| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | /*M/////////////////////////////////////////////////////////////////////////////////////// // //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // //  By downloading, copying, installing or using the software you agree to this license. //  If you do not agree to this license, do not download, install, //  copy or use the software. // // //                           License Agreement //                For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // //   * Redistribution's of source code must retain the above copyright notice, //     this list of conditions and the following disclaimer. // //   * Redistribution's in binary form must reproduce the above copyright notice, //     this list of conditions and the following disclaimer in the documentation //     and/or other materials provided with the distribution. // //   * The name of the copyright holders may not be used to endorse or promote products //     derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/#ifndef __OPENCV_FEATURE_HPP__#define __OPENCV_FEATURE_HPP__#include "opencv2/core.hpp"#include "opencv2/imgproc.hpp"#include <iostream>#include <string>#include <time.h>/* * TODO This implementation is based on apps/traincascade/ * TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.) */namespace cv{//! @addtogroup tracking//! @{#define FEATURES "features"#define CC_FEATURES       FEATURES#define CC_FEATURE_PARAMS "featureParams"#define CC_MAX_CAT_COUNT  "maxCatCount"#define CC_FEATURE_SIZE   "featSize"#define CC_NUM_FEATURES   "numFeat"#define CC_ISINTEGRAL "isIntegral"#define CC_RECTS       "rects"#define CC_TILTED      "tilted"#define CC_RECT "rect"#define LBPF_NAME "lbpFeatureParams"#define HOGF_NAME "HOGFeatureParams"#define HFP_NAME "haarFeatureParams"#define CV_HAAR_FEATURE_MAX 3#define N_BINS 9#define N_CELLS 4#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step )                      \    /* (x, y) */                                                          \    (p0) = (rect).x + (step) * (rect).y;                                  \    /* (x + w, y) */                                                      \    (p1) = (rect).x + (rect).width + (step) * (rect).y;                   \    /* (x + w, y) */                                                      \    (p2) = (rect).x + (step) * ((rect).y + (rect).height);                \    /* (x + w, y + h) */                                                  \    (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step )                   \    /* (x, y) */                                                          \    (p0) = (rect).x + (step) * (rect).y;                                  \    /* (x - h, y + h) */                                                  \    (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\    /* (x + w, y + w) */                                                  \    (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width);  \    /* (x + w - h, y + w + h) */                                          \    (p3) = (rect).x + (rect).width - (rect).height                        \           + (step) * ((rect).y + (rect).width + (rect).height);float calcNormFactor( const Mat& sum, const Mat& sqSum );template<class Feature>void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap ){  fs << FEATURES << "[";  const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap;  for ( int fi = 0; fi < featureMap.cols; fi++ )    if( featureMap_( 0, fi ) >= 0 )    {      fs << "{";      features[fi].write( fs );      fs << "}";    }  fs << "]";}class CvParams{ public:  CvParams();  virtual ~CvParams()  {  }  // from|to file  virtual void write( FileStorage &fs ) const = 0;  virtual bool read( const FileNode &node ) = 0;  // from|to screen  virtual void printDefaults() const;  virtual void printAttrs() const;  virtual bool scanAttr( const std::string prmName, const std::string val );  std::string name;};class CvFeatureParams : public CvParams{ public:  enum  {    HAAR = 0,    LBP = 1,    HOG = 2  };  CvFeatureParams();  virtual void init( const CvFeatureParams& fp );  virtual void write( FileStorage &fs ) const;  virtual bool read( const FileNode &node );  static Ptr<CvFeatureParams> create( int featureType );  int maxCatCount;  // 0 in case of numerical features  int featSize;  // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features  int numFeatures;};class CvFeatureEvaluator{ public:  virtual ~CvFeatureEvaluator()  {  }  virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );  virtual void setImage( const Mat& img, uchar clsLabel, int idx );  virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0;  virtual float operator()( int featureIdx, int sampleIdx ) = 0;  static Ptr<CvFeatureEvaluator> create( int type );  int getNumFeatures() const  {    return numFeatures;  }  int getMaxCatCount() const  {    return featureParams->maxCatCount;  }  int getFeatureSize() const  {    return featureParams->featSize;  }  const Mat& getCls() const  {    return cls;  }  float getCls( int si ) const  {    return cls.at<float>( si, 0 );  } protected:  virtual void generateFeatures() = 0;  int npos, nneg;  int numFeatures;  Size winSize;  CvFeatureParams *featureParams;  Mat cls;};class CvHaarFeatureParams : public CvFeatureParams{ public:  CvHaarFeatureParams();  virtual void init( const CvFeatureParams& fp );  virtual void write( FileStorage &fs ) const;  virtual bool read( const FileNode &node );  virtual void printDefaults() const;  virtual void printAttrs() const;  virtual bool scanAttr( const std::string prm, const std::string val );  bool isIntegral;};class CvHaarEvaluator : public CvFeatureEvaluator{ public:  class FeatureHaar  {   public:    FeatureHaar( Size patchSize );    bool eval( const Mat& image, Rect ROI, float* result ) const;    int getNumAreas();    const std::vector<float>& getWeights() const;    const std::vector<Rect>& getAreas() const;    void write( FileStorage ) const    {    }    ;    float getInitMean() const;    float getInitSigma() const;   private:    int m_type;    int m_numAreas;    std::vector<float> m_weights;    float m_initMean;    float m_initSigma;    void generateRandomFeature( Size imageSize );    float getSum( const Mat& image, Rect imgROI ) const;    std::vector<Rect> m_areas;  // areas within the patch over which to compute the feature    cv::Size m_initSize;  // size of the patch used during training    cv::Size m_curSize;  // size of the patches currently under investigation    float m_scaleFactorHeight;  // scaling factor in vertical direction    float m_scaleFactorWidth;  // scaling factor in horizontal direction    std::vector<Rect> m_scaleAreas;  // areas after scaling    std::vector<float> m_scaleWeights;  // weights after scaling  };  virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );  virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 );  virtual float operator()( int featureIdx, int sampleIdx );  virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;  void writeFeature( FileStorage &fs ) const;  // for old file format  const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const;  inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx )  {    return features[idx];  }  void setWinSize( Size patchSize );  Size setWinSize() const;  virtual void generateFeatures();  /**   * TODO new method   * \brief Overload the original generateFeatures in order to limit the number of the features   * @param numFeatures Number of the features   */  virtual void generateFeatures( int numFeatures ); protected:  bool isIntegral;  /* TODO Added from MIL implementation */  Mat _ii_img;  void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs )  {    Mat ii_img;    integral( img, ii_img, CV_32F );    split( ii_img, ii_imgs );  }  std::vector<FeatureHaar> features;  Mat sum; /* sum images (each row represents image) */};struct CvHOGFeatureParams : public CvFeatureParams{  CvHOGFeatureParams();};class CvHOGEvaluator : public CvFeatureEvaluator{ public:  virtual ~CvHOGEvaluator()  {  }  virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );  virtual void setImage( const Mat& img, uchar clsLabel, int idx );  virtual float operator()( int varIdx, int sampleIdx );  virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; protected:  virtual void generateFeatures();  virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;  class Feature  {   public:    Feature();    Feature( int offset, int x, int y, int cellW, int cellH );    float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const;    void write( FileStorage &fs ) const;    void write( FileStorage &fs, int varIdx ) const;    Rect rect[N_CELLS];  //cells    struct    {      int p0, p1, p2, p3;    } fastRect[N_CELLS];  };  std::vector<Feature> features;  Mat normSum;  //for nomalization calculation (L1 or L2)  std::vector<Mat> hist;};inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx ){  int featureIdx = varIdx / ( N_BINS * N_CELLS );  int componentIdx = varIdx % ( N_BINS * N_CELLS );  //return features[featureIdx].calc( hist, sampleIdx, componentIdx);  return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx );}inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const{  float normFactor;  float res;  int binIdx = featComponent % N_BINS;  int cellIdx = featComponent / N_BINS;  const float *phist = _hists[binIdx].ptr<float>( (int) y );  res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3];  const float *pnormSum = _normSum.ptr<float>( (int) y );  normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] );  res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f;  //for cutting negative values, which apper due to floating precision  return res;}struct CvLBPFeatureParams : CvFeatureParams{  CvLBPFeatureParams();};class CvLBPEvaluator : public CvFeatureEvaluator{ public:  virtual ~CvLBPEvaluator()  {  }  virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );  virtual void setImage( const Mat& img, uchar clsLabel, int idx );  virtual float operator()( int featureIdx, int sampleIdx )  {    return (float) features[featureIdx].calc( sum, sampleIdx );  }  virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; protected:  virtual void generateFeatures();  class Feature  {   public:    Feature();    Feature( int offset, int x, int y, int _block_w, int _block_h );    uchar calc( const Mat& _sum, size_t y ) const;    void write( FileStorage &fs ) const;    Rect rect;    int p[16];  };  std::vector<Feature> features;  Mat sum;};inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const{  const int* psum = _sum.ptr<int>( (int) y );  int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];  return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) |   // 0      ( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) |    // 1      ( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) |    // 2      ( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) |  // 5      ( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) |  // 8      ( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) |  // 7      ( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) |   // 6      ( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) );     // 3}//! @}} /* namespace cv */#endif
 |