| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
-  //
 
-  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
-  //
 
-  //  By downloading, copying, installing or using the software you agree to this license.
 
-  //  If you do not agree to this license, do not download, install,
 
-  //  copy or use the software.
 
-  //
 
-  //
 
-  //                           License Agreement
 
-  //                For Open Source Computer Vision Library
 
-  //
 
-  // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 
-  // Third party copyrights are property of their respective owners.
 
-  //
 
-  // Redistribution and use in source and binary forms, with or without modification,
 
-  // are permitted provided that the following conditions are met:
 
-  //
 
-  //   * Redistribution's of source code must retain the above copyright notice,
 
-  //     this list of conditions and the following disclaimer.
 
-  //
 
-  //   * Redistribution's in binary form must reproduce the above copyright notice,
 
-  //     this list of conditions and the following disclaimer in the documentation
 
-  //     and/or other materials provided with the distribution.
 
-  //
 
-  //   * The name of the copyright holders may not be used to endorse or promote products
 
-  //     derived from this software without specific prior written permission.
 
-  //
 
-  // This software is provided by the copyright holders and contributors "as is" and
 
-  // any express or implied warranties, including, but not limited to, the implied
 
-  // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
-  // In no event shall the Intel Corporation or contributors be liable for any direct,
 
-  // indirect, incidental, special, exemplary, or consequential damages
 
-  // (including, but not limited to, procurement of substitute goods or services;
 
-  // loss of use, data, or profits; or business interruption) however caused
 
-  // and on any theory of liability, whether in contract, strict liability,
 
-  // or tort (including negligence or otherwise) arising in any way out of
 
-  // the use of this software, even if advised of the possibility of such damage.
 
-  //
 
-  //M*/
 
- #ifndef __OPENCV_FEATURE_HPP__
 
- #define __OPENCV_FEATURE_HPP__
 
- #include "opencv2/core.hpp"
 
- #include "opencv2/imgproc.hpp"
 
- #include <iostream>
 
- #include <string>
 
- #include <time.h>
 
- /*
 
-  * TODO This implementation is based on apps/traincascade/
 
-  * TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
 
-  */
 
- namespace cv
 
- {
 
- //! @addtogroup tracking
 
- //! @{
 
- #define FEATURES "features"
 
- #define CC_FEATURES       FEATURES
 
- #define CC_FEATURE_PARAMS "featureParams"
 
- #define CC_MAX_CAT_COUNT  "maxCatCount"
 
- #define CC_FEATURE_SIZE   "featSize"
 
- #define CC_NUM_FEATURES   "numFeat"
 
- #define CC_ISINTEGRAL "isIntegral"
 
- #define CC_RECTS       "rects"
 
- #define CC_TILTED      "tilted"
 
- #define CC_RECT "rect"
 
- #define LBPF_NAME "lbpFeatureParams"
 
- #define HOGF_NAME "HOGFeatureParams"
 
- #define HFP_NAME "haarFeatureParams"
 
- #define CV_HAAR_FEATURE_MAX 3
 
- #define N_BINS 9
 
- #define N_CELLS 4
 
- #define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step )                      \
 
-     /* (x, y) */                                                          \
 
-     (p0) = (rect).x + (step) * (rect).y;                                  \
 
-     /* (x + w, y) */                                                      \
 
-     (p1) = (rect).x + (rect).width + (step) * (rect).y;                   \
 
-     /* (x + w, y) */                                                      \
 
-     (p2) = (rect).x + (step) * ((rect).y + (rect).height);                \
 
-     /* (x + w, y + h) */                                                  \
 
-     (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);
 
- #define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step )                   \
 
-     /* (x, y) */                                                          \
 
-     (p0) = (rect).x + (step) * (rect).y;                                  \
 
-     /* (x - h, y + h) */                                                  \
 
-     (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
 
-     /* (x + w, y + w) */                                                  \
 
-     (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width);  \
 
-     /* (x + w - h, y + w + h) */                                          \
 
-     (p3) = (rect).x + (rect).width - (rect).height                        \
 
-            + (step) * ((rect).y + (rect).width + (rect).height);
 
- float calcNormFactor( const Mat& sum, const Mat& sqSum );
 
- template<class Feature>
 
- void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap )
 
- {
 
-   fs << FEATURES << "[";
 
-   const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap;
 
-   for ( int fi = 0; fi < featureMap.cols; fi++ )
 
-     if( featureMap_( 0, fi ) >= 0 )
 
-     {
 
-       fs << "{";
 
-       features[fi].write( fs );
 
-       fs << "}";
 
-     }
 
-   fs << "]";
 
- }
 
- class CvParams
 
- {
 
-  public:
 
-   CvParams();
 
-   virtual ~CvParams()
 
-   {
 
-   }
 
-   // from|to file
 
-   virtual void write( FileStorage &fs ) const = 0;
 
-   virtual bool read( const FileNode &node ) = 0;
 
-   // from|to screen
 
-   virtual void printDefaults() const;
 
-   virtual void printAttrs() const;
 
-   virtual bool scanAttr( const std::string prmName, const std::string val );
 
-   std::string name;
 
- };
 
- class CvFeatureParams : public CvParams
 
- {
 
-  public:
 
-   enum
 
-   {
 
-     HAAR = 0,
 
-     LBP = 1,
 
-     HOG = 2
 
-   };
 
-   CvFeatureParams();
 
-   virtual void init( const CvFeatureParams& fp );
 
-   virtual void write( FileStorage &fs ) const;
 
-   virtual bool read( const FileNode &node );
 
-   static Ptr<CvFeatureParams> create( int featureType );
 
-   int maxCatCount;  // 0 in case of numerical features
 
-   int featSize;  // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
 
-   int numFeatures;
 
- };
 
- class CvFeatureEvaluator
 
- {
 
-  public:
 
-   virtual ~CvFeatureEvaluator()
 
-   {
 
-   }
 
-   virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
 
-   virtual void setImage( const Mat& img, uchar clsLabel, int idx );
 
-   virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0;
 
-   virtual float operator()( int featureIdx, int sampleIdx ) = 0;
 
-   static Ptr<CvFeatureEvaluator> create( int type );
 
-   int getNumFeatures() const
 
-   {
 
-     return numFeatures;
 
-   }
 
-   int getMaxCatCount() const
 
-   {
 
-     return featureParams->maxCatCount;
 
-   }
 
-   int getFeatureSize() const
 
-   {
 
-     return featureParams->featSize;
 
-   }
 
-   const Mat& getCls() const
 
-   {
 
-     return cls;
 
-   }
 
-   float getCls( int si ) const
 
-   {
 
-     return cls.at<float>( si, 0 );
 
-   }
 
-  protected:
 
-   virtual void generateFeatures() = 0;
 
-   int npos, nneg;
 
-   int numFeatures;
 
-   Size winSize;
 
-   CvFeatureParams *featureParams;
 
-   Mat cls;
 
- };
 
- class CvHaarFeatureParams : public CvFeatureParams
 
- {
 
-  public:
 
-   CvHaarFeatureParams();
 
-   virtual void init( const CvFeatureParams& fp );
 
-   virtual void write( FileStorage &fs ) const;
 
-   virtual bool read( const FileNode &node );
 
-   virtual void printDefaults() const;
 
-   virtual void printAttrs() const;
 
-   virtual bool scanAttr( const std::string prm, const std::string val );
 
-   bool isIntegral;
 
- };
 
- class CvHaarEvaluator : public CvFeatureEvaluator
 
- {
 
-  public:
 
-   class FeatureHaar
 
-   {
 
-    public:
 
-     FeatureHaar( Size patchSize );
 
-     bool eval( const Mat& image, Rect ROI, float* result ) const;
 
-     int getNumAreas();
 
-     const std::vector<float>& getWeights() const;
 
-     const std::vector<Rect>& getAreas() const;
 
-     void write( FileStorage ) const
 
-     {
 
-     }
 
-     ;
 
-     float getInitMean() const;
 
-     float getInitSigma() const;
 
-    private:
 
-     int m_type;
 
-     int m_numAreas;
 
-     std::vector<float> m_weights;
 
-     float m_initMean;
 
-     float m_initSigma;
 
-     void generateRandomFeature( Size imageSize );
 
-     float getSum( const Mat& image, Rect imgROI ) const;
 
-     std::vector<Rect> m_areas;  // areas within the patch over which to compute the feature
 
-     cv::Size m_initSize;  // size of the patch used during training
 
-     cv::Size m_curSize;  // size of the patches currently under investigation
 
-     float m_scaleFactorHeight;  // scaling factor in vertical direction
 
-     float m_scaleFactorWidth;  // scaling factor in horizontal direction
 
-     std::vector<Rect> m_scaleAreas;  // areas after scaling
 
-     std::vector<float> m_scaleWeights;  // weights after scaling
 
-   };
 
-   virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
 
-   virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 );
 
-   virtual float operator()( int featureIdx, int sampleIdx );
 
-   virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
 
-   void writeFeature( FileStorage &fs ) const;  // for old file format
 
-   const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const;
 
-   inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx )
 
-   {
 
-     return features[idx];
 
-   }
 
-   void setWinSize( Size patchSize );
 
-   Size setWinSize() const;
 
-   virtual void generateFeatures();
 
-   /**
 
-    * TODO new method
 
-    * \brief Overload the original generateFeatures in order to limit the number of the features
 
-    * @param numFeatures Number of the features
 
-    */
 
-   virtual void generateFeatures( int numFeatures );
 
-  protected:
 
-   bool isIntegral;
 
-   /* TODO Added from MIL implementation */
 
-   Mat _ii_img;
 
-   void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs )
 
-   {
 
-     Mat ii_img;
 
-     integral( img, ii_img, CV_32F );
 
-     split( ii_img, ii_imgs );
 
-   }
 
-   std::vector<FeatureHaar> features;
 
-   Mat sum; /* sum images (each row represents image) */
 
- };
 
- struct CvHOGFeatureParams : public CvFeatureParams
 
- {
 
-   CvHOGFeatureParams();
 
- };
 
- class CvHOGEvaluator : public CvFeatureEvaluator
 
- {
 
-  public:
 
-   virtual ~CvHOGEvaluator()
 
-   {
 
-   }
 
-   virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
 
-   virtual void setImage( const Mat& img, uchar clsLabel, int idx );
 
-   virtual float operator()( int varIdx, int sampleIdx );
 
-   virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
 
-  protected:
 
-   virtual void generateFeatures();
 
-   virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;
 
-   class Feature
 
-   {
 
-    public:
 
-     Feature();
 
-     Feature( int offset, int x, int y, int cellW, int cellH );
 
-     float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const;
 
-     void write( FileStorage &fs ) const;
 
-     void write( FileStorage &fs, int varIdx ) const;
 
-     Rect rect[N_CELLS];  //cells
 
-     struct
 
-     {
 
-       int p0, p1, p2, p3;
 
-     } fastRect[N_CELLS];
 
-   };
 
-   std::vector<Feature> features;
 
-   Mat normSum;  //for nomalization calculation (L1 or L2)
 
-   std::vector<Mat> hist;
 
- };
 
- inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx )
 
- {
 
-   int featureIdx = varIdx / ( N_BINS * N_CELLS );
 
-   int componentIdx = varIdx % ( N_BINS * N_CELLS );
 
-   //return features[featureIdx].calc( hist, sampleIdx, componentIdx);
 
-   return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx );
 
- }
 
- inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const
 
- {
 
-   float normFactor;
 
-   float res;
 
-   int binIdx = featComponent % N_BINS;
 
-   int cellIdx = featComponent / N_BINS;
 
-   const float *phist = _hists[binIdx].ptr<float>( (int) y );
 
-   res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3];
 
-   const float *pnormSum = _normSum.ptr<float>( (int) y );
 
-   normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] );
 
-   res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f;  //for cutting negative values, which apper due to floating precision
 
-   return res;
 
- }
 
- struct CvLBPFeatureParams : CvFeatureParams
 
- {
 
-   CvLBPFeatureParams();
 
- };
 
- class CvLBPEvaluator : public CvFeatureEvaluator
 
- {
 
-  public:
 
-   virtual ~CvLBPEvaluator()
 
-   {
 
-   }
 
-   virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
 
-   virtual void setImage( const Mat& img, uchar clsLabel, int idx );
 
-   virtual float operator()( int featureIdx, int sampleIdx )
 
-   {
 
-     return (float) features[featureIdx].calc( sum, sampleIdx );
 
-   }
 
-   virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
 
-  protected:
 
-   virtual void generateFeatures();
 
-   class Feature
 
-   {
 
-    public:
 
-     Feature();
 
-     Feature( int offset, int x, int y, int _block_w, int _block_h );
 
-     uchar calc( const Mat& _sum, size_t y ) const;
 
-     void write( FileStorage &fs ) const;
 
-     Rect rect;
 
-     int p[16];
 
-   };
 
-   std::vector<Feature> features;
 
-   Mat sum;
 
- };
 
- inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const
 
- {
 
-   const int* psum = _sum.ptr<int>( (int) y );
 
-   int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];
 
-   return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) |   // 0
 
-       ( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) |    // 1
 
-       ( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) |    // 2
 
-       ( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) |  // 5
 
-       ( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) |  // 8
 
-       ( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) |  // 7
 
-       ( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) |   // 6
 
-       ( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) );     // 3
 
- }
 
- //! @}
 
- } /* namespace cv */
 
- #endif
 
 
  |