123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- /*
- By downloading, copying, installing or using the software you agree to this
- license. If you do not agree to this license, do not download, install,
- copy or use the software.
- License Agreement
- For Open Source Computer Vision Library
- (3-clause BSD License)
- Copyright (C) 2016, OpenCV Foundation, all rights reserved.
- Third party copyrights are property of their respective owners.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the names of the copyright holders nor the names of the contributors
- may be used to endorse or promote products derived from this software
- without specific prior written permission.
- This software is provided by the copyright holders and contributors "as is" and
- any express or implied warranties, including, but not limited to, the implied
- warranties of merchantability and fitness for a particular purpose are
- disclaimed. In no event shall copyright holders or contributors be liable for
- any direct, indirect, incidental, special, exemplary, or consequential damages
- (including, but not limited to, procurement of substitute goods or services;
- loss of use, data, or profits; or business interruption) however caused
- and on any theory of liability, whether in contract, strict liability,
- or tort (including negligence or otherwise) arising in any way out of
- the use of this software, even if advised of the possibility of such damage.
- */
- /**
- * @file sparse_matching_gpc.hpp
- * @author Vladislav Samsonov <vvladxx@gmail.com>
- * @brief Implementation of the Global Patch Collider.
- *
- * Implementation of the Global Patch Collider algorithm from the following paper:
- * http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
- *
- * @cite Wang_2016_CVPR
- */
- #ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
- #define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- namespace cv
- {
- namespace optflow
- {
- //! @addtogroup optflow
- //! @{
- struct CV_EXPORTS_W GPCPatchDescriptor
- {
- static const unsigned nFeatures = 18; //!< number of features in a patch descriptor
- Vec< double, nFeatures > feature;
- double dot( const Vec< double, nFeatures > &coef ) const;
- void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); }
- bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; }
- };
- struct CV_EXPORTS_W GPCPatchSample
- {
- GPCPatchDescriptor ref;
- GPCPatchDescriptor pos;
- GPCPatchDescriptor neg;
- void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const;
- };
- typedef std::vector< GPCPatchSample > GPCSamplesVector;
- /** @brief Descriptor types for the Global Patch Collider.
- */
- enum GPCDescType
- {
- GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow
- GPC_DESCRIPTOR_WHT //!< Worse quality but much faster
- };
- /** @brief Class encapsulating training samples.
- */
- class CV_EXPORTS_W GPCTrainingSamples
- {
- private:
- GPCSamplesVector samples;
- int descriptorType;
- public:
- /** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
- * Sizes of all the provided vectors must be equal.
- */
- static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
- const std::vector< String > >, int descriptorType );
- static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
- int descriptorType );
- size_t size() const { return samples.size(); }
- int type() const { return descriptorType; }
- operator GPCSamplesVector &() { return samples; }
- };
- /** @brief Class encapsulating training parameters.
- */
- struct GPCTrainingParams
- {
- unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning.
- int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning.
- int descriptorType; //!< Type of descriptors to use.
- bool printProgress; //!< Print progress to stdout.
- GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT,
- bool _printProgress = true )
- : maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ),
- printProgress( _printProgress )
- {
- CV_Assert( check() );
- }
- GPCTrainingParams( const GPCTrainingParams ¶ms )
- : maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ),
- printProgress( params.printProgress )
- {
- CV_Assert( check() );
- }
- bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; }
- };
- /** @brief Class encapsulating matching parameters.
- */
- struct GPCMatchingParams
- {
- bool useOpenCL; //!< Whether to use OpenCL to speed up the matching.
- GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {}
- GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {}
- };
- /** @brief Class for individual tree.
- */
- class CV_EXPORTS_W GPCTree : public Algorithm
- {
- public:
- struct Node
- {
- Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients
- double rhs; //!< Bias term of the hyperplane
- unsigned left;
- unsigned right;
- bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; }
- };
- private:
- typedef GPCSamplesVector::iterator SIter;
- std::vector< Node > nodes;
- GPCTrainingParams params;
- bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth );
- public:
- void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() );
- void write( FileStorage &fs ) const;
- void read( const FileNode &fn );
- unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const;
- static Ptr< GPCTree > create() { return makePtr< GPCTree >(); }
- bool operator==( const GPCTree &t ) const { return nodes == t.nodes; }
- int getDescriptorType() const { return params.descriptorType; }
- };
- template < int T > class CV_EXPORTS_W GPCForest : public Algorithm
- {
- private:
- struct Trail
- {
- unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell?
- Point2i coord; //!< Patch coordinates.
- bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; }
- bool operator<( const Trail &trail ) const
- {
- for ( int i = 0; i < T - 1; ++i )
- if ( leaf[i] != trail.leaf[i] )
- return leaf[i] < trail.leaf[i];
- return leaf[T - 1] < trail.leaf[T - 1];
- }
- };
- class ParallelTrailsFilling : public ParallelLoopBody
- {
- private:
- const GPCForest *forest;
- const std::vector< GPCPatchDescriptor > *descr;
- std::vector< Trail > *trails;
- ParallelTrailsFilling &operator=( const ParallelTrailsFilling & );
- public:
- ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails )
- : forest( _forest ), descr( _descr ), trails( _trails ){};
- void operator()( const Range &range ) const
- {
- for ( int t = range.start; t < range.end; ++t )
- for ( size_t i = 0; i < descr->size(); ++i )
- trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) );
- }
- };
- GPCTree tree[T];
- public:
- /** @brief Train the forest using one sample set for every tree.
- * Please, consider using the next method instead of this one for better quality.
- */
- void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() )
- {
- for ( int i = 0; i < T; ++i )
- tree[i].train( samples, params );
- }
- /** @brief Train the forest using individual samples for each tree.
- * It is generally better to use this instead of the first method.
- */
- void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >,
- const GPCTrainingParams params = GPCTrainingParams() )
- {
- for ( int i = 0; i < T; ++i )
- {
- Ptr< GPCTrainingSamples > samples =
- GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
- tree[i].train( *samples, params );
- }
- }
- void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
- const GPCTrainingParams params = GPCTrainingParams() )
- {
- for ( int i = 0; i < T; ++i )
- {
- Ptr< GPCTrainingSamples > samples =
- GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
- tree[i].train( *samples, params );
- }
- }
- void write( FileStorage &fs ) const
- {
- fs << "ntrees" << T << "trees"
- << "[";
- for ( int i = 0; i < T; ++i )
- {
- fs << "{";
- tree[i].write( fs );
- fs << "}";
- }
- fs << "]";
- }
- void read( const FileNode &fn )
- {
- CV_Assert( T <= (int)fn["ntrees"] );
- FileNodeIterator it = fn["trees"].begin();
- for ( int i = 0; i < T; ++i, ++it )
- tree[i].read( *it );
- }
- /** @brief Find correspondences between two images.
- * @param[in] imgFrom First image in a sequence.
- * @param[in] imgTo Second image in a sequence.
- * @param[out] corr Output vector with pairs of corresponding points.
- * @param[in] params Additional matching parameters for fine-tuning.
- */
- void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
- const GPCMatchingParams params = GPCMatchingParams() ) const;
- static Ptr< GPCForest > create() { return makePtr< GPCForest >(); }
- };
- class CV_EXPORTS_W GPCDetails
- {
- public:
- static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr );
- static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
- int type );
- static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y );
- };
- template < int T >
- void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
- const GPCMatchingParams params ) const
- {
- CV_Assert( imgFrom.channels() == 3 );
- CV_Assert( imgTo.channels() == 3 );
- Mat from, to;
- imgFrom.getMat().convertTo( from, CV_32FC3 );
- imgTo.getMat().convertTo( to, CV_32FC3 );
- cvtColor( from, from, COLOR_BGR2YCrCb );
- cvtColor( to, to, COLOR_BGR2YCrCb );
- Mat fromCh[3], toCh[3];
- split( from, fromCh );
- split( to, toCh );
- std::vector< GPCPatchDescriptor > descr;
- GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() );
- std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() );
- for ( size_t i = 0; i < descr.size(); ++i )
- GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y );
- parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) );
- descr.clear();
- GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() );
- for ( size_t i = 0; i < descr.size(); ++i )
- GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y );
- parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) );
- std::sort( trailsFrom.begin(), trailsFrom.end() );
- std::sort( trailsTo.begin(), trailsTo.end() );
- for ( size_t i = 0; i < trailsFrom.size(); ++i )
- {
- bool uniq = true;
- while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] )
- ++i, uniq = false;
- if ( uniq )
- {
- typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] );
- if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) )
- corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) );
- }
- }
- GPCDetails::dropOutliers( corr );
- }
- //! @}
- } // namespace optflow
- CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node );
- CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node );
- } // namespace cv
- #endif
|