| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_#include <algorithm>#include <map>#include <cassert>#include <cstring>#include "general.h"#include "nn_index.h"#include "matrix.h"#include "result_set.h"#include "heap.h"#include "allocator.h"#include "random.h"#include "saving.h"namespace cvflann{struct KDTreeSingleIndexParams : public IndexParams{    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)    {        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;        (*this)["leaf_max_size"] = leaf_max_size;        (*this)["reorder"] = reorder;        (*this)["dim"] = dim;    }};/** * Randomized kd-tree index * * Contains the k-d trees and other information for indexing a set of points * for nearest-neighbor matching. */template <typename Distance>class KDTreeSingleIndex : public NNIndex<Distance>{public:    typedef typename Distance::ElementType ElementType;    typedef typename Distance::ResultType DistanceType;    /**     * KDTree constructor     *     * Params:     *          inputData = dataset with the input features     *          params = parameters passed to the kdtree algorithm     */    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),                      Distance d = Distance() ) :        dataset_(inputData), index_params_(params), distance_(d)    {        size_ = dataset_.rows;        dim_ = dataset_.cols;        root_node_ = 0;        int dim_param = get_param(params,"dim",-1);        if (dim_param>0) dim_ = dim_param;        leaf_max_size_ = get_param(params,"leaf_max_size",10);        reorder_ = get_param(params,"reorder",true);        // Create a permutable array of indices to the input vectors.        vind_.resize(size_);        for (size_t i = 0; i < size_; i++) {            vind_[i] = (int)i;        }    }    KDTreeSingleIndex(const KDTreeSingleIndex&);    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);    /**     * Standard destructor     */    ~KDTreeSingleIndex()    {        if (reorder_) delete[] data_.data;    }    /**     * Builds the index     */    void buildIndex()    {        computeBoundingBox(root_bbox_);        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree        if (reorder_) {            delete[] data_.data;            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);            for (size_t i=0; i<size_; ++i) {                for (size_t j=0; j<dim_; ++j) {                    data_[i][j] = dataset_[vind_[i]][j];                }            }        }        else {            data_ = dataset_;        }    }    flann_algorithm_t getType() const    {        return FLANN_INDEX_KDTREE_SINGLE;    }    void saveIndex(FILE* stream)    {        save_value(stream, size_);        save_value(stream, dim_);        save_value(stream, root_bbox_);        save_value(stream, reorder_);        save_value(stream, leaf_max_size_);        save_value(stream, vind_);        if (reorder_) {            save_value(stream, data_);        }        save_tree(stream, root_node_);    }    void loadIndex(FILE* stream)    {        load_value(stream, size_);        load_value(stream, dim_);        load_value(stream, root_bbox_);        load_value(stream, reorder_);        load_value(stream, leaf_max_size_);        load_value(stream, vind_);        if (reorder_) {            load_value(stream, data_);        }        else {            data_ = dataset_;        }        load_tree(stream, root_node_);        index_params_["algorithm"] = getType();        index_params_["leaf_max_size"] = leaf_max_size_;        index_params_["reorder"] = reorder_;    }    /**     *  Returns size of index.     */    size_t size() const    {        return size_;    }    /**     * Returns the length of an index feature.     */    size_t veclen() const    {        return dim_;    }    /**     * Computes the inde memory usage     * Returns: memory used by the index     */    int usedMemory() const    {        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory    }    /**     * \brief Perform k-nearest neighbor search     * \param[in] queries The query points for which to find the nearest neighbors     * \param[out] indices The indices of the nearest neighbors found     * \param[out] dists Distances to the nearest neighbors found     * \param[in] knn Number of nearest neighbors to return     * \param[in] params Search parameters     */    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)    {        assert(queries.cols == veclen());        assert(indices.rows >= queries.rows);        assert(dists.rows >= queries.rows);        assert(int(indices.cols) >= knn);        assert(int(dists.cols) >= knn);        KNNSimpleResultSet<DistanceType> resultSet(knn);        for (size_t i = 0; i < queries.rows; i++) {            resultSet.init(indices[i], dists[i]);            findNeighbors(resultSet, queries[i], params);        }    }    IndexParams getParameters() const    {        return index_params_;    }    /**     * Find set of nearest neighbors to vec. Their indices are stored inside     * the result object.     *     * Params:     *     result = the result object in which the indices of the nearest-neighbors are stored     *     vec = the vector for which to search the nearest neighbors     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)     */    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)    {        float epsError = 1+get_param(searchParams,"eps",0.0f);        std::vector<DistanceType> dists(dim_,0);        DistanceType distsq = computeInitialDistances(vec, dists);        searchLevel(result, vec, root_node_, distsq, dists, epsError);    }private:    /*--------------------- Internal Data Structures --------------------------*/    struct Node    {        /**         * Indices of points in leaf node         */        int left, right;        /**         * Dimension used for subdivision.         */        int divfeat;        /**         * The values used for subdivision.         */        DistanceType divlow, divhigh;        /**         * The child nodes.         */        Node* child1, * child2;    };    typedef Node* NodePtr;    struct Interval    {        DistanceType low, high;    };    typedef std::vector<Interval> BoundingBox;    typedef BranchStruct<NodePtr, DistanceType> BranchSt;    typedef BranchSt* Branch;    void save_tree(FILE* stream, NodePtr tree)    {        save_value(stream, *tree);        if (tree->child1!=NULL) {            save_tree(stream, tree->child1);        }        if (tree->child2!=NULL) {            save_tree(stream, tree->child2);        }    }    void load_tree(FILE* stream, NodePtr& tree)    {        tree = pool_.allocate<Node>();        load_value(stream, *tree);        if (tree->child1!=NULL) {            load_tree(stream, tree->child1);        }        if (tree->child2!=NULL) {            load_tree(stream, tree->child2);        }    }    void computeBoundingBox(BoundingBox& bbox)    {        bbox.resize(dim_);        for (size_t i=0; i<dim_; ++i) {            bbox[i].low = (DistanceType)dataset_[0][i];            bbox[i].high = (DistanceType)dataset_[0][i];        }        for (size_t k=1; k<dataset_.rows; ++k) {            for (size_t i=0; i<dim_; ++i) {                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];            }        }    }    /**     * Create a tree node that subdivides the list of vecs from vind[first]     * to vind[last].  The routine is called recursively on each sublist.     * Place a pointer to this new tree node in the location pTree.     *     * Params: pTree = the new node to create     *                  first = index of the first vector     *                  last = index of the last vector     */    NodePtr divideTree(int left, int right, BoundingBox& bbox)    {        NodePtr node = pool_.allocate<Node>(); // allocate memory        /* If too few exemplars remain, then make this a leaf node. */        if ( (right-left) <= leaf_max_size_) {            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */            node->left = left;            node->right = right;            // compute bounding-box of leaf points            for (size_t i=0; i<dim_; ++i) {                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];            }            for (int k=left+1; k<right; ++k) {                for (size_t i=0; i<dim_; ++i) {                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];                }            }        }        else {            int idx;            int cutfeat;            DistanceType cutval;            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);            node->divfeat = cutfeat;            BoundingBox left_bbox(bbox);            left_bbox[cutfeat].high = cutval;            node->child1 = divideTree(left, left+idx, left_bbox);            BoundingBox right_bbox(bbox);            right_bbox[cutfeat].low = cutval;            node->child2 = divideTree(left+idx, right, right_bbox);            node->divlow = left_bbox[cutfeat].high;            node->divhigh = right_bbox[cutfeat].low;            for (size_t i=0; i<dim_; ++i) {                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);            }        }        return node;    }    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)    {        min_elem = dataset_[ind[0]][dim];        max_elem = dataset_[ind[0]][dim];        for (int i=1; i<count; ++i) {            ElementType val = dataset_[ind[i]][dim];            if (val<min_elem) min_elem = val;            if (val>max_elem) max_elem = val;        }    }    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)    {        // find the largest span from the approximate bounding box        ElementType max_span = bbox[0].high-bbox[0].low;        cutfeat = 0;        cutval = (bbox[0].high+bbox[0].low)/2;        for (size_t i=1; i<dim_; ++i) {            ElementType span = bbox[i].high-bbox[i].low;            if (span>max_span) {                max_span = span;                cutfeat = i;                cutval = (bbox[i].high+bbox[i].low)/2;            }        }        // compute exact span on the found dimension        ElementType min_elem, max_elem;        computeMinMax(ind, count, cutfeat, min_elem, max_elem);        cutval = (min_elem+max_elem)/2;        max_span = max_elem - min_elem;        // check if a dimension of a largest span exists        size_t k = cutfeat;        for (size_t i=0; i<dim_; ++i) {            if (i==k) continue;            ElementType span = bbox[i].high-bbox[i].low;            if (span>max_span) {                computeMinMax(ind, count, i, min_elem, max_elem);                span = max_elem - min_elem;                if (span>max_span) {                    max_span = span;                    cutfeat = i;                    cutval = (min_elem+max_elem)/2;                }            }        }        int lim1, lim2;        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);        if (lim1>count/2) index = lim1;        else if (lim2<count/2) index = lim2;        else index = count/2;    }    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)    {        const float EPS=0.00001f;        DistanceType max_span = bbox[0].high-bbox[0].low;        for (size_t i=1; i<dim_; ++i) {            DistanceType span = bbox[i].high-bbox[i].low;            if (span>max_span) {                max_span = span;            }        }        DistanceType max_spread = -1;        cutfeat = 0;        for (size_t i=0; i<dim_; ++i) {            DistanceType span = bbox[i].high-bbox[i].low;            if (span>(DistanceType)((1-EPS)*max_span)) {                ElementType min_elem, max_elem;                computeMinMax(ind, count, cutfeat, min_elem, max_elem);                DistanceType spread = (DistanceType)(max_elem-min_elem);                if (spread>max_spread) {                    cutfeat = (int)i;                    max_spread = spread;                }            }        }        // split in the middle        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;        ElementType min_elem, max_elem;        computeMinMax(ind, count, cutfeat, min_elem, max_elem);        if (split_val<min_elem) cutval = (DistanceType)min_elem;        else if (split_val>max_elem) cutval = (DistanceType)max_elem;        else cutval = split_val;        int lim1, lim2;        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);        if (lim1>count/2) index = lim1;        else if (lim2<count/2) index = lim2;        else index = count/2;    }    /**     *  Subdivide the list of points by a plane perpendicular on axe corresponding     *  to the 'cutfeat' dimension at 'cutval' position.     *     *  On return:     *  dataset[ind[0..lim1-1]][cutfeat]<cutval     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval     *  dataset[ind[lim2..count]][cutfeat]>cutval     */    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)    {        /* Move vector indices for left subtree to front of list. */        int left = 0;        int right = count-1;        for (;; ) {            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;            if (left>right) break;            std::swap(ind[left], ind[right]); ++left; --right;        }        /* If either list is empty, it means that all remaining features         * are identical. Split in the middle to maintain a balanced tree.         */        lim1 = left;        right = count-1;        for (;; ) {            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;            if (left>right) break;            std::swap(ind[left], ind[right]); ++left; --right;        }        lim2 = left;    }    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)    {        DistanceType distsq = 0.0;        for (size_t i = 0; i < dim_; ++i) {            if (vec[i] < root_bbox_[i].low) {                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);                distsq += dists[i];            }            if (vec[i] > root_bbox_[i].high) {                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);                distsq += dists[i];            }        }        return distsq;    }    /**     * Performs an exact search in the tree starting from a node.     */    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,                     std::vector<DistanceType>& dists, const float epsError)    {        /* If this is a leaf node, then do check and return. */        if ((node->child1 == NULL)&&(node->child2 == NULL)) {            DistanceType worst_dist = result_set.worstDist();            for (int i=node->left; i<node->right; ++i) {                int index = reorder_ ? i : vind_[i];                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);                if (dist<worst_dist) {                    result_set.addPoint(dist,vind_[i]);                }            }            return;        }        /* Which child branch should be taken first? */        int idx = node->divfeat;        ElementType val = vec[idx];        DistanceType diff1 = val - node->divlow;        DistanceType diff2 = val - node->divhigh;        NodePtr bestChild;        NodePtr otherChild;        DistanceType cut_dist;        if ((diff1+diff2)<0) {            bestChild = node->child1;            otherChild = node->child2;            cut_dist = distance_.accum_dist(val, node->divhigh, idx);        }        else {            bestChild = node->child2;            otherChild = node->child1;            cut_dist = distance_.accum_dist( val, node->divlow, idx);        }        /* Call recursively to search next level down. */        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);        DistanceType dst = dists[idx];        mindistsq = mindistsq + cut_dist - dst;        dists[idx] = cut_dist;        if (mindistsq*epsError<=result_set.worstDist()) {            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);        }        dists[idx] = dst;    }private:    /**     * The dataset used by this index     */    const Matrix<ElementType> dataset_;    IndexParams index_params_;    int leaf_max_size_;    bool reorder_;    /**     *  Array of indices to vectors in the dataset.     */    std::vector<int> vind_;    Matrix<ElementType> data_;    size_t size_;    size_t dim_;    /**     * Array of k-d trees used to find neighbours.     */    NodePtr root_node_;    BoundingBox root_bbox_;    /**     * Pooled memory allocator.     *     * Using a pooled memory allocator is more efficient     * than allocating memory directly when there is a large     * number small of memory allocations.     */    PooledAllocator pool_;    Distance distance_;};   // class KDTree}#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
 |