| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                           License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__#define __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__#ifdef __cplusplus/** @file@date Jun 17, 2014@author Yury Gitman */#include <opencv2/core.hpp>namespace cv{namespace ximgproc{//! @addtogroup ximgproc_edge//! @{/*!  Helper class for training part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013]. */class CV_EXPORTS_W RFFeatureGetter : public Algorithm{public:    /*!     * This functions extracts feature channels from src.     * Than StructureEdgeDetection uses this feature space     * to detect edges.     *     * \param src : source image to extract features     * \param features : output n-channel floating point feature matrix.     *     * \param gnrmRad : __rf.options.gradientNormalizationRadius     * \param gsmthRad : __rf.options.gradientSmoothingRadius     * \param shrink : __rf.options.shrinkNumber     * \param outNum : __rf.options.numberOfOutputChannels     * \param gradNum : __rf.options.numberOfGradientOrientations     */    CV_WRAP virtual void getFeatures(const Mat &src, Mat &features,                                     const int gnrmRad,                                     const int gsmthRad,                                     const int shrink,                                     const int outNum,                                     const int gradNum) const = 0;};CV_EXPORTS_W Ptr<RFFeatureGetter> createRFFeatureGetter();/** @brief Class implementing edge detection algorithm from @cite Dollar2013 : */class CV_EXPORTS_W StructuredEdgeDetection : public Algorithm{public:    /** @brief The function detects edges in src and draw them to dst.    The algorithm underlies this function is much more robust to texture presence, than common    approaches, e.g. Sobel    @param _src source image (RGB, float, in [0;1]) to detect edges    @param _dst destination image (grayscale, float, in [0;1]) where edges are drawn    @sa Sobel, Canny     */    CV_WRAP virtual void detectEdges(cv::InputArray _src, cv::OutputArray _dst) const = 0;    /** @brief The function computes orientation from edge image.    @param _src edge image.    @param _dst orientation image.     */    CV_WRAP virtual void computeOrientation(cv::InputArray _src, cv::OutputArray _dst) const = 0;    /** @brief The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.    @param edge_image edge image from detectEdges function.    @param orientation_image orientation image from computeOrientation function.    @param _dst suppressed image (grayscale, float, in [0;1])    @param r radius for NMS suppression.    @param s radius for boundary suppression.    @param m multiplier for conservative suppression.    @param isParallel enables/disables parallel computing.     */    CV_WRAP virtual void edgesNms(cv::InputArray edge_image, cv::InputArray orientation_image, cv::OutputArray _dst, int r = 2, int s = 0, float m = 1, bool isParallel = true) const = 0;};/*!* The only constructor** \param model : name of the file where the model is stored* \param howToGetFeatures : optional object inheriting from RFFeatureGetter.*                           You need it only if you would like to train your*                           own forest, pass NULL otherwise*/CV_EXPORTS_W Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model,    Ptr<const RFFeatureGetter> howToGetFeatures = Ptr<RFFeatureGetter>());//! @}}}#endif#endif /* __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ */
 |