| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                           License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2013, OpenCV Foundation, all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef OPENCV_DNN_DNN_HPP#define OPENCV_DNN_DNN_HPP#include <vector>#include <opencv2/core.hpp>#if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v2 {#define CV__DNN_EXPERIMENTAL_NS_END }namespace cv { namespace dnn { namespace experimental_dnn_v2 { } using namespace experimental_dnn_v2; }}#else#define CV__DNN_EXPERIMENTAL_NS_BEGIN#define CV__DNN_EXPERIMENTAL_NS_END#endif#include <opencv2/dnn/dict.hpp>namespace cv {namespace dnn {CV__DNN_EXPERIMENTAL_NS_BEGIN//! @addtogroup dnn//! @{    typedef std::vector<int> MatShape;    /**     * @brief Enum of computation backends supported by layers.     */    enum Backend    {        DNN_BACKEND_DEFAULT,        DNN_BACKEND_HALIDE    };    /**     * @brief Enum of target devices for computations.     */    enum Target    {        DNN_TARGET_CPU,        DNN_TARGET_OPENCL    };    /** @brief This class provides all data needed to initialize layer.     *     * It includes dictionary with scalar params (which can be readed by using Dict interface),     * blob params #blobs and optional meta information: #name and #type of layer instance.    */    class CV_EXPORTS LayerParams : public Dict    {    public:        //TODO: Add ability to name blob params        std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.        String name; //!< Name of the layer instance (optional, can be used internal purposes).        String type; //!< Type name which was used for creating layer by layer factory (optional).    };   /**    * @brief Derivatives of this class encapsulates functions of certain backends.    */    class BackendNode    {    public:        BackendNode(int backendId);        virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.        int backendId; //!< Backend identifier.    };    /**     * @brief Derivatives of this class wraps cv::Mat for different backends and targets.     */    class BackendWrapper    {    public:        BackendWrapper(int backendId, int targetId);        /**         * @brief Wrap cv::Mat for specific backend and target.         * @param[in] targetId Target identifier.         * @param[in] m cv::Mat for wrapping.         *         * Make CPU->GPU data transfer if it's require for the target.         */        BackendWrapper(int targetId, const cv::Mat& m);        /**         * @brief Make wrapper for reused cv::Mat.         * @param[in] base Wrapper of cv::Mat that will be reused.         * @param[in] shape Specific shape.         *         * Initialize wrapper from another one. It'll wrap the same host CPU         * memory and mustn't allocate memory on device(i.e. GPU). It might         * has different shape. Use in case of CPU memory reusing for reuse         * associented memory on device too.         */        BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);        virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.        /**         * @brief Transfer data to CPU host memory.         */        virtual void copyToHost() = 0;        /**         * @brief Indicate that an actual data is on CPU.         */        virtual void setHostDirty() = 0;        int backendId;  //!< Backend identifier.        int targetId;   //!< Target identifier.    };    class CV_EXPORTS ActivationLayer;    class CV_EXPORTS BatchNormLayer;    class CV_EXPORTS ScaleLayer;    /** @brief This interface class allows to build new Layers - are building blocks of networks.     *     * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.     * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.     */    class CV_EXPORTS_W Layer : public Algorithm    {    public:        //! List of learned parameters must be stored here to allow read them by using Net::getParam().        CV_PROP_RW std::vector<Mat> blobs;        /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.         *  @param[in]  input  vector of already allocated input blobs         *  @param[out] output vector of already allocated output blobs         *         * If this method is called after network has allocated all memory for input and output blobs         * and before inferencing.         */        virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);        /** @brief Given the @p input blobs, computes the output @p blobs.         *  @param[in]  input  the input blobs.         *  @param[out] output allocated output blobs, which will store results of the computation.         *  @param[out] internals allocated internal blobs         */        virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals) = 0;        /** @brief @overload */        CV_WRAP void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);        /** @brief @overload */        CV_WRAP std::vector<Mat> finalize(const std::vector<Mat> &inputs);        /** @brief @overload */        CV_WRAP void forward(const std::vector<Mat> &inputs, CV_IN_OUT std::vector<Mat> &outputs,                             CV_IN_OUT std::vector<Mat> &internals);        /** @brief Allocates layer and computes output. */        CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,                         CV_IN_OUT std::vector<Mat> &internals);        /** @brief Returns index of input blob into the input array.         *  @param inputName label of input blob         *         * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.         * This method maps label of input blob to its index into input vector.         */        virtual int inputNameToIndex(String inputName);        /** @brief Returns index of output blob in output array.         *  @see inputNameToIndex()         */        virtual int outputNameToIndex(String outputName);        /**         * @brief Ask layer if it support specific backend for doing computations.         * @param[in] backendId computation backend identifier.         * @see Backend         */        virtual bool supportBackend(int backendId);        /**         * @brief Returns Halide backend node.         * @param[in] inputs Input Halide buffers.         * @see BackendNode, BackendWrapper         *         * Input buffers should be exactly the same that will be used in forward invocations.         * Despite we can use Halide::ImageParam based on input shape only,         * it helps prevent some memory management issues (if something wrong,         * Halide tests will be failed).         */        virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);       /**        * @brief Automatic Halide scheduling based on layer hyper-parameters.        * @param[in] node Backend node with Halide functions.        * @param[in] inputs Blobs that will be used in forward invocations.        * @param[in] outputs Blobs that will be used in forward invocations.        * @param[in] targetId Target identifier        * @see BackendNode, Target        *        * Layer don't use own Halide::Func members because we can have applied        * layers fusing. In this way the fused function should be scheduled.        */        virtual void applyHalideScheduler(Ptr<BackendNode>& node,                                          const std::vector<Mat*> &inputs,                                          const std::vector<Mat> &outputs,                                          int targetId) const;        /**         * @brief Implement layers fusing.         * @param[in] node Backend node of bottom layer.         * @see BackendNode         *         * Actual for graph-based backends. If layer attached successfully,         * returns non-empty cv::Ptr to node of the same backend.         * Fuse only over the last function.         */        virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);        /**         * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.         * @param[in] layer The subsequent activation layer.         *         * Returns true if the activation layer has been attached successfully.         */        virtual bool setActivation(const Ptr<ActivationLayer>& layer);        /**         * @brief Tries to attach to the layer the subsequent batch normalization layer, i.e. do the layer fusion in a partial case.         * @param[in] layer The subsequent batch normalization layer.         *         * Returns true if the batch normalization layer has been attached successfully.         */        virtual bool setBatchNorm(const Ptr<BatchNormLayer>& layer);        /**         * @brief Tries to attach to the layer the subsequent scaling layer, i.e. do the layer fusion in a partial case.         * @param[in] layer The subsequent scaling layer.         *         * Returns true if the scaling layer has been attached successfully.         */        virtual bool setScale(const Ptr<ScaleLayer>& layer);        /**         * @brief "Deattaches" all the layers, attached to particular layer.         */        virtual void unsetAttached();        virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,                                     const int requiredOutputs,                                     std::vector<MatShape> &outputs,                                     std::vector<MatShape> &internals) const;        virtual int64 getFLOPS(const std::vector<MatShape> &inputs,                               const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;}        CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.        CV_PROP String type; //!< Type name which was used for creating layer by layer factory.        CV_PROP int preferableTarget; //!< prefer target for layer forwarding        Layer();        explicit Layer(const LayerParams ¶ms);      //!< Initializes only #name, #type and #blobs fields.        void setParamsFrom(const LayerParams ¶ms);  //!< Initializes only #name, #type and #blobs fields.        virtual ~Layer();    };    /** @brief This class allows to create and manipulate comprehensive artificial neural networks.     *     * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,     * and edges specify relationships between layers inputs and outputs.     *     * Each network layer has unique integer id and unique string name inside its network.     * LayerId can store either layer name or layer id.     *     * This class supports reference counting of its instances, i. e. copies point to the same instance.     */    class CV_EXPORTS_W_SIMPLE Net    {    public:        CV_WRAP Net();  //!< Default constructor.        CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.        /** Returns true if there are no layers in the network. */        CV_WRAP bool empty() const;        /** @brief Adds new layer to the net.         *  @param name   unique name of the adding layer.         *  @param type   typename of the adding layer (type must be registered in LayerRegister).         *  @param params parameters which will be used to initialize the creating layer.         *  @returns unique identifier of created layer, or -1 if a failure will happen.         */        int addLayer(const String &name, const String &type, LayerParams ¶ms);        /** @brief Adds new layer and connects its first input to the first output of previously added layer.         *  @see addLayer()         */        int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms);        /** @brief Converts string name of the layer to the integer identifier.         *  @returns id of the layer, or -1 if the layer wasn't found.         */        CV_WRAP int getLayerId(const String &layer);        CV_WRAP std::vector<String> getLayerNames() const;        /** @brief Container for strings and integers. */        typedef DictValue LayerId;        /** @brief Returns pointer to layer with specified id or name which the network use. */        CV_WRAP Ptr<Layer> getLayer(LayerId layerId);        /** @brief Returns pointers to input layers of specific layer. */        std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP        /** @brief Delete layer for the network (not implemented yet) */        CV_WRAP void deleteLayer(LayerId layer);        /** @brief Connects output of the first layer to input of the second layer.         *  @param outPin descriptor of the first layer output.         *  @param inpPin descriptor of the second layer input.         *         * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:         * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.         *   If this part is empty then the network input pseudo layer will be used;         * - the second optional part of the template <DFN>input_number</DFN>         *   is either number of the layer input, either label one.         *   If this part is omitted then the first layer input will be used.         *         *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()         */        CV_WRAP void connect(String outPin, String inpPin);        /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.         *  @param outLayerId identifier of the first layer         *  @param inpLayerId identifier of the second layer         *  @param outNum number of the first layer output         *  @param inpNum number of the second layer input         */        void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);        /** @brief Sets outputs names of the network input pseudo layer.         *         * Each net always has special own the network input pseudo layer with id=0.         * This layer stores the user blobs only and don't make any computations.         * In fact, this layer provides the only way to pass user data into the network.         * As any other layer, this layer can label its outputs and this function provides an easy way to do this.         */        CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);        /** @brief Runs forward pass to compute output of layer with name @p outputName.         *  @param outputName name for layer which output is needed to get         *  @return blob for first output of specified layer.         *  @details By default runs forward pass for the whole network.         */        CV_WRAP Mat forward(const String& outputName = String());        /** @brief Runs forward pass to compute output of layer with name @p outputName.         *  @param outputBlobs contains all output blobs for specified layer.         *  @param outputName name for layer which output is needed to get         *  @details If @p outputName is empty, runs forward pass for the whole network.         */        CV_WRAP void forward(std::vector<Mat>& outputBlobs, const String& outputName = String());        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.         *  @param outputBlobs contains blobs for first outputs of specified layers.         *  @param outBlobNames names for layers which outputs are needed to get         */        CV_WRAP void forward(std::vector<Mat>& outputBlobs,                             const std::vector<String>& outBlobNames);        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.         *  @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.         *  @param outBlobNames names for layers which outputs are needed to get         */        CV_WRAP void forward(std::vector<std::vector<Mat> >& outputBlobs,                             const std::vector<String>& outBlobNames);        //TODO:        /** @brief Optimized forward.         *  @warning Not implemented yet.         *  @details Makes forward only those layers which weren't changed after previous forward().         */        void forwardOpt(LayerId toLayer);        /** @overload */        void forwardOpt(const std::vector<LayerId> &toLayers);        /**         * @brief Compile Halide layers.         * @param[in] scheduler Path to YAML file with scheduling directives.         * @see setPreferableBackend         *         * Schedule layers that support Halide backend. Then compile them for         * specific target. For layers that not represented in scheduling file         * or if no manual scheduling used at all, automatic scheduling will be applied.         */        CV_WRAP void setHalideScheduler(const String& scheduler);        /**         * @brief Ask network to use specific computation backend where it supported.         * @param[in] backendId backend identifier.         * @see Backend         */        CV_WRAP void setPreferableBackend(int backendId);        /**         * @brief Ask network to make computations on specific target device.         * @param[in] targetId target identifier.         * @see Target         */        CV_WRAP void setPreferableTarget(int targetId);        /** @brief Sets the new value for the layer output blob         *  @param name descriptor of the updating layer output blob.         *  @param blob new blob.         *  @see connect(String, String) to know format of the descriptor.         *  @note If updating blob is not empty then @p blob must have the same shape,         *  because network reshaping is not implemented yet.         */        CV_WRAP void setInput(const Mat &blob, const String& name = "");        /** @brief Sets the new value for the learned param of the layer.         *  @param layer name or id of the layer.         *  @param numParam index of the layer parameter in the Layer::blobs array.         *  @param blob the new value.         *  @see Layer::blobs         *  @note If shape of the new blob differs from the previous shape,         *  then the following forward pass may fail.        */        CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);        /** @brief Returns parameter blob of the layer.         *  @param layer name or id of the layer.         *  @param numParam index of the layer parameter in the Layer::blobs array.         *  @see Layer::blobs         */        CV_WRAP Mat getParam(LayerId layer, int numParam = 0);        /** @brief Returns indexes of layers with unconnected outputs.         */        CV_WRAP std::vector<int> getUnconnectedOutLayers() const;        /** @brief Returns input and output shapes for all layers in loaded model;         *  preliminary inferencing isn't necessary.         *  @param netInputShapes shapes for all input blobs in net input layer.         *  @param layersIds output parameter for layer IDs.         *  @param inLayersShapes output parameter for input layers shapes;         * order is the same as in layersIds         *  @param outLayersShapes output parameter for output layers shapes;         * order is the same as in layersIds         */        CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,                                     CV_OUT std::vector<int>& layersIds,                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;        /** @overload */        CV_WRAP void getLayersShapes(const MatShape& netInputShape,                                     CV_OUT std::vector<int>& layersIds,                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;        /** @brief Returns input and output shapes for layer with specified         * id in loaded model; preliminary inferencing isn't necessary.         *  @param netInputShape shape input blob in net input layer.         *  @param layerId id for layer.         *  @param inLayerShapes output parameter for input layers shapes;         * order is the same as in layersIds         *  @param outLayerShapes output parameter for output layers shapes;         * order is the same as in layersIds         */        void getLayerShapes(const MatShape& netInputShape,                                    const int layerId,                                    CV_OUT std::vector<MatShape>& inLayerShapes,                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP        /** @overload */        void getLayerShapes(const std::vector<MatShape>& netInputShapes,                                    const int layerId,                                    CV_OUT std::vector<MatShape>& inLayerShapes,                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP        /** @brief Computes FLOP for whole loaded model with specified input shapes.         * @param netInputShapes vector of shapes for all net inputs.         * @returns computed FLOP.         */        CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;        /** @overload */        CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;        /** @overload */        CV_WRAP int64 getFLOPS(const int layerId,                               const std::vector<MatShape>& netInputShapes) const;        /** @overload */        CV_WRAP int64 getFLOPS(const int layerId,                               const MatShape& netInputShape) const;        /** @brief Returns list of types for layer used in model.         * @param layersTypes output parameter for returning types.         */        CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;        /** @brief Returns count of layers of specified type.         * @param layerType type.         * @returns count of layers         */        CV_WRAP int getLayersCount(const String& layerType) const;        /** @brief Computes bytes number which are requered to store         * all weights and intermediate blobs for model.         * @param netInputShapes vector of shapes for all net inputs.         * @param weights output parameter to store resulting bytes for weights.         * @param blobs output parameter to store resulting bytes for intermediate blobs.         */        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP        /** @overload */        CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;        /** @overload */        CV_WRAP void getMemoryConsumption(const int layerId,                                          const std::vector<MatShape>& netInputShapes,                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;        /** @overload */        CV_WRAP void getMemoryConsumption(const int layerId,                                          const MatShape& netInputShape,                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;        /** @brief Computes bytes number which are requered to store         * all weights and intermediate blobs for each layer.         * @param netInputShapes vector of shapes for all net inputs.         * @param layerIds output vector to save layer IDs.         * @param weights output parameter to store resulting bytes for weights.         * @param blobs output parameter to store resulting bytes for intermediate blobs.         */        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,                                          CV_OUT std::vector<int>& layerIds,                                          CV_OUT std::vector<size_t>& weights,                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP        /** @overload */        void getMemoryConsumption(const MatShape& netInputShape,                                          CV_OUT std::vector<int>& layerIds,                                          CV_OUT std::vector<size_t>& weights,                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP        /** @brief Enables or disables layer fusion in the network.         * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.         */        CV_WRAP void enableFusion(bool fusion);        /** @brief Returns overall time for inference and timings (in ticks) for layers.         * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,         * in this case zero ticks count will be return for that skipped layers.         * @param timings vector for tick timings for all layers.         * @return overall ticks for model inference.         */        CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);    private:        struct Impl;        Ptr<Impl> impl;    };    /**     * @deprecated Deprecated as external interface. Will be for internal needs only.     * @brief Small interface class for loading trained serialized models of different dnn-frameworks. */    class CV_EXPORTS_W Importer : public Algorithm    {    public:        /** @brief Adds loaded layers into the @p net and sets connections between them. */        CV_DEPRECATED CV_WRAP virtual void populateNet(Net net) = 0;        virtual ~Importer();    };    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.    *  @param cfgFile      path to the .cfg file with text description of the network architecture.    *  @param darknetModel path to the .weights file with learned network.    *  @returns Network object that ready to do forward, throw an exception in failure cases.    * @details This is shortcut consisting from DarknetImporter and Net::populateNet calls.    */    CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());    /**     *  @deprecated Use @ref readNetFromCaffe instead.     *  @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.     *  @param prototxt   path to the .prototxt file with text description of the network architecture.     *  @param caffeModel path to the .caffemodel file with learned network.     *  @returns Pointer to the created importer, NULL in failure cases.     */    CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());    /** @brief Reads a network model stored in Caffe model files.      * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls.      */    CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());    /** @brief Reads a network model stored in Tensorflow model file.      * @details This is shortcut consisting from createTensorflowImporter and Net::populateNet calls.      */    CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());    /** @brief Reads a network model stored in Torch model file.      * @details This is shortcut consisting from createTorchImporter and Net::populateNet calls.      */    CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true);    /**     *  @deprecated Use @ref readNetFromTensorflow instead.     *  @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.     *  @param model   path to the .pb file with binary protobuf description of the network architecture.     *  @returns Pointer to the created importer, NULL in failure cases.     */    CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTensorflowImporter(const String &model);    /**     *  @deprecated Use @ref readNetFromTorch instead.     *  @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.     *  @param filename path to the file, dumped from Torch by using torch.save() function.     *  @param isBinary specifies whether the network was serialized in ascii mode or binary.     *  @returns Pointer to the created importer, NULL in failure cases.     *     *  @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its.     *     *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,     *  which has various bit-length on different systems.     *     * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object     * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.     *     * List of supported layers (i.e. object instances derived from Torch nn.Module class):     * - nn.Sequential     * - nn.Parallel     * - nn.Concat     * - nn.Linear     * - nn.SpatialConvolution     * - nn.SpatialMaxPooling, nn.SpatialAveragePooling     * - nn.ReLU, nn.TanH, nn.Sigmoid     * - nn.Reshape     * - nn.SoftMax, nn.LogSoftMax     *     * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.     */    CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);    /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.     *  @warning This function has the same limitations as createTorchImporter().     */    CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);    /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,     *  subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.     *  @param image input image (with 1- or 3-channels).     *  @param size spatial size for output image     *  @param mean scalar with mean values which are subtracted from channels. Values are intended     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.     *  @param scalefactor multiplier for @p image values.     *  @param swapRB flag which indicates that swap first and last channels     *  in 3-channel image is necessary.     *  @param crop flag which indicates whether image will be cropped after resize or not     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponing     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.     *  @returns 4-dimansional Mat with NCHW dimensions order.     */    CV_EXPORTS_W Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(),                                   const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);    /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and     *  crops @p images from center, subtract @p mean values, scales values by @p scalefactor,     *  swap Blue and Red channels.     *  @param images input images (all with 1- or 3-channels).     *  @param size spatial size for output image     *  @param mean scalar with mean values which are subtracted from channels. Values are intended     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.     *  @param scalefactor multiplier for @p images values.     *  @param swapRB flag which indicates that swap first and last channels     *  in 3-channel image is necessary.     *  @param crop flag which indicates whether image will be cropped after resize or not     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponing     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.     *  @returns 4-dimansional Mat with NCHW dimensions order.     */    CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0,                                    Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);    /** @brief Convert all weights of Caffe network to half precision floating point.     * @param src Path to origin model from Caffe framework contains single     *            precision floating point weights (usually has `.caffemodel` extension).     * @param dst Path to destination model with updated weights.     *     * @note Shrinked model has no origin float32 weights so it can't be used     *       in origin Caffe framework anymore. However the structure of data     *       is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.     *       So the resulting model may be used there.     */    CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);//! @}CV__DNN_EXPERIMENTAL_NS_END}}#include <opencv2/dnn/layer.hpp>#include <opencv2/dnn/dnn.inl.hpp>#endif  /* OPENCV_DNN_DNN_HPP */
 |