| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                           License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009, Willow Garage Inc., all rights reserved.// Copyright (C) 2013, OpenCV Foundation, all rights reserved.// Copyright (C) 2015, Itseez Inc., all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef OPENCV_CORE_OPERATIONS_HPP#define OPENCV_CORE_OPERATIONS_HPP#ifndef __cplusplus#  error operations.hpp header must be compiled as C++#endif#include <cstdio>//! @cond IGNOREDnamespace cv{////////////////////////////// Matx methods depending on core API /////////////////////////////namespace internal{template<typename _Tp, int m> struct Matx_FastInvOp{    bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const    {        Matx<_Tp, m, m> temp = a;        // assume that b is all 0's on input => make it a unity matrix        for( int i = 0; i < m; i++ )            b(i, i) = (_Tp)1;        if( method == DECOMP_CHOLESKY )            return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m);        return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0;    }};template<typename _Tp> struct Matx_FastInvOp<_Tp, 2>{    bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const    {        _Tp d = (_Tp)determinant(a);        if( d == 0 )            return false;        d = 1/d;        b(1,1) = a(0,0)*d;        b(0,0) = a(1,1)*d;        b(0,1) = -a(0,1)*d;        b(1,0) = -a(1,0)*d;        return true;    }};template<typename _Tp> struct Matx_FastInvOp<_Tp, 3>{    bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const    {        _Tp d = (_Tp)determinant(a);        if( d == 0 )            return false;        d = 1/d;        b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d;        b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d;        b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d;        b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d;        b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d;        b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d;        b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d;        b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d;        b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d;        return true;    }};template<typename _Tp, int m, int n> struct Matx_FastSolveOp{    bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b,                    Matx<_Tp, m, n>& x, int method) const    {        Matx<_Tp, m, m> temp = a;        x = b;        if( method == DECOMP_CHOLESKY )            return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n);        return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0;    }};template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1>{    bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b,                    Matx<_Tp, 2, 1>& x, int) const    {        _Tp d = (_Tp)determinant(a);        if( d == 0 )            return false;        d = 1/d;        x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d;        x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d;        return true;    }};template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 1>{    bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b,                    Matx<_Tp, 3, 1>& x, int) const    {        _Tp d = (_Tp)determinant(a);        if( d == 0 )            return false;        d = 1/d;        x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) -                a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) +                a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2)));        x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) -                b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) +                a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0)));        x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) -                a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) +                b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0)));        return true;    }};} // internaltemplate<typename _Tp, int m, int n> inlineMatx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b){    Matx<_Tp,m,n> M;    cv::randu(M, Scalar(a), Scalar(b));    return M;}template<typename _Tp, int m, int n> inlineMatx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b){    Matx<_Tp,m,n> M;    cv::randn(M, Scalar(a), Scalar(b));    return M;}template<typename _Tp, int m, int n> inlineMatx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const{    Matx<_Tp, n, m> b;    bool ok;    if( method == DECOMP_LU || method == DECOMP_CHOLESKY )        ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method);    else    {        Mat A(*this, false), B(b, false);        ok = (invert(A, B, method) != 0);    }    if( NULL != p_is_ok ) { *p_is_ok = ok; }    return ok ? b : Matx<_Tp, n, m>::zeros();}template<typename _Tp, int m, int n> template<int l> inlineMatx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const{    Matx<_Tp, n, l> x;    bool ok;    if( method == DECOMP_LU || method == DECOMP_CHOLESKY )        ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method);    else    {        Mat A(*this, false), B(rhs, false), X(x, false);        ok = cv::solve(A, B, X, method);    }    return ok ? x : Matx<_Tp, n, l>::zeros();}////////////////////////// Augmenting algebraic & logical operations //////////////////////////#define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \    static inline A& operator op (A& a, const B& b) { cvop; return a; }#define CV_MAT_AUG_OPERATOR(op, cvop, A, B)   \    CV_MAT_AUG_OPERATOR1(op, cvop, A, B)      \    CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)#define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B)                   \    template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \    template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)CV_MAT_AUG_OPERATOR  (+=, cv::add(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR  (+=, cv::add(a,b,a), Mat, Scalar)CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar)CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (-=, cv::subtract(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR  (-=, cv::subtract(a,b,a), Mat, Scalar)CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar)CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat)CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (*=, a.convertTo(a, -1, b), Mat, double)CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double)CV_MAT_AUG_OPERATOR  (/=, cv::divide(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double)CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double)CV_MAT_AUG_OPERATOR  (&=, cv::bitwise_and(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR  (&=, cv::bitwise_and(a,b,a), Mat, Scalar)CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar)CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (|=, cv::bitwise_or(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR  (|=, cv::bitwise_or(a,b,a), Mat, Scalar)CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar)CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>)CV_MAT_AUG_OPERATOR  (^=, cv::bitwise_xor(a,b,a), Mat, Mat)CV_MAT_AUG_OPERATOR  (^=, cv::bitwise_xor(a,b,a), Mat, Scalar)CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat)CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar)CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>)#undef CV_MAT_AUG_OPERATOR_T#undef CV_MAT_AUG_OPERATOR#undef CV_MAT_AUG_OPERATOR1///////////////////////////////////////////// SVD /////////////////////////////////////////////inline SVD::SVD() {}inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }inline void SVD::solveZ( InputArray m, OutputArray _dst ){    Mat mtx = m.getMat();    SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));    _dst.create(svd.vt.cols, 1, svd.vt.type());    Mat dst = _dst.getMat();    svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst);}template<typename _Tp, int m, int n, int nm> inline void    SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ){    CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");    Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false);    SVD::compute(_a, _w, _u, _vt);    CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]);}template<typename _Tp, int m, int n, int nm> inline voidSVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ){    CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");    Mat _a(a, false), _w(w, false);    SVD::compute(_a, _w);    CV_Assert(_w.data == (uchar*)&w.val[0]);}template<typename _Tp, int m, int n, int nm, int nb> inline voidSVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u,                const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs,                Matx<_Tp, n, nb>& dst ){    CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");    Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false);    SVD::backSubst(_w, _u, _vt, _rhs, _dst);    CV_Assert(_dst.data == (uchar*)&dst.val[0]);}/////////////////////////////////// Multiply-with-Carry RNG ///////////////////////////////////inline RNG::RNG()              { state = 0xffffffff; }inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; }inline RNG::operator uchar()    { return (uchar)next(); }inline RNG::operator schar()    { return (schar)next(); }inline RNG::operator ushort()   { return (ushort)next(); }inline RNG::operator short()    { return (short)next(); }inline RNG::operator int()      { return (int)next(); }inline RNG::operator unsigned() { return next(); }inline RNG::operator float()    { return next()*2.3283064365386962890625e-10f; }inline RNG::operator double()   { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; }inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); }inline unsigned RNG::operator ()()           { return next(); }inline int    RNG::uniform(int a, int b)       { return a == b ? a : (int)(next() % (b - a) + a); }inline float  RNG::uniform(float a, float b)   { return ((float)*this)*(b - a) + a; }inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; }inline bool RNG::operator ==(const RNG& other) const { return state == other.state; }inline unsigned RNG::next(){    state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32);    return (unsigned)state;}//! returns the next unifomly-distributed random number of the specified typetemplate<typename _Tp> static inline _Tp randu(){  return (_Tp)theRNG();}///////////////////////////////// Formatted string generation /////////////////////////////////CV_EXPORTS String format( const char* fmt, ... );///////////////////////////////// Formatted output of cv::Mat /////////////////////////////////static inlinePtr<Formatted> format(InputArray mtx, int fmt){    return Formatter::get(fmt)->format(mtx.getMat());}static inlineint print(Ptr<Formatted> fmtd, FILE* stream = stdout){    int written = 0;    fmtd->reset();    for(const char* str = fmtd->next(); str; str = fmtd->next())        written += fputs(str, stream);    return written;}static inlineint print(const Mat& mtx, FILE* stream = stdout){    return print(Formatter::get()->format(mtx), stream);}static inlineint print(const UMat& mtx, FILE* stream = stdout){    return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream);}template<typename _Tp> static inlineint print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout){    return print(Formatter::get()->format(Mat(vec)), stream);}template<typename _Tp> static inlineint print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout){    return print(Formatter::get()->format(Mat(vec)), stream);}template<typename _Tp, int m, int n> static inlineint print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout){    return print(Formatter::get()->format(cv::Mat(matx)), stream);}//! @endcond/****************************************************************************************\*                                  Auxiliary algorithms                                  *\****************************************************************************************//** @brief Splits an element set into equivalency classes.The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elementsinto one or more equivalency classes, as described in<http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number ofequivalency classes.@param _vec Set of elements stored as a vector.@param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] isa 0-based cluster index of `vec[i]`.@param predicate Equivalence predicate (pointer to a boolean function of two arguments or aninstance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). Thepredicate returns true when the elements are certainly in the same class, and returns false if theymay or may not be in the same class.@ingroup core_cluster*/template<typename _Tp, class _EqPredicate> intpartition( const std::vector<_Tp>& _vec, std::vector<int>& labels,          _EqPredicate predicate=_EqPredicate()){    int i, j, N = (int)_vec.size();    const _Tp* vec = &_vec[0];    const int PARENT=0;    const int RANK=1;    std::vector<int> _nodes(N*2);    int (*nodes)[2] = (int(*)[2])&_nodes[0];    // The first O(N) pass: create N single-vertex trees    for(i = 0; i < N; i++)    {        nodes[i][PARENT]=-1;        nodes[i][RANK] = 0;    }    // The main O(N^2) pass: merge connected components    for( i = 0; i < N; i++ )    {        int root = i;        // find root        while( nodes[root][PARENT] >= 0 )            root = nodes[root][PARENT];        for( j = 0; j < N; j++ )        {            if( i == j || !predicate(vec[i], vec[j]))                continue;            int root2 = j;            while( nodes[root2][PARENT] >= 0 )                root2 = nodes[root2][PARENT];            if( root2 != root )            {                // unite both trees                int rank = nodes[root][RANK], rank2 = nodes[root2][RANK];                if( rank > rank2 )                    nodes[root2][PARENT] = root;                else                {                    nodes[root][PARENT] = root2;                    nodes[root2][RANK] += rank == rank2;                    root = root2;                }                CV_Assert( nodes[root][PARENT] < 0 );                int k = j, parent;                // compress the path from node2 to root                while( (parent = nodes[k][PARENT]) >= 0 )                {                    nodes[k][PARENT] = root;                    k = parent;                }                // compress the path from node to root                k = i;                while( (parent = nodes[k][PARENT]) >= 0 )                {                    nodes[k][PARENT] = root;                    k = parent;                }            }        }    }    // Final O(N) pass: enumerate classes    labels.resize(N);    int nclasses = 0;    for( i = 0; i < N; i++ )    {        int root = i;        while( nodes[root][PARENT] >= 0 )            root = nodes[root][PARENT];        // re-use the rank as the class label        if( nodes[root][RANK] >= 0 )            nodes[root][RANK] = ~nclasses++;        labels[i] = ~nodes[root][RANK];    }    return nclasses;}} // cv#endif
 |