| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                          License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef __OPENCV_STEREO_HPP__
 
- #define __OPENCV_STEREO_HPP__
 
- #include "opencv2/core.hpp"
 
- #include "opencv2/features2d.hpp"
 
- #include "opencv2/core/affine.hpp"
 
- #include "opencv2/stereo/descriptor.hpp"
 
- #include "opencv2/stereo/matching.hpp"
 
- /**
 
- @defgroup stereo Stereo Correspondance Algorithms
 
- */
 
- namespace cv
 
- {
 
-     namespace stereo
 
-     {
 
-         //! @addtogroup stereo
 
-         //! @{
 
-         //		 void correctMatches( InputArray F, InputArray points1, InputArray points2,
 
-         //	OutputArray newPoints1, OutputArray newPoints2 );
 
-         /** @brief Filters off small noise blobs (speckles) in the disparity map
 
-         @param img The input 16-bit signed disparity image
 
-         @param newVal The disparity value used to paint-off the speckles
 
-         @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
 
-         affected by the algorithm
 
-         @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
 
-         blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
 
-         disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
 
-         account when specifying this parameter value.
 
-         @param buf The optional temporary buffer to avoid memory allocation within the function.
 
-         */
 
-         /** @brief The base class for stereo correspondence algorithms.
 
-         */
 
-         class StereoMatcher : public Algorithm
 
-         {
 
-         public:
 
-             enum { DISP_SHIFT = 4,
 
-                 DISP_SCALE = (1 << DISP_SHIFT)
 
-             };
 
-             /** @brief Computes disparity map for the specified stereo pair
 
-             @param left Left 8-bit single-channel image.
 
-             @param right Right image of the same size and the same type as the left one.
 
-             @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
 
-             like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
 
-             has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
 
-             */
 
-             virtual void compute( InputArray left, InputArray right,
 
-                 OutputArray disparity ) = 0;
 
-             virtual int getMinDisparity() const = 0;
 
-             virtual void setMinDisparity(int minDisparity) = 0;
 
-             virtual int getNumDisparities() const = 0;
 
-             virtual void setNumDisparities(int numDisparities) = 0;
 
-             virtual int getBlockSize() const = 0;
 
-             virtual void setBlockSize(int blockSize) = 0;
 
-             virtual int getSpeckleWindowSize() const = 0;
 
-             virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
 
-             virtual int getSpeckleRange() const = 0;
 
-             virtual void setSpeckleRange(int speckleRange) = 0;
 
-             virtual int getDisp12MaxDiff() const = 0;
 
-             virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
 
-         };
 
-         //!speckle removal algorithms. These algorithms have the purpose of removing small regions
 
-         enum {
 
-             CV_SPECKLE_REMOVAL_ALGORITHM, CV_SPECKLE_REMOVAL_AVG_ALGORITHM
 
-         };
 
-         //!subpixel interpolationm methods for disparities.
 
-         enum{
 
-             CV_QUADRATIC_INTERPOLATION, CV_SIMETRICV_INTERPOLATION
 
-         };
 
-         /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
 
-         contributed to OpenCV by K. Konolige.
 
-         */
 
-         class StereoBinaryBM : public StereoMatcher
 
-         {
 
-         public:
 
-             enum { PREFILTER_NORMALIZED_RESPONSE = 0,
 
-                 PREFILTER_XSOBEL              = 1
 
-             };
 
-             virtual int getPreFilterType() const = 0;
 
-             virtual void setPreFilterType(int preFilterType) = 0;
 
-             virtual int getPreFilterSize() const = 0;
 
-             virtual void setPreFilterSize(int preFilterSize) = 0;
 
-             virtual int getPreFilterCap() const = 0;
 
-             virtual void setPreFilterCap(int preFilterCap) = 0;
 
-             virtual int getTextureThreshold() const = 0;
 
-             virtual void setTextureThreshold(int textureThreshold) = 0;
 
-             virtual int getUniquenessRatio() const = 0;
 
-             virtual void setUniquenessRatio(int uniquenessRatio) = 0;
 
-             virtual int getSmallerBlockSize() const = 0;
 
-             virtual void setSmallerBlockSize(int blockSize) = 0;
 
-             virtual int getScalleFactor() const = 0 ;
 
-             virtual void setScalleFactor(int factor) = 0;
 
-             virtual int getSpekleRemovalTechnique() const = 0 ;
 
-             virtual void setSpekleRemovalTechnique(int factor) = 0;
 
-             virtual bool getUsePrefilter() const = 0 ;
 
-             virtual void setUsePrefilter(bool factor) = 0;
 
-             virtual int getBinaryKernelType() const = 0;
 
-             virtual void setBinaryKernelType(int value) = 0;
 
-             virtual int getAgregationWindowSize() const = 0;
 
-             virtual void setAgregationWindowSize(int value) = 0;
 
-             /** @brief Creates StereoBM object
 
-             @param numDisparities the disparity search range. For each pixel algorithm will find the best
 
-             disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
 
-             shifted by changing the minimum disparity.
 
-             @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
 
-             (as the block is centered at the current pixel). Larger block size implies smoother, though less
 
-             accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
 
-             chance for algorithm to find a wrong correspondence.
 
-             The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
 
-             a specific stereo pair.
 
-             */
 
-             CV_EXPORTS static Ptr< cv::stereo::StereoBinaryBM > create(int numDisparities = 0, int blockSize = 9);
 
-         };
 
-         /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
 
-         one as follows:
 
-         -   By default, the algorithm is single-pass, which means that you consider only 5 directions
 
-         instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
 
-         algorithm but beware that it may consume a lot of memory.
 
-         -   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
 
-         blocks to single pixels.
 
-         -   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
 
-         sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
 
-         -   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
 
-         example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
 
-         check, quadratic interpolation and speckle filtering).
 
-         @note
 
-         -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
 
-         at opencv_source_code/samples/python2/stereo_match.py
 
-         */
 
-         class StereoBinarySGBM : public StereoMatcher
 
-         {
 
-         public:
 
-             enum
 
-             {
 
-                 MODE_SGBM = 0,
 
-                 MODE_HH   = 1
 
-             };
 
-             virtual int getPreFilterCap() const = 0;
 
-             virtual void setPreFilterCap(int preFilterCap) = 0;
 
-             virtual int getUniquenessRatio() const = 0;
 
-             virtual void setUniquenessRatio(int uniquenessRatio) = 0;
 
-             virtual int getP1() const = 0;
 
-             virtual void setP1(int P1) = 0;
 
-             virtual int getP2() const = 0;
 
-             virtual void setP2(int P2) = 0;
 
-             virtual int getMode() const = 0;
 
-             virtual void setMode(int mode) = 0;
 
-             virtual int getSpekleRemovalTechnique() const = 0 ;
 
-             virtual void setSpekleRemovalTechnique(int factor) = 0;
 
-             virtual int getBinaryKernelType() const = 0;
 
-             virtual void setBinaryKernelType(int value) = 0;
 
-             virtual int getSubPixelInterpolationMethod() const = 0;
 
-             virtual void setSubPixelInterpolationMethod(int value) = 0;
 
-             /** @brief Creates StereoSGBM object
 
-             @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
 
-             rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
 
-             @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
 
-             zero. In the current implementation, this parameter must be divisible by 16.
 
-             @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
 
-             somewhere in the 3..11 range.
 
-             @param P1 The first parameter controlling the disparity smoothness.This parameter is used for the case of slanted surfaces (not fronto parallel).
 
-             @param P2 The second parameter controlling the disparity smoothness.This parameter is used for "solving" the depth discontinuities problem.
 
-             The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
 
-             between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
 
-             pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
 
-             P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
 
-             32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
 
-             @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
 
-             disparity check. Set it to a non-positive value to disable the check.
 
-             @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
 
-             computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
 
-             The result values are passed to the Birchfield-Tomasi pixel cost function.
 
-             @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
 
-             value should "win" the second best value to consider the found match correct. Normally, a value
 
-             within the 5-15 range is good enough.
 
-             @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
 
-             and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
 
-             50-200 range.
 
-             @param speckleRange Maximum disparity variation within each connected component. If you do speckle
 
-             filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
 
-             Normally, 1 or 2 is good enough.
 
-             @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
 
-             algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
 
-             huge for HD-size pictures. By default, it is set to false .
 
-             The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
 
-             set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
 
-             to a custom value.
 
-             */
 
-             CV_EXPORTS static Ptr<cv::stereo::StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
 
-                 int P1 = 100, int P2 = 1000, int disp12MaxDiff = 1,
 
-                 int preFilterCap = 0, int uniquenessRatio = 5,
 
-                 int speckleWindowSize = 400, int speckleRange = 200,
 
-                 int mode = StereoBinarySGBM::MODE_SGBM);
 
-         };
 
-         //! @}
 
-     }//stereo
 
- } // cv
 
- #endif
 
 
  |