| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 | 
							- /*
 
- By downloading, copying, installing or using the software you agree to this
 
- license. If you do not agree to this license, do not download, install,
 
- copy or use the software.
 
-                           License Agreement
 
-                For Open Source Computer Vision Library
 
-                        (3-clause BSD License)
 
- Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 
- Third party copyrights are property of their respective owners.
 
- Redistribution and use in source and binary forms, with or without modification,
 
- are permitted provided that the following conditions are met:
 
-   * Redistributions of source code must retain the above copyright notice,
 
-     this list of conditions and the following disclaimer.
 
-   * Redistributions in binary form must reproduce the above copyright notice,
 
-     this list of conditions and the following disclaimer in the documentation
 
-     and/or other materials provided with the distribution.
 
-   * Neither the names of the copyright holders nor the names of the contributors
 
-     may be used to endorse or promote products derived from this software
 
-     without specific prior written permission.
 
- This software is provided by the copyright holders and contributors "as is" and
 
- any express or implied warranties, including, but not limited to, the implied
 
- warranties of merchantability and fitness for a particular purpose are
 
- disclaimed. In no event shall copyright holders or contributors be liable for
 
- any direct, indirect, incidental, special, exemplary, or consequential damages
 
- (including, but not limited to, procurement of substitute goods or services;
 
- loss of use, data, or profits; or business interruption) however caused
 
- and on any theory of liability, whether in contract, strict liability,
 
- or tort (including negligence or otherwise) arising in any way out of
 
- the use of this software, even if advised of the possibility of such damage.
 
- */
 
- #ifndef __OPENCV_ARUCO_HPP__
 
- #define __OPENCV_ARUCO_HPP__
 
- #include <opencv2/core.hpp>
 
- #include <vector>
 
- #include "opencv2/aruco/dictionary.hpp"
 
- /**
 
-  * @defgroup aruco ArUco Marker Detection
 
-  * This module is dedicated to square fiducial markers (also known as Augmented Reality Markers)
 
-  * These markers are useful for easy, fast and robust camera pose estimation.ç
 
-  *
 
-  * The main functionalities are:
 
-  * - Detection of markers in a image
 
-  * - Pose estimation from a single marker or from a board/set of markers
 
-  * - Detection of ChArUco board for high subpixel accuracy
 
-  * - Camera calibration from both, ArUco boards and ChArUco boards.
 
-  * - Detection of ChArUco diamond markers
 
-  * The samples directory includes easy examples of how to use the module.
 
-  *
 
-  * The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado.
 
-  *
 
-  * @sa S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. 2014.
 
-  * "Automatic generation and detection of highly reliable fiducial markers under occlusion".
 
-  * Pattern Recogn. 47, 6 (June 2014), 2280-2292. DOI=10.1016/j.patcog.2014.01.005
 
-  *
 
-  * @sa http://www.uco.es/investiga/grupos/ava/node/26
 
-  *
 
-  * This module has been originally developed by Sergio Garrido-Jurado as a project
 
-  * for Google Summer of Code 2015 (GSoC 15).
 
-  *
 
-  *
 
- */
 
- namespace cv {
 
- namespace aruco {
 
- //! @addtogroup aruco
 
- //! @{
 
- enum CornerRefineMethod{
 
- 	CORNER_REFINE_NONE,     // default corners
 
- 	CORNER_REFINE_SUBPIX,   // refine the corners using subpix
 
- 	CORNER_REFINE_CONTOUR   // refine the corners using the contour-points
 
- };
 
- /**
 
-  * @brief Parameters for the detectMarker process:
 
-  * - adaptiveThreshWinSizeMin: minimum window size for adaptive thresholding before finding
 
-  *   contours (default 3).
 
-  * - adaptiveThreshWinSizeMax: maximum window size for adaptive thresholding before finding
 
-  *   contours (default 23).
 
-  * - adaptiveThreshWinSizeStep: increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax
 
-  *   during the thresholding (default 10).
 
-  * - adaptiveThreshConstant: constant for adaptive thresholding before finding contours (default 7)
 
-  * - minMarkerPerimeterRate: determine minimum perimeter for marker contour to be detected. This
 
-  *   is defined as a rate respect to the maximum dimension of the input image (default 0.03).
 
-  * - maxMarkerPerimeterRate:  determine maximum perimeter for marker contour to be detected. This
 
-  *   is defined as a rate respect to the maximum dimension of the input image (default 4.0).
 
-  * - polygonalApproxAccuracyRate: minimum accuracy during the polygonal approximation process to
 
-  *   determine which contours are squares.
 
-  * - minCornerDistanceRate: minimum distance between corners for detected markers relative to its
 
-  *   perimeter (default 0.05)
 
-  * - minDistanceToBorder: minimum distance of any corner to the image border for detected markers
 
-  *   (in pixels) (default 3)
 
-  * - minMarkerDistanceRate: minimum mean distance beetween two marker corners to be considered
 
-  *   similar, so that the smaller one is removed. The rate is relative to the smaller perimeter
 
-  *   of the two markers (default 0.05).
 
-  * - cornerRefinementMethod: corner refinement method. (CORNER_REFINE_NONE, no refinement.
 
-  *   CORNER_REFINE_SUBPIX, do subpixel refinement. CORNER_REFINE_CONTOUR use contour-Points)
 
-  * - cornerRefinementWinSize: window size for the corner refinement process (in pixels) (default 5).
 
-  * - cornerRefinementMaxIterations: maximum number of iterations for stop criteria of the corner
 
-  *   refinement process (default 30).
 
-  * - cornerRefinementMinAccuracy: minimum error for the stop cristeria of the corner refinement
 
-  *   process (default: 0.1)
 
-  * - markerBorderBits: number of bits of the marker border, i.e. marker border width (default 1).
 
-  * - perpectiveRemovePixelPerCell: number of bits (per dimension) for each cell of the marker
 
-  *   when removing the perspective (default 8).
 
-  * - perspectiveRemoveIgnoredMarginPerCell: width of the margin of pixels on each cell not
 
-  *   considered for the determination of the cell bit. Represents the rate respect to the total
 
-  *   size of the cell, i.e. perpectiveRemovePixelPerCell (default 0.13)
 
-  * - maxErroneousBitsInBorderRate: maximum number of accepted erroneous bits in the border (i.e.
 
-  *   number of allowed white bits in the border). Represented as a rate respect to the total
 
-  *   number of bits per marker (default 0.35).
 
-  * - minOtsuStdDev: minimun standard deviation in pixels values during the decodification step to
 
-  *   apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher
 
-  *   than 128 or not) (default 5.0)
 
-  * - errorCorrectionRate error correction rate respect to the maximun error correction capability
 
-  *   for each dictionary. (default 0.6).
 
-  */
 
- struct CV_EXPORTS_W DetectorParameters {
 
-     DetectorParameters();
 
-     CV_WRAP static Ptr<DetectorParameters> create();
 
-     CV_PROP_RW int adaptiveThreshWinSizeMin;
 
-     CV_PROP_RW int adaptiveThreshWinSizeMax;
 
-     CV_PROP_RW int adaptiveThreshWinSizeStep;
 
-     CV_PROP_RW double adaptiveThreshConstant;
 
-     CV_PROP_RW double minMarkerPerimeterRate;
 
-     CV_PROP_RW double maxMarkerPerimeterRate;
 
-     CV_PROP_RW double polygonalApproxAccuracyRate;
 
-     CV_PROP_RW double minCornerDistanceRate;
 
-     CV_PROP_RW int minDistanceToBorder;
 
-     CV_PROP_RW double minMarkerDistanceRate;
 
-     CV_PROP_RW int cornerRefinementMethod;
 
-     CV_PROP_RW int cornerRefinementWinSize;
 
-     CV_PROP_RW int cornerRefinementMaxIterations;
 
-     CV_PROP_RW double cornerRefinementMinAccuracy;
 
-     CV_PROP_RW int markerBorderBits;
 
-     CV_PROP_RW int perspectiveRemovePixelPerCell;
 
-     CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell;
 
-     CV_PROP_RW double maxErroneousBitsInBorderRate;
 
-     CV_PROP_RW double minOtsuStdDev;
 
-     CV_PROP_RW double errorCorrectionRate;
 
- };
 
- /**
 
-  * @brief Basic marker detection
 
-  *
 
-  * @param image input image
 
-  * @param dictionary indicates the type of markers that will be searched
 
-  * @param corners vector of detected marker corners. For each marker, its four corners
 
-  * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
 
-  * the dimensions of this array is Nx4. The order of the corners is clockwise.
 
-  * @param ids vector of identifiers of the detected markers. The identifier is of type int
 
-  * (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
 
-  * The identifiers have the same order than the markers in the imgPoints array.
 
-  * @param parameters marker detection parameters
 
-  * @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a
 
-  * correct codification. Useful for debugging purposes.
 
-  * @param cameraMatrix optional input 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
 
-  * @param distCoeff optional vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  *
 
-  * Performs marker detection in the input image. Only markers included in the specific dictionary
 
-  * are searched. For each detected marker, it returns the 2D position of its corner in the image
 
-  * and its corresponding identifier.
 
-  * Note that this function does not perform pose estimation.
 
-  * @sa estimatePoseSingleMarkers,  estimatePoseBoard
 
-  *
 
-  */
 
- CV_EXPORTS_W void detectMarkers(InputArray image, const Ptr<Dictionary> &dictionary, OutputArrayOfArrays corners,
 
-                                 OutputArray ids, const Ptr<DetectorParameters> ¶meters = DetectorParameters::create(),
 
-                                 OutputArrayOfArrays rejectedImgPoints = noArray(), InputArray cameraMatrix= noArray(), InputArray distCoeff= noArray());
 
- /**
 
-  * @brief Pose estimation for single markers
 
-  *
 
-  * @param corners vector of already detected markers corners. For each marker, its four corners
 
-  * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
 
-  * the dimensions of this array should be Nx4. The order of the corners should be clockwise.
 
-  * @sa detectMarkers
 
-  * @param markerLength the length of the markers' side. The returning translation vectors will
 
-  * be in the same unit. Normally, unit is meters.
 
-  * @param cameraMatrix input 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
 
-  * @param distCoeffs vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  * @param rvecs array of output rotation vectors (@sa Rodrigues) (e.g. std::vector<cv::Vec3d>).
 
-  * Each element in rvecs corresponds to the specific marker in imgPoints.
 
-  * @param tvecs array of output translation vectors (e.g. std::vector<cv::Vec3d>).
 
-  * Each element in tvecs corresponds to the specific marker in imgPoints.
 
-  * @param _objPoints array of object points of all the marker corners
 
-  *
 
-  * This function receives the detected markers and returns their pose estimation respect to
 
-  * the camera individually. So for each marker, one rotation and translation vector is returned.
 
-  * The returned transformation is the one that transforms points from each marker coordinate system
 
-  * to the camera coordinate system.
 
-  * The marker corrdinate system is centered on the middle of the marker, with the Z axis
 
-  * perpendicular to the marker plane.
 
-  * The coordinates of the four corners of the marker in its own coordinate system are:
 
-  * (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),
 
-  * (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0)
 
-  */
 
- CV_EXPORTS_W void estimatePoseSingleMarkers(InputArrayOfArrays corners, float markerLength,
 
-                                             InputArray cameraMatrix, InputArray distCoeffs,
 
-                                             OutputArray rvecs, OutputArray tvecs, OutputArray _objPoints = noArray());
 
- /**
 
-  * @brief Board of markers
 
-  *
 
-  * A board is a set of markers in the 3D space with a common cordinate system.
 
-  * The common form of a board of marker is a planar (2D) board, however any 3D layout can be used.
 
-  * A Board object is composed by:
 
-  * - The object points of the marker corners, i.e. their coordinates respect to the board system.
 
-  * - The dictionary which indicates the type of markers of the board
 
-  * - The identifier of all the markers in the board.
 
-  */
 
- class CV_EXPORTS_W Board {
 
-     public:
 
-     /**
 
-     * @brief Provide way to create Board by passing nessesary data. Specially needed in Python.
 
-     *
 
-     * @param objPoints array of object points of all the marker corners in the board
 
-     * @param dictionary the dictionary of markers employed for this board
 
-     * @param ids vector of the identifiers of the markers in the board
 
-     *
 
-     */
 
-     CV_WRAP static Ptr<Board> create(InputArrayOfArrays objPoints, const Ptr<Dictionary> &dictionary, InputArray ids);
 
-     /// array of object points of all the marker corners in the board
 
-     /// each marker include its 4 corners in CCW order. For M markers, the size is Mx4.
 
-     CV_PROP std::vector< std::vector< Point3f > > objPoints;
 
-     /// the dictionary of markers employed for this board
 
-     CV_PROP Ptr<Dictionary> dictionary;
 
-     /// vector of the identifiers of the markers in the board (same size than objPoints)
 
-     /// The identifiers refers to the board dictionary
 
-     CV_PROP std::vector< int > ids;
 
- };
 
- /**
 
-  * @brief Planar board with grid arrangement of markers
 
-  * More common type of board. All markers are placed in the same plane in a grid arrangment.
 
-  * The board can be drawn using drawPlanarBoard() function (@sa drawPlanarBoard)
 
-  */
 
- class CV_EXPORTS_W GridBoard : public Board {
 
-     public:
 
-     /**
 
-      * @brief Draw a GridBoard
 
-      *
 
-      * @param outSize size of the output image in pixels.
 
-      * @param img output image with the board. The size of this image will be outSize
 
-      * and the board will be on the center, keeping the board proportions.
 
-      * @param marginSize minimum margins (in pixels) of the board in the output image
 
-      * @param borderBits width of the marker borders.
 
-      *
 
-      * This function return the image of the GridBoard, ready to be printed.
 
-      */
 
-     CV_WRAP void draw(Size outSize, OutputArray img, int marginSize = 0, int borderBits = 1);
 
-     /**
 
-      * @brief Create a GridBoard object
 
-      *
 
-      * @param markersX number of markers in X direction
 
-      * @param markersY number of markers in Y direction
 
-      * @param markerLength marker side length (normally in meters)
 
-      * @param markerSeparation separation between two markers (same unit as markerLength)
 
-      * @param dictionary dictionary of markers indicating the type of markers
 
-      * @param firstMarker id of first marker in dictionary to use on board.
 
-      * @return the output GridBoard object
 
-      *
 
-      * This functions creates a GridBoard object given the number of markers in each direction and
 
-      * the marker size and marker separation.
 
-      */
 
-     CV_WRAP static Ptr<GridBoard> create(int markersX, int markersY, float markerLength,
 
-                                          float markerSeparation, const Ptr<Dictionary> &dictionary, int firstMarker = 0);
 
-     /**
 
-       *
 
-       */
 
-     CV_WRAP Size getGridSize() const { return Size(_markersX, _markersY); }
 
-     /**
 
-       *
 
-       */
 
-     CV_WRAP float getMarkerLength() const { return _markerLength; }
 
-     /**
 
-       *
 
-       */
 
-     CV_WRAP float getMarkerSeparation() const { return _markerSeparation; }
 
-     private:
 
-     // number of markers in X and Y directions
 
-     int _markersX, _markersY;
 
-     // marker side lenght (normally in meters)
 
-     float _markerLength;
 
-     // separation between markers in the grid
 
-     float _markerSeparation;
 
- };
 
- /**
 
-  * @brief Pose estimation for a board of markers
 
-  *
 
-  * @param corners vector of already detected markers corners. For each marker, its four corners
 
-  * are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the
 
-  * dimensions of this array should be Nx4. The order of the corners should be clockwise.
 
-  * @param ids list of identifiers for each marker in corners
 
-  * @param board layout of markers in the board. The layout is composed by the marker identifiers
 
-  * and the positions of each marker corner in the board reference system.
 
-  * @param cameraMatrix input 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
 
-  * @param distCoeffs vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  * @param rvec Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
 
-  * (see cv::Rodrigues). Used as initial guess if not empty.
 
-  * @param tvec Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.
 
-  * @param useExtrinsicGuess defines whether initial guess for \b rvec and \b tvec will be used or not.
 
-  * Used as initial guess if not empty.
 
-  *
 
-  * This function receives the detected markers and returns the pose of a marker board composed
 
-  * by those markers.
 
-  * A Board of marker has a single world coordinate system which is defined by the board layout.
 
-  * The returned transformation is the one that transforms points from the board coordinate system
 
-  * to the camera coordinate system.
 
-  * Input markers that are not included in the board layout are ignored.
 
-  * The function returns the number of markers from the input employed for the board pose estimation.
 
-  * Note that returning a 0 means the pose has not been estimated.
 
-  */
 
- CV_EXPORTS_W int estimatePoseBoard(InputArrayOfArrays corners, InputArray ids, const Ptr<Board> &board,
 
-                                    InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec,
 
-                                    OutputArray tvec, bool useExtrinsicGuess = false);
 
- /**
 
-  * @brief Refind not detected markers based on the already detected and the board layout
 
-  *
 
-  * @param image input image
 
-  * @param board layout of markers in the board.
 
-  * @param detectedCorners vector of already detected marker corners.
 
-  * @param detectedIds vector of already detected marker identifiers.
 
-  * @param rejectedCorners vector of rejected candidates during the marker detection process.
 
-  * @param cameraMatrix optional input 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
 
-  * @param distCoeffs optional vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  * @param minRepDistance minimum distance between the corners of the rejected candidate and the
 
-  * reprojected marker in order to consider it as a correspondence.
 
-  * @param errorCorrectionRate rate of allowed erroneous bits respect to the error correction
 
-  * capability of the used dictionary. -1 ignores the error correction step.
 
-  * @param checkAllOrders Consider the four posible corner orders in the rejectedCorners array.
 
-  * If it set to false, only the provided corner order is considered (default true).
 
-  * @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the
 
-  * original rejectedCorners array.
 
-  * @param parameters marker detection parameters
 
-  *
 
-  * This function tries to find markers that were not detected in the basic detecMarkers function.
 
-  * First, based on the current detected marker and the board layout, the function interpolates
 
-  * the position of the missing markers. Then it tries to find correspondence between the reprojected
 
-  * markers and the rejected candidates based on the minRepDistance and errorCorrectionRate
 
-  * parameters.
 
-  * If camera parameters and distortion coefficients are provided, missing markers are reprojected
 
-  * using projectPoint function. If not, missing marker projections are interpolated using global
 
-  * homography, and all the marker corners in the board must have the same Z coordinate.
 
-  */
 
- CV_EXPORTS_W void refineDetectedMarkers(
 
-     InputArray image,const  Ptr<Board> &board, InputOutputArrayOfArrays detectedCorners,
 
-     InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners,
 
-     InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(),
 
-     float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true,
 
-     OutputArray recoveredIdxs = noArray(), const Ptr<DetectorParameters> ¶meters = DetectorParameters::create());
 
- /**
 
-  * @brief Draw detected markers in image
 
-  *
 
-  * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
 
-  * altered.
 
-  * @param corners positions of marker corners on input image.
 
-  * (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
 
-  * this array should be Nx4. The order of the corners should be clockwise.
 
-  * @param ids vector of identifiers for markers in markersCorners .
 
-  * Optional, if not provided, ids are not painted.
 
-  * @param borderColor color of marker borders. Rest of colors (text color and first corner color)
 
-  * are calculated based on this one to improve visualization.
 
-  *
 
-  * Given an array of detected marker corners and its corresponding ids, this functions draws
 
-  * the markers in the image. The marker borders are painted and the markers identifiers if provided.
 
-  * Useful for debugging purposes.
 
-  */
 
- CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners,
 
-                                       InputArray ids = noArray(),
 
-                                       Scalar borderColor = Scalar(0, 255, 0));
 
- /**
 
-  * @brief Draw coordinate system axis from pose estimation
 
-  *
 
-  * @param image input/output image. It must have 1 or 3 channels. The number of channels is not
 
-  * altered.
 
-  * @param cameraMatrix input 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
 
-  * @param distCoeffs vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  * @param rvec rotation vector of the coordinate system that will be drawn. (@sa Rodrigues).
 
-  * @param tvec translation vector of the coordinate system that will be drawn.
 
-  * @param length length of the painted axis in the same unit than tvec (usually in meters)
 
-  *
 
-  * Given the pose estimation of a marker or board, this function draws the axis of the world
 
-  * coordinate system, i.e. the system centered on the marker/board. Useful for debugging purposes.
 
-  */
 
- CV_EXPORTS_W void drawAxis(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
 
-                            InputArray rvec, InputArray tvec, float length);
 
- /**
 
-  * @brief Draw a canonical marker image
 
-  *
 
-  * @param dictionary dictionary of markers indicating the type of markers
 
-  * @param id identifier of the marker that will be returned. It has to be a valid id
 
-  * in the specified dictionary.
 
-  * @param sidePixels size of the image in pixels
 
-  * @param img output image with the marker
 
-  * @param borderBits width of the marker border.
 
-  *
 
-  * This function returns a marker image in its canonical form (i.e. ready to be printed)
 
-  */
 
- CV_EXPORTS_W void drawMarker(const Ptr<Dictionary> &dictionary, int id, int sidePixels, OutputArray img,
 
-                              int borderBits = 1);
 
- /**
 
-  * @brief Draw a planar board
 
-  * @sa _drawPlanarBoardImpl
 
-  *
 
-  * @param board layout of the board that will be drawn. The board should be planar,
 
-  * z coordinate is ignored
 
-  * @param outSize size of the output image in pixels.
 
-  * @param img output image with the board. The size of this image will be outSize
 
-  * and the board will be on the center, keeping the board proportions.
 
-  * @param marginSize minimum margins (in pixels) of the board in the output image
 
-  * @param borderBits width of the marker borders.
 
-  *
 
-  * This function return the image of a planar board, ready to be printed. It assumes
 
-  * the Board layout specified is planar by ignoring the z coordinates of the object points.
 
-  */
 
- CV_EXPORTS_W void drawPlanarBoard(const Ptr<Board> &board, Size outSize, OutputArray img,
 
-                                   int marginSize = 0, int borderBits = 1);
 
- /**
 
-  * @brief Implementation of drawPlanarBoard that accepts a raw Board pointer.
 
-  */
 
- void _drawPlanarBoardImpl(Board *board, Size outSize, OutputArray img,
 
-                           int marginSize = 0, int borderBits = 1);
 
- /**
 
-  * @brief Calibrate a camera using aruco markers
 
-  *
 
-  * @param corners vector of detected marker corners in all frames.
 
-  * The corners should have the same format returned by detectMarkers (see #detectMarkers).
 
-  * @param ids list of identifiers for each marker in corners
 
-  * @param counter number of markers in each frame so that corners and ids can be split
 
-  * @param board Marker Board layout
 
-  * @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
 
-  * @param cameraMatrix Output 3x3 floating-point camera matrix
 
-  * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
 
-  * and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
 
-  * initialized before calling the function.
 
-  * @param distCoeffs Output vector of distortion coefficients
 
-  * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
 
-  * @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each board view
 
-  * (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
 
-  * k-th translation vector (see the next output parameter description) brings the board pattern
 
-  * from the model coordinate space (in which object points are specified) to the world coordinate
 
-  * space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1).
 
-  * @param tvecs Output vector of translation vectors estimated for each pattern view.
 
-  * @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
 
-  * Order of deviations values:
 
-  * \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
 
-  * s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
 
-  * @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
 
-  * Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
 
-  * \f$R_i, T_i\f$ are concatenated 1x3 vectors.
 
-  * @param perViewErrors Output vector of average re-projection errors estimated for each pattern view.
 
-  * @param flags flags Different flags  for the calibration process (see #calibrateCamera for details).
 
-  * @param criteria Termination criteria for the iterative optimization algorithm.
 
-  *
 
-  * This function calibrates a camera using an Aruco Board. The function receives a list of
 
-  * detected markers from several views of the Board. The process is similar to the chessboard
 
-  * calibration in calibrateCamera(). The function returns the final re-projection error.
 
-  */
 
- CV_EXPORTS_AS(calibrateCameraArucoExtended) double calibrateCameraAruco(
 
-     InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr<Board> &board,
 
-     Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
 
-     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
 
-     OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics,
 
-     OutputArray perViewErrors, int flags = 0,
 
-     TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
 
- /** @brief It's the same function as #calibrateCameraAruco but without calibration error estimation.
 
-  */
 
- CV_EXPORTS_W double calibrateCameraAruco(
 
-   InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr<Board> &board,
 
-   Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
 
-   OutputArrayOfArrays rvecs = noArray(), OutputArrayOfArrays tvecs = noArray(), int flags = 0,
 
-   TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON));
 
- /**
 
-  * @brief Given a board configuration and a set of detected markers, returns the corresponding
 
-  * image points and object points to call solvePnP
 
-  *
 
-  * @param board Marker board layout.
 
-  * @param detectedCorners List of detected marker corners of the board.
 
-  * @param detectedIds List of identifiers for each marker.
 
-  * @param objPoints Vector of vectors of board marker points in the board coordinate space.
 
-  * @param imgPoints Vector of vectors of the projections of board marker corner points.
 
- */
 
- CV_EXPORTS_W void getBoardObjectAndImagePoints(const Ptr<Board> &board, InputArrayOfArrays detectedCorners,
 
-   InputArray detectedIds, OutputArray objPoints, OutputArray imgPoints);
 
- //! @}
 
- }
 
- }
 
- #endif
 
 
  |