| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 | 
							- /*
 
- By downloading, copying, installing or using the software you agree to this
 
- license. If you do not agree to this license, do not download, install,
 
- copy or use the software.
 
-                           License Agreement
 
-                For Open Source Computer Vision Library
 
-                        (3-clause BSD License)
 
- Copyright (C) 2016, OpenCV Foundation, all rights reserved.
 
- Third party copyrights are property of their respective owners.
 
- Redistribution and use in source and binary forms, with or without modification,
 
- are permitted provided that the following conditions are met:
 
-   * Redistributions of source code must retain the above copyright notice,
 
-     this list of conditions and the following disclaimer.
 
-   * Redistributions in binary form must reproduce the above copyright notice,
 
-     this list of conditions and the following disclaimer in the documentation
 
-     and/or other materials provided with the distribution.
 
-   * Neither the names of the copyright holders nor the names of the contributors
 
-     may be used to endorse or promote products derived from this software
 
-     without specific prior written permission.
 
- This software is provided by the copyright holders and contributors "as is" and
 
- any express or implied warranties, including, but not limited to, the implied
 
- warranties of merchantability and fitness for a particular purpose are
 
- disclaimed. In no event shall copyright holders or contributors be liable for
 
- any direct, indirect, incidental, special, exemplary, or consequential damages
 
- (including, but not limited to, procurement of substitute goods or services;
 
- loss of use, data, or profits; or business interruption) however caused
 
- and on any theory of liability, whether in contract, strict liability,
 
- or tort (including negligence or otherwise) arising in any way out of
 
- the use of this software, even if advised of the possibility of such damage.
 
- */
 
- /**
 
-  * @file   sparse_matching_gpc.hpp
 
-  * @author Vladislav Samsonov <vvladxx@gmail.com>
 
-  * @brief  Implementation of the Global Patch Collider.
 
-  *
 
-  * Implementation of the Global Patch Collider algorithm from the following paper:
 
-  * http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
 
-  *
 
-  * @cite Wang_2016_CVPR
 
-  */
 
- #ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
 
- #define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
 
- #include "opencv2/core.hpp"
 
- #include "opencv2/imgproc.hpp"
 
- namespace cv
 
- {
 
- namespace optflow
 
- {
 
- //! @addtogroup optflow
 
- //! @{
 
- struct CV_EXPORTS_W GPCPatchDescriptor
 
- {
 
-   static const unsigned nFeatures = 18; //!< number of features in a patch descriptor
 
-   Vec< double, nFeatures > feature;
 
-   double dot( const Vec< double, nFeatures > &coef ) const;
 
-   void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); }
 
-   bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; }
 
- };
 
- struct CV_EXPORTS_W GPCPatchSample
 
- {
 
-   GPCPatchDescriptor ref;
 
-   GPCPatchDescriptor pos;
 
-   GPCPatchDescriptor neg;
 
-   void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const;
 
- };
 
- typedef std::vector< GPCPatchSample > GPCSamplesVector;
 
- /** @brief Descriptor types for the Global Patch Collider.
 
-  */
 
- enum GPCDescType
 
- {
 
-   GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow
 
-   GPC_DESCRIPTOR_WHT      //!< Worse quality but much faster
 
- };
 
- /** @brief Class encapsulating training samples.
 
-  */
 
- class CV_EXPORTS_W GPCTrainingSamples
 
- {
 
- private:
 
-   GPCSamplesVector samples;
 
-   int descriptorType;
 
- public:
 
-   /** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
 
-    * Sizes of all the provided vectors must be equal.
 
-    */
 
-   static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
 
-                                            const std::vector< String > >, int descriptorType );
 
-   static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
 
-                                            int descriptorType );
 
-   size_t size() const { return samples.size(); }
 
-   int type() const { return descriptorType; }
 
-   operator GPCSamplesVector &() { return samples; }
 
- };
 
- /** @brief Class encapsulating training parameters.
 
-  */
 
- struct GPCTrainingParams
 
- {
 
-   unsigned maxTreeDepth;  //!< Maximum tree depth to stop partitioning.
 
-   int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning.
 
-   int descriptorType;     //!< Type of descriptors to use.
 
-   bool printProgress;     //!< Print progress to stdout.
 
-   GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT,
 
-                      bool _printProgress = true )
 
-       : maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ),
 
-         printProgress( _printProgress )
 
-   {
 
-     CV_Assert( check() );
 
-   }
 
-   GPCTrainingParams( const GPCTrainingParams ¶ms )
 
-       : maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ),
 
-         printProgress( params.printProgress )
 
-   {
 
-     CV_Assert( check() );
 
-   }
 
-   bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; }
 
- };
 
- /** @brief Class encapsulating matching parameters.
 
-  */
 
- struct GPCMatchingParams
 
- {
 
-   bool useOpenCL; //!< Whether to use OpenCL to speed up the matching.
 
-   GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {}
 
-   GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {}
 
- };
 
- /** @brief Class for individual tree.
 
-  */
 
- class CV_EXPORTS_W GPCTree : public Algorithm
 
- {
 
- public:
 
-   struct Node
 
-   {
 
-     Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients
 
-     double rhs;                                        //!< Bias term of the hyperplane
 
-     unsigned left;
 
-     unsigned right;
 
-     bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; }
 
-   };
 
- private:
 
-   typedef GPCSamplesVector::iterator SIter;
 
-   std::vector< Node > nodes;
 
-   GPCTrainingParams params;
 
-   bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth );
 
- public:
 
-   void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() );
 
-   void write( FileStorage &fs ) const;
 
-   void read( const FileNode &fn );
 
-   unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const;
 
-   static Ptr< GPCTree > create() { return makePtr< GPCTree >(); }
 
-   bool operator==( const GPCTree &t ) const { return nodes == t.nodes; }
 
-   int getDescriptorType() const { return params.descriptorType; }
 
- };
 
- template < int T > class CV_EXPORTS_W GPCForest : public Algorithm
 
- {
 
- private:
 
-   struct Trail
 
-   {
 
-     unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell?
 
-     Point2i coord;    //!< Patch coordinates.
 
-     bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; }
 
-     bool operator<( const Trail &trail ) const
 
-     {
 
-       for ( int i = 0; i < T - 1; ++i )
 
-         if ( leaf[i] != trail.leaf[i] )
 
-           return leaf[i] < trail.leaf[i];
 
-       return leaf[T - 1] < trail.leaf[T - 1];
 
-     }
 
-   };
 
-   class ParallelTrailsFilling : public ParallelLoopBody
 
-   {
 
-   private:
 
-     const GPCForest *forest;
 
-     const std::vector< GPCPatchDescriptor > *descr;
 
-     std::vector< Trail > *trails;
 
-     ParallelTrailsFilling &operator=( const ParallelTrailsFilling & );
 
-   public:
 
-     ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails )
 
-         : forest( _forest ), descr( _descr ), trails( _trails ){};
 
-     void operator()( const Range &range ) const
 
-     {
 
-       for ( int t = range.start; t < range.end; ++t )
 
-         for ( size_t i = 0; i < descr->size(); ++i )
 
-           trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) );
 
-     }
 
-   };
 
-   GPCTree tree[T];
 
- public:
 
-   /** @brief Train the forest using one sample set for every tree.
 
-    * Please, consider using the next method instead of this one for better quality.
 
-    */
 
-   void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() )
 
-   {
 
-     for ( int i = 0; i < T; ++i )
 
-       tree[i].train( samples, params );
 
-   }
 
-   /** @brief Train the forest using individual samples for each tree.
 
-    * It is generally better to use this instead of the first method.
 
-    */
 
-   void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >,
 
-               const GPCTrainingParams params = GPCTrainingParams() )
 
-   {
 
-     for ( int i = 0; i < T; ++i )
 
-     {
 
-       Ptr< GPCTrainingSamples > samples =
 
-         GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
 
-       tree[i].train( *samples, params );
 
-     }
 
-   }
 
-   void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
 
-               const GPCTrainingParams params = GPCTrainingParams() )
 
-   {
 
-     for ( int i = 0; i < T; ++i )
 
-     {
 
-       Ptr< GPCTrainingSamples > samples =
 
-         GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
 
-       tree[i].train( *samples, params );
 
-     }
 
-   }
 
-   void write( FileStorage &fs ) const
 
-   {
 
-     fs << "ntrees" << T << "trees"
 
-        << "[";
 
-     for ( int i = 0; i < T; ++i )
 
-     {
 
-       fs << "{";
 
-       tree[i].write( fs );
 
-       fs << "}";
 
-     }
 
-     fs << "]";
 
-   }
 
-   void read( const FileNode &fn )
 
-   {
 
-     CV_Assert( T <= (int)fn["ntrees"] );
 
-     FileNodeIterator it = fn["trees"].begin();
 
-     for ( int i = 0; i < T; ++i, ++it )
 
-       tree[i].read( *it );
 
-   }
 
-   /** @brief Find correspondences between two images.
 
-    * @param[in] imgFrom First image in a sequence.
 
-    * @param[in] imgTo Second image in a sequence.
 
-    * @param[out] corr Output vector with pairs of corresponding points.
 
-    * @param[in] params Additional matching parameters for fine-tuning.
 
-    */
 
-   void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
 
-                             const GPCMatchingParams params = GPCMatchingParams() ) const;
 
-   static Ptr< GPCForest > create() { return makePtr< GPCForest >(); }
 
- };
 
- class CV_EXPORTS_W GPCDetails
 
- {
 
- public:
 
-   static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr );
 
-   static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
 
-                                          int type );
 
-   static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y );
 
- };
 
- template < int T >
 
- void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
 
-                                           const GPCMatchingParams params ) const
 
- {
 
-   CV_Assert( imgFrom.channels() == 3 );
 
-   CV_Assert( imgTo.channels() == 3 );
 
-   Mat from, to;
 
-   imgFrom.getMat().convertTo( from, CV_32FC3 );
 
-   imgTo.getMat().convertTo( to, CV_32FC3 );
 
-   cvtColor( from, from, COLOR_BGR2YCrCb );
 
-   cvtColor( to, to, COLOR_BGR2YCrCb );
 
-   Mat fromCh[3], toCh[3];
 
-   split( from, fromCh );
 
-   split( to, toCh );
 
-   std::vector< GPCPatchDescriptor > descr;
 
-   GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() );
 
-   std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() );
 
-   for ( size_t i = 0; i < descr.size(); ++i )
 
-     GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y );
 
-   parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) );
 
-   descr.clear();
 
-   GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() );
 
-   for ( size_t i = 0; i < descr.size(); ++i )
 
-     GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y );
 
-   parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) );
 
-   std::sort( trailsFrom.begin(), trailsFrom.end() );
 
-   std::sort( trailsTo.begin(), trailsTo.end() );
 
-   for ( size_t i = 0; i < trailsFrom.size(); ++i )
 
-   {
 
-     bool uniq = true;
 
-     while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] )
 
-       ++i, uniq = false;
 
-     if ( uniq )
 
-     {
 
-       typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] );
 
-       if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) )
 
-         corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) );
 
-     }
 
-   }
 
-   GPCDetails::dropOutliers( corr );
 
- }
 
- //! @}
 
- } // namespace optflow
 
- CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node );
 
- CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node );
 
- } // namespace cv
 
- #endif
 
 
  |