| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                           License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009, Willow Garage Inc., all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef __OPENCV_XFEATURES2D_CUDA_HPP__#define __OPENCV_XFEATURES2D_CUDA_HPP__#include "opencv2/core/cuda.hpp"namespace cv { namespace cuda {//! @addtogroup xfeatures2d_nonfree//! @{/** @brief Class used for extracting Speeded Up Robust Features (SURF) from an image. :The class SURF_CUDA implements Speeded Up Robust Features descriptor. There is a fast multi-scaleHessian keypoint detector that can be used to find the keypoints (which is the default option). Butthe descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale imagesare supported.The class SURF_CUDA can store results in the GPU and CPU memory. It provides functions to convertresults between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). Theformat of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypointsmatrix is \f$\texttt{nFeatures} \times 7\f$ matrix with the CV_32FC1 type.-   keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i-th feature.-   keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i-th feature.-   keypoints.ptr\<float\>(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature.-   keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i-th feature.-   keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i-th feature.-   keypoints.ptr\<float\>(ANGLE_ROW)[i] contain orientation of the i-th feature.-   keypoints.ptr\<float\>(HESSIAN_ROW)[i] contains the response of the i-th feature.The descriptors matrix is \f$\texttt{nFeatures} \times \texttt{descriptorSize}\f$ matrix with theCV_32FC1 type.The class SURF_CUDA uses some buffers and provides access to it. All buffers can be safely releasedbetween function calls.@sa SURF@note   -   An example for using the SURF keypoint matcher on GPU can be found at        opencv_source_code/samples/gpu/surf_keypoint_matcher.cpp */class CV_EXPORTS SURF_CUDA{public:    enum KeypointLayout    {        X_ROW = 0,        Y_ROW,        LAPLACIAN_ROW,        OCTAVE_ROW,        SIZE_ROW,        ANGLE_ROW,        HESSIAN_ROW,        ROWS_COUNT    };    //! the default constructor    SURF_CUDA();    //! the full constructor taking all the necessary parameters    explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4,         int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);    //! returns the descriptor size in float's (64 or 128)    int descriptorSize() const;    //! returns the default norm type    int defaultNorm() const;    //! upload host keypoints to device memory    void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);    //! download keypoints from device to host memory    void downloadKeypoints(const GpuMat& keypointsGPU, std::vector<KeyPoint>& keypoints);    //! download descriptors from device to host memory    void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector<float>& descriptors);    //! finds the keypoints using fast hessian detector used in SURF    //! supports CV_8UC1 images    //! keypoints will have nFeature cols and 6 rows    //! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature    //! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature    //! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature    //! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature    //! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature    //! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature    //! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature    void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);    //! finds the keypoints and computes their descriptors.    //! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction    void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,        bool useProvidedKeypoints = false);    void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);    void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,        bool useProvidedKeypoints = false);    void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,        bool useProvidedKeypoints = false);    void releaseMemory();    // SURF parameters    double hessianThreshold;    int nOctaves;    int nOctaveLayers;    bool extended;    bool upright;    //! max keypoints = min(keypointsRatio * img.size().area(), 65535)    float keypointsRatio;    GpuMat sum, mask1, maskSum;    GpuMat det, trace;    GpuMat maxPosBuffer;};//! @}}} // namespace cv { namespace cuda {#endif // __OPENCV_XFEATURES2D_CUDA_HPP__
 |