| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 | 
							- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                          License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- /** @file
 
- @author Tolga Birdal <tbirdal AT gmail.com>
 
- */
 
- #ifndef __OPENCV_SURFACE_MATCHING_HELPERS_HPP__
 
- #define __OPENCV_SURFACE_MATCHING_HELPERS_HPP__
 
- #include <opencv2/core.hpp>
 
- namespace cv
 
- {
 
- namespace ppf_match_3d
 
- {
 
- //! @addtogroup surface_matching
 
- //! @{
 
- /**
 
-  *  @brief Load a PLY file
 
-  *  @param [in] fileName The PLY model to read
 
-  *  @param [in] withNormals Flag wheather the input PLY contains normal information,
 
-  *  and whether it should be loaded or not
 
-  *  @return Returns the matrix on successfull load
 
-  */
 
- CV_EXPORTS Mat loadPLYSimple(const char* fileName, int withNormals = 0);
 
- /**
 
-  *  @brief Write a point cloud to PLY file
 
-  *  @param [in] PC Input point cloud
 
-  *  @param [in] fileName The PLY model file to write
 
- */
 
- CV_EXPORTS void writePLY(Mat PC, const char* fileName);
 
- /**
 
- *  @brief Used for debbuging pruposes, writes a point cloud to a PLY file with the tip
 
- *  of the normal vectors as visible red points
 
- *  @param [in] PC Input point cloud
 
- *  @param [in] fileName The PLY model file to write
 
- */
 
- CV_EXPORTS void writePLYVisibleNormals(Mat PC, const char* fileName);
 
- Mat samplePCUniform(Mat PC, int sampleStep);
 
- Mat samplePCUniformInd(Mat PC, int sampleStep, std::vector<int>& indices);
 
- /**
 
-  *  Sample a point cloud using uniform steps
 
-  *  @param [in] pc Input point cloud
 
-  *  @param [in] xrange X components (min and max) of the bounding box of the model
 
-  *  @param [in] yrange Y components (min and max) of the bounding box of the model
 
-  *  @param [in] zrange Z components (min and max) of the bounding box of the model
 
-  *  @param [in] sample_step_relative The point cloud is sampled such that all points
 
-  *  have a certain minimum distance. This minimum distance is determined relatively using
 
-  *  the parameter sample_step_relative.
 
-  *  @param [in] weightByCenter The contribution of the quantized data points can be weighted
 
-  *  by the distance to the origin. This parameter enables/disables the use of weighting.
 
-  *  @return Sampled point cloud
 
- */
 
- CV_EXPORTS Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrange[2], float sample_step_relative, int weightByCenter=0);
 
- void computeBboxStd(Mat pc, float xRange[2], float yRange[2], float zRange[2]);
 
- void* indexPCFlann(Mat pc);
 
- void destroyFlann(void* flannIndex);
 
- void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances);
 
- void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances, const int numNeighbors);
 
- /**
 
-  *  Mostly for visualization purposes. Normalizes the point cloud in a Hartley-Zissermann
 
-  *  fashion. In other words, the point cloud is centered, and scaled such that the largest
 
-  *  distance from the origin is sqrt(2). Finally a rescaling is applied.
 
-  *  @param [in] pc Input point cloud (CV_32F family). Point clouds with 3 or 6 elements per
 
-  *  row are expected.
 
-  *  @param [in] scale The scale after normalization. Default to 1.
 
-  *  @return Normalized point cloud
 
- */
 
- CV_EXPORTS Mat normalize_pc(Mat pc, float scale);
 
- Mat normalizePCCoeff(Mat pc, float scale, float* Cx, float* Cy, float* Cz, float* MinVal, float* MaxVal);
 
- Mat transPCCoeff(Mat pc, float scale, float Cx, float Cy, float Cz, float MinVal, float MaxVal);
 
- /**
 
-  *  Transforms the point cloud with a given a homogeneous 4x4 pose matrix (in double precision)
 
-  *  @param [in] pc Input point cloud (CV_32F family). Point clouds with 3 or 6 elements per
 
-  *  row are expected. In the case where the normals are provided, they are also rotated to be
 
-  *  compatible with the entire transformation
 
-  *  @param [in] Pose 4x4 pose matrix, but linearized in row-major form.
 
-  *  @return Transformed point cloud
 
- */
 
- CV_EXPORTS Mat transformPCPose(Mat pc, const double Pose[16]);
 
- /**
 
-  *  Generate a random 4x4 pose matrix
 
-  *  @param [out] Pose The random pose
 
- */
 
- CV_EXPORTS void getRandomPose(double Pose[16]);
 
- /**
 
-  *  Adds a uniform noise in the given scale to the input point cloud
 
-  *  @param [in] pc Input point cloud (CV_32F family).
 
-  *  @param [in] scale Input scale of the noise. The larger the scale, the more noisy the output
 
- */
 
- CV_EXPORTS Mat addNoisePC(Mat pc, double scale);
 
- /**
 
-  *  @brief Compute the normals of an arbitrary point cloud
 
-  *  computeNormalsPC3d uses a plane fitting approach to smoothly compute
 
-  *  local normals. Normals are obtained through the eigenvector of the covariance
 
-  *  matrix, corresponding to the smallest eigen value.
 
-  *  If PCNormals is provided to be an Nx6 matrix, then no new allocation
 
-  *  is made, instead the existing memory is overwritten.
 
-  *  @param [in] PC Input point cloud to compute the normals for.
 
-  *  @param [out] PCNormals Output point cloud
 
-  *  @param [in] NumNeighbors Number of neighbors to take into account in a local region
 
-  *  @param [in] FlipViewpoint Should normals be flipped to a viewing direction?
 
-  *  @param [in] viewpoint
 
-  *  @return Returns 0 on success
 
-  */
 
- CV_EXPORTS_W int computeNormalsPC3d(const Mat& PC, CV_OUT Mat& PCNormals, const int NumNeighbors, const bool FlipViewpoint, const Vec3d& viewpoint);
 
- //! @}
 
- } // namespace ppf_match_3d
 
- } // namespace cv
 
- #endif
 
 
  |