol));
+}
+
+inline
+GpuMat GpuMat::colRange(Range r) const
+{
+    return GpuMat(*this, Range::all(), r);
+}
+
+inline
+GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
+{
+    return GpuMat(*this, rowRange_, colRange_);
+}
+
+inline
+GpuMat GpuMat::operator ()(Rect roi) const
+{
+    return GpuMat(*this, roi);
+}
+
+inline
+bool GpuMat::isContinuous() const
+{
+    return (flags & Mat::CONTINUOUS_FLAG) != 0;
+}
+
+inline
+size_t GpuMat::elemSize() const
+{
+    return CV_ELEM_SIZE(flags);
+}
+
+inline
+size_t GpuMat::elemSize1() const
+{
+    return CV_ELEM_SIZE1(flags);
+}
+
+inline
+int GpuMat::type() const
+{
+    return CV_MAT_TYPE(flags);
+}
+
+inline
+int GpuMat::depth() const
+{
+    return CV_MAT_DEPTH(flags);
+}
+
+inline
+int GpuMat::channels() const
+{
+    return CV_MAT_CN(flags);
+}
+
+inline
+size_t GpuMat::step1() const
+{
+    return step / elemSize1();
+}
+
+inline
+Size GpuMat::size() const
+{
+    return Size(cols, rows);
+}
+
+inline
+bool GpuMat::empty() const
+{
+    return data == 0;
+}
+
+static inline
+GpuMat createContinuous(int rows, int cols, int type)
+{
+    GpuMat m;
+    createContinuous(rows, cols, type, m);
+    return m;
+}
+
+static inline
+void createContinuous(Size size, int type, OutputArray arr)
+{
+    createContinuous(size.height, size.width, type, arr);
+}
+
+static inline
+GpuMat createContinuous(Size size, int type)
+{
+    GpuMat m;
+    createContinuous(size, type, m);
+    return m;
+}
+
+static inline
+void ensureSizeIsEnough(Size size, int type, OutputArray arr)
+{
+    ensureSizeIsEnough(size.height, size.width, type, arr);
+}
+
+static inline
+void swap(GpuMat& a, GpuMat& b)
+{
+    a.swap(b);
+}
+
+//===================================================================================
+// HostMem
+//===================================================================================
+
+inline
+HostMem::HostMem(AllocType alloc_type_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
+{
+}
+
+inline
+HostMem::HostMem(const HostMem& m)
+    : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
+{
+    if( refcount )
+        CV_XADD(refcount, 1);
+}
+
+inline
+HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
+{
+    if (rows_ > 0 && cols_ > 0)
+        create(rows_, cols_, type_);
+}
+
+inline
+HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
+{
+    if (size_.height > 0 && size_.width > 0)
+        create(size_.height, size_.width, type_);
+}
+
+inline
+HostMem::HostMem(InputArray arr, AllocType alloc_type_)
+    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
+{
+    arr.getMat().copyTo(*this);
+}
+
+inline
+HostMem::~HostMem()
+{
+    release();
+}
+
+inline
+HostMem& HostMem::operator =(const HostMem& m)
+{
+    if (this != &m)
+    {
+        HostMem temp(m);
+        swap(temp);
+    }
+
+    return *this;
+}
+
+inline
+void HostMem::swap(HostMem& b)
+{
+    std::swap(flags, b.flags);
+    std::swap(rows, b.rows);
+    std::swap(cols, b.cols);
+    std::swap(step, b.step);
+    std::swap(data, b.data);
+    std::swap(datastart, b.datastart);
+    std::swap(dataend, b.dataend);
+    std::swap(refcount, b.refcount);
+    std::swap(alloc_type, b.alloc_type);
+}
+
+inline
+HostMem HostMem::clone() const
+{
+    HostMem m(size(), type(), alloc_type);
+    createMatHeader().copyTo(m);
+    return m;
+}
+
+inline
+void HostMem::create(Size size_, int type_)
+{
+    create(size_.height, size_.width, type_);
+}
+
+inline
+Mat HostMem::createMatHeader() const
+{
+    return Mat(size(), type(), data, step);
+}
+
+inline
+bool HostMem::isContinuous() const
+{
+    return (flags & Mat::CONTINUOUS_FLAG) != 0;
+}
+
+inline
+size_t HostMem::elemSize() const
+{
+    return CV_ELEM_SIZE(flags);
+}
+
+inline
+size_t HostMem::elemSize1() const
+{
+    return CV_ELEM_SIZE1(flags);
+}
+
+inline
+int HostMem::type() const
+{
+    return CV_MAT_TYPE(flags);
+}
+
+inline
+int HostMem::depth() const
+{
+    return CV_MAT_DEPTH(flags);
+}
+
+inline
+int HostMem::channels() const
+{
+    return CV_MAT_CN(flags);
+}
+
+inline
+size_t HostMem::step1() const
+{
+    return step / elemSize1();
+}
+
+inline
+Size HostMem::size() const
+{
+    return Size(cols, rows);
+}
+
+inline
+bool HostMem::empty() const
+{
+    return data == 0;
+}
+
+static inline
+void swap(HostMem& a, HostMem& b)
+{
+    a.swap(b);
+}
+
+//===================================================================================
+// Stream
+//===================================================================================
+
+inline
+Stream::Stream(const Ptr<Impl>& impl)
+    : impl_(impl)
+{
+}
+
+//===================================================================================
+// Event
+//===================================================================================
+
+inline
+Event::Event(const Ptr<Impl>& impl)
+    : impl_(impl)
+{
+}
+
+//===================================================================================
+// Initialization & Info
+//===================================================================================
+
+inline
+bool TargetArchs::has(int major, int minor)
+{
+    return hasPtx(major, minor) || hasBin(major, minor);
+}
+
+inline
+bool TargetArchs::hasEqualOrGreater(int major, int minor)
+{
+    return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
+}
+
+inline
+DeviceInfo::DeviceInfo()
+{
+    device_id_ = getDevice();
+}
+
+inline
+DeviceInfo::DeviceInfo(int device_id)
+{
+    CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() );
+    device_id_ = device_id;
+}
+
+inline
+int DeviceInfo::deviceID() const
+{
+    return device_id_;
+}
+
+inline
+size_t DeviceInfo::freeMemory() const
+{
+    size_t _totalMemory = 0, _freeMemory = 0;
+    queryMemory(_totalMemory, _freeMemory);
+    return _freeMemory;
+}
+
+inline
+size_t DeviceInfo::totalMemory() const
+{
+    size_t _totalMemory = 0, _freeMemory = 0;
+    queryMemory(_totalMemory, _freeMemory);
+    return _totalMemory;
+}
+
+inline
+bool DeviceInfo::supports(FeatureSet feature_set) const
+{
+    int version = majorVersion() * 10 + minorVersion();
+    return version >= feature_set;
+}
+
+
+}} // namespace cv { namespace cuda {
+
+//===================================================================================
+// Mat
+//===================================================================================
+
+namespace cv {
+
+inline
+Mat::Mat(const cuda::GpuMat& m)
+    : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows)
+{
+    m.download(*this);
+}
+
+}
+
+//! @endcond
+
+#endif // OPENCV_CORE_CUDAINL_HPP

+ 211 - 0
cv/include/opencv2/core/cuda/block.hpp

@@ -0,0 +1,211 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CUDA_DEVICE_BLOCK_HPP
+#define OPENCV_CUDA_DEVICE_BLOCK_HPP
+
+/** @file
+ * @deprecated Use @ref cudev instead.
+ */
+
+//! @cond IGNORED
+
+namespace cv { namespace cuda { namespace device
+{
+    struct Block
+    {
+        static __device__ __forceinline__ unsigned int id()
+        {
+            return blockIdx.x;
+        }
+
+        static __device__ __forceinline__ unsigned int stride()
+        {
+            return blockDim.x * blockDim.y * blockDim.z;
+        }
+
+        static __device__ __forceinline__ void sync()
+        {
+            __syncthreads();
+        }
+
+        static __device__ __forceinline__ int flattenedThreadId()
+        {
+            return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
+        }
+
+        template<typename It, typename T>
+        static __device__ __forceinline__ void fill(It beg, It end, const T& value)
+        {
+            int STRIDE = stride();
+            It t = beg + flattenedThreadId();
+
+            for(; t < end; t += STRIDE)
+                *t = value;
+        }
+
+        template<typename OutIt, typename T>
+        static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
+        {
+            int STRIDE = stride();
+            int tid = flattenedThreadId();
+            value += tid;
+
+            for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
+                *t = value;
+        }
+
+        template<typename InIt, typename OutIt>
+        static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
+        {
+            int STRIDE = stride();
+            InIt  t = beg + flattenedThreadId();
+            OutIt o = out + (t - beg);
+
+            for(; t < end; t += STRIDE, o += STRIDE)
+                *o = *t;
+        }
+
+        template<typename InIt, typename OutIt, class UnOp>
+        static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
+        {
+            int STRIDE = stride();
+            InIt  t = beg + flattenedThreadId();
+            OutIt o = out + (t - beg);
+
+            for(; t < end; t += STRIDE, o += STRIDE)
+                *o = op(*t);
+        }
+
+        template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
+        static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
+        {
+            int STRIDE = stride();
+            InIt1 t1 = beg1 + flattenedThreadId();
+            InIt2 t2 = beg2 + flattenedThreadId();
+            OutIt o  = out + (t1 - beg1);
+
+            for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
+                *o = op(*t1, *t2);
+        }
+
+        template<int CTA_SIZE, typename T, class BinOp>
+        static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
+        {
+            int tid = flattenedThreadId();
+            T val =  buffer[tid];
+
+            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
+            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
+            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
+            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }
+
+            if (tid < 32)
+            {
+                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
+                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
+                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
+                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
+                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
+                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
+            }
+        }
+
+        template<int CTA_SIZE, typename T, class BinOp>
+        static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
+        {
+            int tid = flattenedThreadId();
+            T val =  buffer[tid] = init;
+            __syncthreads();
+
+            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
+            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
+            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
+            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }
+
+            if (tid < 32)
+            {
+                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
+                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
+                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
+                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
+                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
+                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
+            }
+            __syncthreads();
+            return buffer[0];
+        }
+
+        template <typename T, class BinOp>
+        static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
+        {
+            int ftid = flattenedThreadId();
+            int sft = stride();
+
+            if (sft < n)
+            {
+                for (unsigned int i = sft + ftid; i < n; i += sft)
+                    data[ftid] = op(data[ftid], data[i]);
+
+                __syncthreads();
+
+                n = sft;
+            }
+
+            while (n > 1)
+            {
+                unsigned int half = n/2;
+
+                if (ftid < half)
+                    data[ftid] = op(data[ftid], data[n - ftid - 1]);
+
+                __syncthreads();
+
+                n = n - half;
+            }
+        }
+    };
+}}}
+
+//! @endcond
+
+#endif /* OPENCV_CUDA_DEVICE_BLOCK_HPP */

+ 722 - 0
cv/include/opencv2/core/cuda/border_interpolate.hpp

@@ -0,0 +1,722 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CUDA_BORDER_INTERPOLATE_HPP
+#define OPENCV_CUDA_BORDER_INTERPOLATE_HPP
+
+#include "saturate_cast.hpp"
+#include "vec_traits.hpp"
+#include "vec_math.hpp"
+
+/** @file
+ * @deprecated Use @ref cudev instead.
+ */
+
+//! @cond IGNORED
+
+namespace cv { namespace cuda { namespace device
+{
+    //////////////////////////////////////////////////////////////
+    // BrdConstant
+
+    template <typename D> struct BrdRowConstant
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdRowConstant(int width_, const D& val_ = VecTraits<D>::all(0)) : width(width_), val(val_) {}
+
+        template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
+        {
+            return x >= 0 ? saturate_cast<D>(data[x]) : val;
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
+        {
+            return x < width ? saturate_cast<D>(data[x]) : val;
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
+        {
+            return (x >= 0 && x < width) ? saturate_cast<D>(data[x]) : val;
+        }
+
+        int width;
+        D val;
+    };
+
+    template <typename D> struct BrdColConstant
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdColConstant(int height_, const D& val_ = VecTraits<D>::all(0)) : height(height_), val(val_) {}
+
+        template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
+        {
+            return y >= 0 ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
+        {
+            return y < height ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
+        {
+            return (y >= 0 && y < height) ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
+        }
+
+        int height;
+        D val;
+    };
+
+    template <typename D> struct BrdConstant
+    {
+        typedef D result_type;
+
+        __host__ __device__ __forceinline__ BrdConstant(int height_, int width_, const D& val_ = VecTraits<D>::all(0)) : height(height_), width(width_), val(val_)
+        {
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
+        {
+            return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(((const T*)((const uchar*)data + y * step))[x]) : val;
+        }
+
+        template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
+        {
+            return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
+        }
+
+        int height;
+        int width;
+        D val;
+    };
+
+    //////////////////////////////////////////////////////////////
+    // BrdReplicate
+
+    template <typename D> struct BrdRowReplicate
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdRowReplicate(int width) : last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdRowReplicate(int width, U) : last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return ::max(x, 0);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return ::min(x, last_col);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_low(idx_col_high(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_low(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_high(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col(x)]);
+        }
+
+        int last_col;
+    };
+
+    template <typename D> struct BrdColReplicate
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdColReplicate(int height) : last_row(height - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdColReplicate(int height, U) : last_row(height - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return ::max(y, 0);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return ::min(y, last_row);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_low(idx_row_high(y));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const T*)((const char*)data + idx_row_low(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const T*)((const char*)data + idx_row_high(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const T*)((const char*)data + idx_row(y) * step));
+        }
+
+        int last_row;
+    };
+
+    template <typename D> struct BrdReplicate
+    {
+        typedef D result_type;
+
+        __host__ __device__ __forceinline__ BrdReplicate(int height, int width) : last_row(height - 1), last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdReplicate(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return ::max(y, 0);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return ::min(y, last_row);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_low(idx_row_high(y));
+        }
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return ::max(x, 0);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return ::min(x, last_col);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_low(idx_col_high(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
+        }
+
+        template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
+        {
+            return saturate_cast<D>(src(idx_row(y), idx_col(x)));
+        }
+
+        int last_row;
+        int last_col;
+    };
+
+    //////////////////////////////////////////////////////////////
+    // BrdReflect101
+
+    template <typename D> struct BrdRowReflect101
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdRowReflect101(int width) : last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdRowReflect101(int width, U) : last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return ::abs(x) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_low(idx_col_high(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_low(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_high(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col(x)]);
+        }
+
+        int last_col;
+    };
+
+    template <typename D> struct BrdColReflect101
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdColReflect101(int height) : last_row(height - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdColReflect101(int height, U) : last_row(height - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return ::abs(y) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_low(idx_row_high(y));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
+        }
+
+        int last_row;
+    };
+
+    template <typename D> struct BrdReflect101
+    {
+        typedef D result_type;
+
+        __host__ __device__ __forceinline__ BrdReflect101(int height, int width) : last_row(height - 1), last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdReflect101(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return ::abs(y) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_low(idx_row_high(y));
+        }
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return ::abs(x) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_low(idx_col_high(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
+        }
+
+        template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
+        {
+            return saturate_cast<D>(src(idx_row(y), idx_col(x)));
+        }
+
+        int last_row;
+        int last_col;
+    };
+
+    //////////////////////////////////////////////////////////////
+    // BrdReflect
+
+    template <typename D> struct BrdRowReflect
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdRowReflect(int width) : last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdRowReflect(int width, U) : last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return (::abs(x) - (x < 0)) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return ::abs(last_col - ::abs(last_col - x) + (x > last_col)) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_high(::abs(x) - (x < 0));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_low(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_high(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col(x)]);
+        }
+
+        int last_col;
+    };
+
+    template <typename D> struct BrdColReflect
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdColReflect(int height) : last_row(height - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdColReflect(int height, U) : last_row(height - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return (::abs(y) - (y < 0)) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return ::abs(last_row - ::abs(last_row - y) + (y > last_row)) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_high(::abs(y) - (y < 0));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
+        }
+
+        int last_row;
+    };
+
+    template <typename D> struct BrdReflect
+    {
+        typedef D result_type;
+
+        __host__ __device__ __forceinline__ BrdReflect(int height, int width) : last_row(height - 1), last_col(width - 1) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdReflect(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return (::abs(y) - (y < 0)) % (last_row + 1);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return /*::abs*/(last_row - ::abs(last_row - y) + (y > last_row)) /*% (last_row + 1)*/;
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_low(idx_row_high(y));
+        }
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return (::abs(x) - (x < 0)) % (last_col + 1);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return (last_col - ::abs(last_col - x) + (x > last_col));
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_low(idx_col_high(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
+        }
+
+        template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
+        {
+            return saturate_cast<D>(src(idx_row(y), idx_col(x)));
+        }
+
+        int last_row;
+        int last_col;
+    };
+
+    //////////////////////////////////////////////////////////////
+    // BrdWrap
+
+    template <typename D> struct BrdRowWrap
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdRowWrap(int width_) : width(width_) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdRowWrap(int width_, U) : width(width_) {}
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return (x >= 0) * x + (x < 0) * (x - ((x - width + 1) / width) * width);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return (x < width) * x + (x >= width) * (x % width);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_high(idx_col_low(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_low(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col_high(x)]);
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
+        {
+            return saturate_cast<D>(data[idx_col(x)]);
+        }
+
+        int width;
+    };
+
+    template <typename D> struct BrdColWrap
+    {
+        typedef D result_type;
+
+        explicit __host__ __device__ __forceinline__ BrdColWrap(int height_) : height(height_) {}
+        template <typename U> __host__ __device__ __forceinline__ BrdColWrap(int height_, U) : height(height_) {}
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return (y >= 0) * y + (y < 0) * (y - ((y - height + 1) / height) * height);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return (y < height) * y + (y >= height) * (y % height);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_high(idx_row_low(y));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
+        }
+
+        int height;
+    };
+
+    template <typename D> struct BrdWrap
+    {
+        typedef D result_type;
+
+        __host__ __device__ __forceinline__ BrdWrap(int height_, int width_) :
+            height(height_), width(width_)
+        {
+        }
+        template <typename U>
+        __host__ __device__ __forceinline__ BrdWrap(int height_, int width_, U) :
+            height(height_), width(width_)
+        {
+        }
+
+        __device__ __forceinline__ int idx_row_low(int y) const
+        {
+            return (y >= 0) ? y : (y - ((y - height + 1) / height) * height);
+        }
+
+        __device__ __forceinline__ int idx_row_high(int y) const
+        {
+            return (y < height) ? y : (y % height);
+        }
+
+        __device__ __forceinline__ int idx_row(int y) const
+        {
+            return idx_row_high(idx_row_low(y));
+        }
+
+        __device__ __forceinline__ int idx_col_low(int x) const
+        {
+            return (x >= 0) ? x : (x - ((x - width + 1) / width) * width);
+        }
+
+        __device__ __forceinline__ int idx_col_high(int x) const
+        {
+            return (x < width) ? x : (x % width);
+        }
+
+        __device__ __forceinline__ int idx_col(int x) const
+        {
+            return idx_col_high(idx_col_low(x));
+        }
+
+        template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
+        {
+            return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
+        }
+
+        template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
+        {
+            return saturate_cast<D>(src(idx_row(y), idx_col(x)));
+        }
+
+        int height;
+        int width;
+    };
+
+    //////////////////////////////////////////////////////////////
+    // BorderReader
+
+    template <typename Ptr2D, typename B> struct BorderReader
+    {
+        typedef typename B::result_type elem_type;
+        typedef typename Ptr2D::index_type index_type;
+
+        __host__ __device__ __forceinline__ BorderReader(const Ptr2D& ptr_, const B& b_) : ptr(ptr_), b(b_) {}
+
+        __device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const
+        {
+            return b.at(y, x, ptr);
+        }
+
+        Ptr2D ptr;
+        B b;
+    };
+
+    // under win32 there is some bug with templated types that passed as kernel parameters
+    // with this specialization all works fine
+    template <typename Ptr2D, typename D> struct BorderReader< Ptr2D, BrdConstant<D> >
+    {
+        typedef typename BrdConstant<D>::result_type elem_type;
+        typedef typename Ptr2D::index_type index_type;
+
+        __host__ __device__ __forceinline__ BorderReader(const Ptr2D& src_, const BrdConstant<D>& b) :
+            src(src_), height(b.height), width(b.width), val(b.val)
+        {
+        }
+
+        __device__ __forceinline__ D operator ()(index_type y, index_type x) const
+        {
+            return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
+        }
+
+        Ptr2D src;
+        int height;
+        int width;
+        D val;
+    };
+}}} // namespace cv { namespace cuda { namespace cudev
+
+//! @endcond
+
+#endif // OPENCV_CUDA_BORDER_INTERPOLATE_HPP

+ 309 - 0
cv/include/opencv2/core/cuda/color.hpp

@@ -0,0 +1,309 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CUDA_COLOR_HPP
+#define OPENCV_CUDA_COLOR_HPP
+
+#include "detail/color_detail.hpp"
+
+/** @file
+ * @deprecated Use @ref cudev instead.
+ */
+
+//! @cond IGNORED
+
+namespace cv { namespace cuda { namespace device
+{
+    // All OPENCV_CUDA_IMPLEMENT_*_TRAITS(ColorSpace1_to_ColorSpace2, ...) macros implements
+    // template <typename T> class ColorSpace1_to_ColorSpace2_traits
+    // {
+    //     typedef ... functor_type;
+    //     static __host__ __device__ functor_type create_functor();
+    // };
+
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgba, 4, 4, 2)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr555, 3, 0, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr565, 3, 0, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr555, 3, 2, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr565, 3, 2, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr555, 4, 0, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr565, 4, 0, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr555, 4, 2, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr565, 4, 2, 6)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgb, 3, 2, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgb, 3, 2, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgr, 3, 0, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgr, 3, 0, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgba, 4, 2, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgba, 4, 2, 6)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgra, 4, 0, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgra, 4, 0, 6)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgr, 3)
+    OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgra, 4)
+
+    #undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr555, 5)
+    OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr565, 6)
+
+    #undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr555_to_gray, 5)
+    OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr565_to_gray, 6)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgb_to_gray, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgr_to_gray, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgba_to_gray, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgra_to_gray, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv4, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv4, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv4, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv4, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgba, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgr, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgra, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb4, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb4, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb4, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb4, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgba, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgr, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgra, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz4, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz4, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz4, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz4, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgba, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgr, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgra, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv4, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv4, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv4, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv4, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgba, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgr, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgra, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls4, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls4, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls4, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls4, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgb, 3, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgba, 3, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgb, 4, 3, 2)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgba, 4, 4, 2)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgr, 3, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgra, 3, 4, 0)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgr, 4, 3, 0)
+    OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgra, 4, 4, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab, 3, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab, 4, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab4, 3, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab4, 4, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab, 3, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab, 4, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab4, 3, 4, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab4, 4, 4, true, 0)
+
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab, 3, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab, 4, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab4, 3, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab4, 4, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab, 3, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab, 4, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab4, 3, 4, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab4, 4, 4, false, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgb, 3, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgb, 4, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgba, 3, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgba, 4, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgr, 3, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgr, 4, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgra, 3, 4, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgra, 4, 4, true, 0)
+
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgb, 3, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgb, 4, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgba, 3, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgba, 4, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgr, 3, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgr, 4, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgra, 3, 4, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgra, 4, 4, false, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv, 3, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv, 4, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv4, 3, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv4, 4, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv, 3, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv, 4, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv4, 3, 4, true, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv4, 4, 4, true, 0)
+
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv, 3, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv, 4, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv4, 3, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv4, 4, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv, 3, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv, 4, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv4, 3, 4, false, 0)
+    OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv4, 4, 4, false, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS
+
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgb, 3, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgb, 4, 3, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgba, 3, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgba, 4, 4, true, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgr, 3, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgr, 4, 3, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgra, 3, 4, true, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgra, 4, 4, true, 0)
+
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgb, 3, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgb, 4, 3, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgba, 3, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgba, 4, 4, false, 2)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgr, 3, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgr, 4, 3, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgra, 3, 4, false, 0)
+    OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgra, 4, 4, false, 0)
+
+    #undef OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS
+}}} // namespace cv { namespace cuda { namespace cudev
+
+//! @endcond
+
+#endif // OPENCV_CUDA_COLOR_HPP

+ 109 - 0
cv/include/opencv2/core/cuda/common.hpp

@@ -0,0 +1,109 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CUDA_COMMON_HPP
+#define OPENCV_CUDA_COMMON_HPP
+
+#include <cuda_runtime.h>
+#include "opencv2/core/cuda_types.hpp"
+#include "opencv2/core/cvdef.h"
+#include "opencv2/core/base.hpp"
+
+/** @file
+ * @deprecated Use @ref cudev instead.
+ */
+
+//! @cond IGNORED
+
+#ifndef CV_PI_F
+    #ifndef CV_PI
+        #define CV_PI_F 3.14159265f
+    #else
+        #define CV_PI_F ((float)CV_PI)
+    #endif
+#endif
+
+namespace cv { namespace cuda {
+    static inline void checkCudaError(cudaError_t err, const char* file, const int line, const char* func)
+    {
+        if (cudaSuccess != err)
+            cv::error(cv::Error::GpuApiCallError, cudaGetErrorString(err), func, file, line);
+    }
+}}
+
+#ifndef cudaSafeCall
+    #define cudaSafeCall(expr)  cv::cuda::checkCudaError(expr, __FILE__, __LINE__, CV_Func)
+#endif
+
+namespace cv { namespace cuda
+{
+    template <typename T> static inline bool isAligned(const T* ptr, size_t size)
+    {
+        return reinterpret_cast<size_t>(ptr) % size == 0;
+    }
+
+    static inline bool isAligned(size_t step, size_t size)
+    {
+        return step % size == 0;
+    }
+}}
+
+namespace cv { namespace cuda
+{
+    namespace device
+    {
+        __host__ __device__ __forceinline__ int divUp(int total, int grain)
+        {
+            return (total + grain - 1) / grain;
+        }
+
+        template<class T> inline void bindTexture(const textureReference* tex, const PtrStepSz<T>& img)
+        {
+            cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
+            cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
+        }
+    }
+}}
+
+//! @endcond
+
+#endif // OPENCV_CUDA_COMMON_HPP

部分文件因为文件数量过多而无法显示