| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                          License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009, Willow Garage Inc., all rights reserved.// Copyright (C) 2013, OpenCV Foundation, all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef OPENCV_CORE_CUDA_HPP#define OPENCV_CORE_CUDA_HPP#ifndef __cplusplus#  error cuda.hpp header must be compiled as C++#endif#include "opencv2/core.hpp"#include "opencv2/core/cuda_types.hpp"/**  @defgroup cuda CUDA-accelerated Computer Vision  @{    @defgroup cudacore Core part    @{      @defgroup cudacore_init Initalization and Information      @defgroup cudacore_struct Data Structures    @}  @} */namespace cv { namespace cuda {//! @addtogroup cudacore_struct//! @{//===================================================================================// GpuMat//===================================================================================/** @brief Base storage class for GPU memory with reference counting.Its interface matches the Mat interface with the following limitations:-   no arbitrary dimensions support (only 2D)-   no functions that return references to their data (because references on GPU are not valid for    CPU)-   no expression templates technique supportBeware that the latter limitation may lead to overloaded matrix operators that cause memoryallocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can bepassed directly to the kernel.@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows arealigned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.@note You are not recommended to leave static or global GpuMat variables allocated, that is, to relyon its destructor. The destruction order of such variables and CUDA context is undefined. GPU memoryrelease function returns error if the CUDA context has been destroyed before.@sa Mat */class CV_EXPORTS GpuMat{public:    class CV_EXPORTS Allocator    {    public:        virtual ~Allocator() {}        // allocator must fill data, step and refcount fields        virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0;        virtual void free(GpuMat* mat) = 0;    };    //! default allocator    static Allocator* defaultAllocator();    static void setDefaultAllocator(Allocator* allocator);    //! default constructor    explicit GpuMat(Allocator* allocator = defaultAllocator());    //! constructs GpuMat of the specified size and type    GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator());    GpuMat(Size size, int type, Allocator* allocator = defaultAllocator());    //! constucts GpuMat and fills it with the specified value _s    GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator());    GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator());    //! copy constructor    GpuMat(const GpuMat& m);    //! constructor for GpuMat headers pointing to user-allocated data    GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);    GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);    //! creates a GpuMat header for a part of the bigger matrix    GpuMat(const GpuMat& m, Range rowRange, Range colRange);    GpuMat(const GpuMat& m, Rect roi);    //! builds GpuMat from host memory (Blocking call)    explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator());    //! destructor - calls release()    ~GpuMat();    //! assignment operators    GpuMat& operator =(const GpuMat& m);    //! allocates new GpuMat data unless the GpuMat already has specified size and type    void create(int rows, int cols, int type);    void create(Size size, int type);    //! decreases reference counter, deallocate the data when reference counter reaches 0    void release();    //! swaps with other smart pointer    void swap(GpuMat& mat);    //! pefroms upload data to GpuMat (Blocking call)    void upload(InputArray arr);    //! pefroms upload data to GpuMat (Non-Blocking call)    void upload(InputArray arr, Stream& stream);    //! pefroms download data from device to host memory (Blocking call)    void download(OutputArray dst) const;    //! pefroms download data from device to host memory (Non-Blocking call)    void download(OutputArray dst, Stream& stream) const;    //! returns deep copy of the GpuMat, i.e. the data is copied    GpuMat clone() const;    //! copies the GpuMat content to device memory (Blocking call)    void copyTo(OutputArray dst) const;    //! copies the GpuMat content to device memory (Non-Blocking call)    void copyTo(OutputArray dst, Stream& stream) const;    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)    void copyTo(OutputArray dst, InputArray mask) const;    //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)    void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;    //! sets some of the GpuMat elements to s (Blocking call)    GpuMat& setTo(Scalar s);    //! sets some of the GpuMat elements to s (Non-Blocking call)    GpuMat& setTo(Scalar s, Stream& stream);    //! sets some of the GpuMat elements to s, according to the mask (Blocking call)    GpuMat& setTo(Scalar s, InputArray mask);    //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)    GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);    //! converts GpuMat to another datatype (Blocking call)    void convertTo(OutputArray dst, int rtype) const;    //! converts GpuMat to another datatype (Non-Blocking call)    void convertTo(OutputArray dst, int rtype, Stream& stream) const;    //! converts GpuMat to another datatype with scaling (Blocking call)    void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;    //! converts GpuMat to another datatype with scaling (Non-Blocking call)    void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;    //! converts GpuMat to another datatype with scaling (Non-Blocking call)    void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;    void assignTo(GpuMat& m, int type=-1) const;    //! returns pointer to y-th row    uchar* ptr(int y = 0);    const uchar* ptr(int y = 0) const;    //! template version of the above method    template<typename _Tp> _Tp* ptr(int y = 0);    template<typename _Tp> const _Tp* ptr(int y = 0) const;    template <typename _Tp> operator PtrStepSz<_Tp>() const;    template <typename _Tp> operator PtrStep<_Tp>() const;    //! returns a new GpuMat header for the specified row    GpuMat row(int y) const;    //! returns a new GpuMat header for the specified column    GpuMat col(int x) const;    //! ... for the specified row span    GpuMat rowRange(int startrow, int endrow) const;    GpuMat rowRange(Range r) const;    //! ... for the specified column span    GpuMat colRange(int startcol, int endcol) const;    GpuMat colRange(Range r) const;    //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)    GpuMat operator ()(Range rowRange, Range colRange) const;    GpuMat operator ()(Rect roi) const;    //! creates alternative GpuMat header for the same data, with different    //! number of channels and/or different number of rows    GpuMat reshape(int cn, int rows = 0) const;    //! locates GpuMat header within a parent GpuMat    void locateROI(Size& wholeSize, Point& ofs) const;    //! moves/resizes the current GpuMat ROI inside the parent GpuMat    GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);    //! returns true iff the GpuMat data is continuous    //! (i.e. when there are no gaps between successive rows)    bool isContinuous() const;    //! returns element size in bytes    size_t elemSize() const;    //! returns the size of element channel in bytes    size_t elemSize1() const;    //! returns element type    int type() const;    //! returns element type    int depth() const;    //! returns number of channels    int channels() const;    //! returns step/elemSize1()    size_t step1() const;    //! returns GpuMat size : width == number of columns, height == number of rows    Size size() const;    //! returns true if GpuMat data is NULL    bool empty() const;    /*! includes several bit-fields:    - the magic signature    - continuity flag    - depth    - number of channels    */    int flags;    //! the number of rows and columns    int rows, cols;    //! a distance between successive rows in bytes; includes the gap if any    size_t step;    //! pointer to the data    uchar* data;    //! pointer to the reference counter;    //! when GpuMat points to user-allocated data, the pointer is NULL    int* refcount;    //! helper fields used in locateROI and adjustROI    uchar* datastart;    const uchar* dataend;    //! allocator    Allocator* allocator;};/** @brief Creates a continuous matrix.@param rows Row count.@param cols Column count.@param type Type of the matrix.@param arr Destination matrix. This parameter changes only if it has a proper type and area (\f$\texttt{rows} \times \texttt{cols}\f$ ).Matrix is called continuous if its elements are stored continuously, that is, without gaps at theend of each row. */CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.@param rows Minimum desired number of rows.@param cols Minimum desired number of columns.@param type Desired matrix type.@param arr Destination matrix.The function does not reallocate memory if the matrix has proper attributes already. */CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);/** @brief BufferPool for use with CUDA streams * BufferPool utilizes cuda::Stream's allocator to create new buffers. It is * particularly useful when BufferPoolUsage is set to true, or a custom * allocator is specified for the cuda::Stream, and you want to implement your * own stream based functions utilizing the same underlying GPU memory * management. */class CV_EXPORTS BufferPool{public:    //! Gets the BufferPool for the given stream.    explicit BufferPool(Stream& stream);    //! Allocates a new GpuMat of given size and type.    GpuMat getBuffer(int rows, int cols, int type);    //! Allocates a new GpuMat of given size and type.    GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }    //! Returns the allocator associated with the stream.    Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }private:    Ptr<GpuMat::Allocator> allocator_;};//! BufferPool management (must be called before Stream creation)CV_EXPORTS void setBufferPoolUsage(bool on);CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);//===================================================================================// HostMem//===================================================================================/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.Its interface is also Mat-like but with additional memory type parameters.-   **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous    uploading/downloading data from/to GPU.-   **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU    address space, if supported.-   **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are    used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache    utilization.@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2Pinned Memory APIs* document or *CUDA C Programming Guide*. */class CV_EXPORTS HostMem{public:    enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };    static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);    explicit HostMem(AllocType alloc_type = PAGE_LOCKED);    HostMem(const HostMem& m);    HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);    HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);    //! creates from host memory with coping data    explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);    ~HostMem();    HostMem& operator =(const HostMem& m);    //! swaps with other smart pointer    void swap(HostMem& b);    //! returns deep copy of the matrix, i.e. the data is copied    HostMem clone() const;    //! allocates new matrix data unless the matrix already has specified size and type.    void create(int rows, int cols, int type);    void create(Size size, int type);    //! creates alternative HostMem header for the same data, with different    //! number of channels and/or different number of rows    HostMem reshape(int cn, int rows = 0) const;    //! decrements reference counter and released memory if needed.    void release();    //! returns matrix header with disabled reference counting for HostMem data.    Mat createMatHeader() const;    /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting    for it.    This can be done only if memory was allocated with the SHARED flag and if it is supported by the    hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which    eliminates an extra copy.     */    GpuMat createGpuMatHeader() const;    // Please see cv::Mat for descriptions    bool isContinuous() const;    size_t elemSize() const;    size_t elemSize1() const;    int type() const;    int depth() const;    int channels() const;    size_t step1() const;    Size size() const;    bool empty() const;    // Please see cv::Mat for descriptions    int flags;    int rows, cols;    size_t step;    uchar* data;    int* refcount;    uchar* datastart;    const uchar* dataend;    AllocType alloc_type;};/** @brief Page-locks the memory of matrix and maps it for the device(s).@param m Input matrix. */CV_EXPORTS void registerPageLocked(Mat& m);/** @brief Unmaps the memory of matrix and makes it pageable again.@param m Input matrix. */CV_EXPORTS void unregisterPageLocked(Mat& m);//===================================================================================// Stream//===================================================================================/** @brief This class encapsulates a queue of asynchronous calls.@note Currently, you may face problems if an operation is enqueued twice with different data. Somefunctions use the constant GPU memory, and next call may update the memory before the previous onehas been finished. But calling different operations asynchronously is safe because each operationhas its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold arealso safe.@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads.@codevoid thread1(){    cv::cuda::Stream stream1;    cv::cuda::func1(..., stream1);}void thread2(){    cv::cuda::Stream stream2;    cv::cuda::func2(..., stream2);}@endcode@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.In multi-threading environment the stream objects must be passed explicitly (see previous note). */class CV_EXPORTS Stream{    typedef void (Stream::*bool_type)() const;    void this_type_does_not_support_comparisons() const {}public:    typedef void (*StreamCallback)(int status, void* userData);    //! creates a new asynchronous stream    Stream();    //! creates a new asynchronous stream with custom allocator    Stream(const Ptr<GpuMat::Allocator>& allocator);    /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.    */    bool queryIfComplete() const;    /** @brief Blocks the current CPU thread until all operations in the stream are complete.    */    void waitForCompletion();    /** @brief Makes a compute stream wait on an event.    */    void waitEvent(const Event& event);    /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have    completed.    @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization    that may depend on outstanding device work or other callbacks that are not mandated to run earlier.    Callbacks without a mandated order (in independent streams) execute in undefined order and may be    serialized.     */    void enqueueHostCallback(StreamCallback callback, void* userData);    //! return Stream object for default CUDA stream    static Stream& Null();    //! returns true if stream object is not default (!= 0)    operator bool_type() const;    class Impl;private:    Ptr<Impl> impl_;    Stream(const Ptr<Impl>& impl);    friend struct StreamAccessor;    friend class BufferPool;    friend class DefaultDeviceInitializer;};class CV_EXPORTS Event{public:    enum CreateFlags    {        DEFAULT        = 0x00,  /**< Default event flag */        BLOCKING_SYNC  = 0x01,  /**< Event uses blocking synchronization */        DISABLE_TIMING = 0x02,  /**< Event will not record timing data */        INTERPROCESS   = 0x04   /**< Event is suitable for interprocess use. DisableTiming must be set */    };    explicit Event(CreateFlags flags = DEFAULT);    //! records an event    void record(Stream& stream = Stream::Null());    //! queries an event's status    bool queryIfComplete() const;    //! waits for an event to complete    void waitForCompletion();    //! computes the elapsed time between events    static float elapsedTime(const Event& start, const Event& end);    class Impl;private:    Ptr<Impl> impl_;    Event(const Ptr<Impl>& impl);    friend struct EventAccessor;};//! @} cudacore_struct//===================================================================================// Initialization & Info//===================================================================================//! @addtogroup cudacore_init//! @{/** @brief Returns the number of installed CUDA-enabled devices.Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,this function returns 0. If the CUDA driver is not installed, or is incompatible, this functionreturns -1. */CV_EXPORTS int getCudaEnabledDeviceCount();/** @brief Sets a device and initializes it for the current thread.@param device System index of a CUDA device starting with 0.If the call of this function is omitted, a default device is initialized at the fist CUDA usage. */CV_EXPORTS void setDevice(int device);/** @brief Returns the current device index set by cuda::setDevice or initialized by default. */CV_EXPORTS int getDevice();/** @brief Explicitly destroys and cleans up all resources associated with the current device in the currentprocess.Any subsequent API call to this device will reinitialize the device. */CV_EXPORTS void resetDevice();/** @brief Enumeration providing CUDA computing features. */enum FeatureSet{    FEATURE_SET_COMPUTE_10 = 10,    FEATURE_SET_COMPUTE_11 = 11,    FEATURE_SET_COMPUTE_12 = 12,    FEATURE_SET_COMPUTE_13 = 13,    FEATURE_SET_COMPUTE_20 = 20,    FEATURE_SET_COMPUTE_21 = 21,    FEATURE_SET_COMPUTE_30 = 30,    FEATURE_SET_COMPUTE_32 = 32,    FEATURE_SET_COMPUTE_35 = 35,    FEATURE_SET_COMPUTE_50 = 50,    GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,    SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,    NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,    WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,    DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35};//! checks whether current device supports the given featureCV_EXPORTS bool deviceSupports(FeatureSet feature_set);/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module wasbuilt for.According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific computecapability can always be compiled to binary code of greater or equal compute capability". */class CV_EXPORTS TargetArchs{public:    /** @brief The following method checks whether the module was built with the support of the given feature:    @param feature_set Features to be checked. See :ocvcuda::FeatureSet.     */    static bool builtWith(FeatureSet feature_set);    /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA    code for the given architecture(s):    @param major Major compute capability version.    @param minor Minor compute capability version.     */    static bool has(int major, int minor);    static bool hasPtx(int major, int minor);    static bool hasBin(int major, int minor);    static bool hasEqualOrLessPtx(int major, int minor);    static bool hasEqualOrGreater(int major, int minor);    static bool hasEqualOrGreaterPtx(int major, int minor);    static bool hasEqualOrGreaterBin(int major, int minor);};/** @brief Class providing functionality for querying the specified GPU properties. */class CV_EXPORTS DeviceInfo{public:    //! creates DeviceInfo object for the current GPU    DeviceInfo();    /** @brief The constructors.    @param device_id System index of the CUDA device starting with 0.    Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it    constructs an object for the current device.     */    DeviceInfo(int device_id);    /** @brief Returns system index of the CUDA device starting with 0.    */    int deviceID() const;    //! ASCII string identifying device    const char* name() const;    //! global memory available on device in bytes    size_t totalGlobalMem() const;    //! shared memory available per block in bytes    size_t sharedMemPerBlock() const;    //! 32-bit registers available per block    int regsPerBlock() const;    //! warp size in threads    int warpSize() const;    //! maximum pitch in bytes allowed by memory copies    size_t memPitch() const;    //! maximum number of threads per block    int maxThreadsPerBlock() const;    //! maximum size of each dimension of a block    Vec3i maxThreadsDim() const;    //! maximum size of each dimension of a grid    Vec3i maxGridSize() const;    //! clock frequency in kilohertz    int clockRate() const;    //! constant memory available on device in bytes    size_t totalConstMem() const;    //! major compute capability    int majorVersion() const;    //! minor compute capability    int minorVersion() const;    //! alignment requirement for textures    size_t textureAlignment() const;    //! pitch alignment requirement for texture references bound to pitched memory    size_t texturePitchAlignment() const;    //! number of multiprocessors on device    int multiProcessorCount() const;    //! specified whether there is a run time limit on kernels    bool kernelExecTimeoutEnabled() const;    //! device is integrated as opposed to discrete    bool integrated() const;    //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer    bool canMapHostMemory() const;    enum ComputeMode    {        ComputeModeDefault,         /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */        ComputeModeExclusive,       /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */        ComputeModeProhibited,      /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */        ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */    };    //! compute mode    ComputeMode computeMode() const;    //! maximum 1D texture size    int maxTexture1D() const;    //! maximum 1D mipmapped texture size    int maxTexture1DMipmap() const;    //! maximum size for 1D textures bound to linear memory    int maxTexture1DLinear() const;    //! maximum 2D texture dimensions    Vec2i maxTexture2D() const;    //! maximum 2D mipmapped texture dimensions    Vec2i maxTexture2DMipmap() const;    //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory    Vec3i maxTexture2DLinear() const;    //! maximum 2D texture dimensions if texture gather operations have to be performed    Vec2i maxTexture2DGather() const;    //! maximum 3D texture dimensions    Vec3i maxTexture3D() const;    //! maximum Cubemap texture dimensions    int maxTextureCubemap() const;    //! maximum 1D layered texture dimensions    Vec2i maxTexture1DLayered() const;    //! maximum 2D layered texture dimensions    Vec3i maxTexture2DLayered() const;    //! maximum Cubemap layered texture dimensions    Vec2i maxTextureCubemapLayered() const;    //! maximum 1D surface size    int maxSurface1D() const;    //! maximum 2D surface dimensions    Vec2i maxSurface2D() const;    //! maximum 3D surface dimensions    Vec3i maxSurface3D() const;    //! maximum 1D layered surface dimensions    Vec2i maxSurface1DLayered() const;    //! maximum 2D layered surface dimensions    Vec3i maxSurface2DLayered() const;    //! maximum Cubemap surface dimensions    int maxSurfaceCubemap() const;    //! maximum Cubemap layered surface dimensions    Vec2i maxSurfaceCubemapLayered() const;    //! alignment requirements for surfaces    size_t surfaceAlignment() const;    //! device can possibly execute multiple kernels concurrently    bool concurrentKernels() const;    //! device has ECC support enabled    bool ECCEnabled() const;    //! PCI bus ID of the device    int pciBusID() const;    //! PCI device ID of the device    int pciDeviceID() const;    //! PCI domain ID of the device    int pciDomainID() const;    //! true if device is a Tesla device using TCC driver, false otherwise    bool tccDriver() const;    //! number of asynchronous engines    int asyncEngineCount() const;    //! device shares a unified address space with the host    bool unifiedAddressing() const;    //! peak memory clock frequency in kilohertz    int memoryClockRate() const;    //! global memory bus width in bits    int memoryBusWidth() const;    //! size of L2 cache in bytes    int l2CacheSize() const;    //! maximum resident threads per multiprocessor    int maxThreadsPerMultiProcessor() const;    //! gets free and total device memory    void queryMemory(size_t& totalMemory, size_t& freeMemory) const;    size_t freeMemory() const;    size_t totalMemory() const;    /** @brief Provides information on CUDA feature support.    @param feature_set Features to be checked. See cuda::FeatureSet.    This function returns true if the device has the specified CUDA feature. Otherwise, it returns false     */    bool supports(FeatureSet feature_set) const;    /** @brief Checks the CUDA module and device compatibility.    This function returns true if the CUDA module can be run on the specified device. Otherwise, it    returns false .     */    bool isCompatible() const;private:    int device_id_;};CV_EXPORTS void printCudaDeviceInfo(int device);CV_EXPORTS void printShortCudaDeviceInfo(int device);/** @brief Converts an array to half precision floating number.@param _src input array.@param _dst output array.@param stream Stream for the asynchronous version.@sa convertFp16*/CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null());//! @} cudacore_init}} // namespace cv { namespace cuda {#include "opencv2/core/cuda.inl.hpp"#endif /* OPENCV_CORE_CUDA_HPP */
 |