| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 | 
							- /*#******************************************************************************
 
-  ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
-  **
 
-  ** By downloading, copying, installing or using the software you agree to this license.
 
-  ** If you do not agree to this license, do not download, install,
 
-  ** copy or use the software.
 
-  **
 
-  **
 
-  ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
 
-  ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
 
-  **
 
-  ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
 
-  **
 
-  **  Creation - enhancement process 2007-2015
 
-  **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
 
-  **
 
-  ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
 
-  ** Refer to the following research paper for more information:
 
-  ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
 
-  ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
 
-  ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
 
-  **
 
-  ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
 
-  ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
 
-  ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
 
-  ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
 
-  ** ====> more informations in the above cited Jeanny Heraults's book.
 
-  **
 
-  **                          License Agreement
 
-  **               For Open Source Computer Vision Library
 
-  **
 
-  ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
-  ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
 
-  **
 
-  **               For Human Visual System tools (bioinspired)
 
-  ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
 
-  **
 
-  ** Third party copyrights are property of their respective owners.
 
-  **
 
-  ** Redistribution and use in source and binary forms, with or without modification,
 
-  ** are permitted provided that the following conditions are met:
 
-  **
 
-  ** * Redistributions of source code must retain the above copyright notice,
 
-  **    this list of conditions and the following disclaimer.
 
-  **
 
-  ** * Redistributions in binary form must reproduce the above copyright notice,
 
-  **    this list of conditions and the following disclaimer in the documentation
 
-  **    and/or other materials provided with the distribution.
 
-  **
 
-  ** * The name of the copyright holders may not be used to endorse or promote products
 
-  **    derived from this software without specific prior written permission.
 
-  **
 
-  ** This software is provided by the copyright holders and contributors "as is" and
 
-  ** any express or implied warranties, including, but not limited to, the implied
 
-  ** warranties of merchantability and fitness for a particular purpose are disclaimed.
 
-  ** In no event shall the Intel Corporation or contributors be liable for any direct,
 
-  ** indirect, incidental, special, exemplary, or consequential damages
 
-  ** (including, but not limited to, procurement of substitute goods or services;
 
-  ** loss of use, data, or profits; or business interruption) however caused
 
-  ** and on any theory of liability, whether in contract, strict liability,
 
-  ** or tort (including negligence or otherwise) arising in any way out of
 
-  ** the use of this software, even if advised of the possibility of such damage.
 
-  *******************************************************************************/
 
- #ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__
 
- #define __OPENCV_BIOINSPIRED_RETINA_HPP__
 
- /**
 
- @file
 
- @date Jul 19, 2011
 
- @author Alexandre Benoit
 
- */
 
- #include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
 
- namespace cv{
 
- namespace bioinspired{
 
- //! @addtogroup bioinspired
 
- //! @{
 
- enum {
 
-     RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice
 
-     RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
 
-     RETINA_COLOR_BAYER//!< standard bayer sampling
 
- };
 
- /** @brief retina model parameters structure
 
-     For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
 
-     Here is the default configuration file of the retina module. It gives results such as the first
 
-     retina output shown on the top of this page.
 
-     @code{xml}
 
-     <?xml version="1.0"?>
 
-     <opencv_storage>
 
-     <OPLandIPLparvo>
 
-         <colorMode>1</colorMode>
 
-         <normaliseOutput>1</normaliseOutput>
 
-         <photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
 
-         <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
 
-         <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
 
-         <horizontalCellsGain>0.01</horizontalCellsGain>
 
-         <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
 
-         <hcellsSpatialConstant>7.</hcellsSpatialConstant>
 
-         <ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
 
-     <IPLmagno>
 
-         <normaliseOutput>1</normaliseOutput>
 
-         <parasolCells_beta>0.</parasolCells_beta>
 
-         <parasolCells_tau>0.</parasolCells_tau>
 
-         <parasolCells_k>7.</parasolCells_k>
 
-         <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
 
-         <V0CompressionParameter>9.5e-01</V0CompressionParameter>
 
-         <localAdaptintegration_tau>0.</localAdaptintegration_tau>
 
-         <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
 
-     </opencv_storage>
 
-     @endcode
 
-     Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
 
-     @code{xml}
 
-     <?xml version="1.0"?>
 
-     <opencv_storage>
 
-     <OPLandIPLparvo>
 
-       <colorMode>1</colorMode>
 
-       <normaliseOutput>1</normaliseOutput>
 
-       <photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
 
-       <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
 
-       <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
 
-       <horizontalCellsGain>0.3</horizontalCellsGain>
 
-       <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
 
-       <hcellsSpatialConstant>7.</hcellsSpatialConstant>
 
-       <ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
 
-     <IPLmagno>
 
-       <normaliseOutput>1</normaliseOutput>
 
-       <parasolCells_beta>0.</parasolCells_beta>
 
-       <parasolCells_tau>0.</parasolCells_tau>
 
-       <parasolCells_k>7.</parasolCells_k>
 
-       <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
 
-       <V0CompressionParameter>9.5e-01</V0CompressionParameter>
 
-       <localAdaptintegration_tau>0.</localAdaptintegration_tau>
 
-       <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
 
-     </opencv_storage>
 
-     @endcode
 
-       */
 
-     struct RetinaParameters{ 
 
-         //! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
 
-         struct OPLandIplParvoParameters{
 
-                OPLandIplParvoParameters():colorMode(true),
 
-                                  normaliseOutput(true),
 
-                                  photoreceptorsLocalAdaptationSensitivity(0.75f),
 
-                                  photoreceptorsTemporalConstant(0.9f),
 
-                                  photoreceptorsSpatialConstant(0.53f),
 
-                                  horizontalCellsGain(0.01f),
 
-                                  hcellsTemporalConstant(0.5f),
 
-                                  hcellsSpatialConstant(7.f),
 
-                                  ganglionCellsSensitivity(0.75f) { } // default setup
 
-                bool colorMode, normaliseOutput;
 
-                float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
 
-         };
 
-         //! Inner Plexiform Layer Magnocellular channel (IplMagno)
 
-         struct IplMagnoParameters{
 
-             IplMagnoParameters():
 
-                           normaliseOutput(true),
 
-                           parasolCells_beta(0.f),
 
-                           parasolCells_tau(0.f),
 
-                           parasolCells_k(7.f),
 
-                           amacrinCellsTemporalCutFrequency(2.0f),
 
-                           V0CompressionParameter(0.95f),
 
-                           localAdaptintegration_tau(0.f),
 
-                           localAdaptintegration_k(7.f) { } // default setup
 
-             bool normaliseOutput;
 
-             float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
 
-         };
 
-         OPLandIplParvoParameters OPLandIplParvo;
 
-         IplMagnoParameters IplMagno;
 
-     };
 
- /** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
 
- This retina model allows spatio-temporal image processing (applied on still images, video sequences).
 
- As a summary, these are the retina model properties:
 
- - It applies a spectral whithening (mid-frequency details enhancement)
 
- - high frequency spatio-temporal noise reduction
 
- - low frequency luminance to be reduced (luminance range compression)
 
- - local logarithmic luminance compression allows details to be enhanced in low light conditions
 
- USE : this model can be used basically for spatio-temporal video effects but also for :
 
-      _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
 
-      _using the getMagno method output matrix : motion analysis also with the previously cited properties
 
- for more information, reer to the following papers :
 
- Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
 
- Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
 
- The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
 
- take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
 
- B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
 
- take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
 
- more informations in the above cited Jeanny Heraults's book.
 
-  */
 
- class CV_EXPORTS_W Retina : public Algorithm {
 
- public:
 
-     
 
-     /** @brief Retreive retina input buffer size
 
-     @return the retina input buffer size
 
-      */
 
-     CV_WRAP virtual Size getInputSize()=0;
 
-     /** @brief Retreive retina output buffer size that can be different from the input if a spatial log
 
-     transformation is applied
 
-     @return the retina output buffer size
 
-      */
 
-     CV_WRAP virtual Size getOutputSize()=0;
 
-     /** @brief Try to open an XML retina parameters file to adjust current retina instance setup
 
-     - if the xml file does not exist, then default setup is applied
 
-     - warning, Exceptions are thrown if read XML file is not valid
 
-     @param retinaParameterFile the parameters filename
 
-     @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
 
-     You can retrieve the current parameters structure using the method Retina::getParameters and update
 
-     it before running method Retina::setup.
 
-      */
 
-     CV_WRAP virtual void setup(String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
 
-     /** @overload
 
-     @param fs the open Filestorage which contains retina parameters
 
-     @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
 
-     */
 
-     virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
 
-     /** @overload
 
-     @param newParameters a parameters structures updated with the new target configuration.
 
-     */
 
-     virtual void setup(RetinaParameters newParameters)=0;
 
-     /**
 
-     @return the current parameters setup
 
-     */
 
-     virtual RetinaParameters getParameters()=0;
 
-     /** @brief Outputs a string showing the used parameters setup
 
-     @return a string which contains formated parameters information
 
-      */
 
-     CV_WRAP virtual const String printSetup()=0;
 
-     /** @brief Write xml/yml formated parameters information
 
-     @param fs the filename of the xml file that will be open and writen with formatted parameters
 
-     information
 
-      */
 
-     CV_WRAP virtual void write( String fs ) const=0;
 
-     /** @overload */
 
-     virtual void write( FileStorage& fs ) const=0;
 
-     /** @brief Setup the OPL and IPL parvo channels (see biologocal model)
 
-     OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
 
-     which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
 
-     (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
 
-     Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
 
-     reference papers for more informations.
 
-     for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
 
-     @param colorMode specifies if (true) color is processed of not (false) to then processing gray
 
-     level image
 
-     @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
 
-     @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
 
-     (more log compression effect when value increases)
 
-     @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
 
-     the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
 
-     frames, typical value is 1 frame
 
-     @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
 
-     the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
 
-     pixels, typical value is 1 pixel
 
-     @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
 
-     the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
 
-     still reachable at the output, typicall value is 0
 
-     @param HcellsTemporalConstant the time constant of the first order low pass filter of the
 
-     horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
 
-     frames, typical value is 1 frame, as the photoreceptors
 
-     @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
 
-     horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
 
-     typical value is 5 pixel, this value is also used for local contrast computing when computing
 
-     the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
 
-     channel model)
 
-     @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
 
-     output, set a value between 0.6 and 1 for best results, a high value increases more the low
 
-     value sensitivity... and the output saturates faster, recommended value: 0.7
 
-      */
 
-     CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0;
 
-     /** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
 
-     this channel processes signals output from OPL processing stage in peripheral vision, it allows
 
-     motion information enhancement. It is decorrelated from the details channel. See reference
 
-     papers for more details.
 
-     @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
 
-     @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
 
-     IPL level of the retina (for ganglion cells local adaptation), typical value is 0
 
-     @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
 
-     at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
 
-     value is 0 (immediate response)
 
-     @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
 
-     at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
 
-     value is 5
 
-     @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
 
-     the magnocellular way (motion information channel), unit is frames, typical value is 1.2
 
-     @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
 
-     output, set a value between 0.6 and 1 for best results, a high value increases more the low
 
-     value sensitivity... and the output saturates faster, recommended value: 0.95
 
-     @param localAdaptintegration_tau specifies the temporal constant of the low pas filter
 
-     involved in the computation of the local "motion mean" for the local adaptation computation
 
-     @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
 
-     in the computation of the local "motion mean" for the local adaptation computation
 
-      */
 
-     CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0;
 
-     /** @brief Method which allows retina to be applied on an input image,
 
-     after run, encapsulated retina module is ready to deliver its outputs using dedicated
 
-     acccessors, see getParvo and getMagno methods
 
-     @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
 
-     format (from 8bit to 16bits)
 
-      */
 
-     CV_WRAP virtual void run(InputArray inputImage)=0;
 
-     /** @brief Method which processes an image in the aim to correct its luminance correct
 
-     backlight problems, enhance details in shadows.
 
-     This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
 
-     images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
 
-     (simplified version of the run/getParvo methods call) since it does not include the
 
-     spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
 
-     whitening and many other stuff. However, it works great for tone mapping and in a faster way.
 
-     Check the demos and experiments section to see examples and the way to perform tone mapping
 
-     using the original retina model and the method.
 
-     @param inputImage the input image to process (should be coded in float format : CV_32F,
 
-     CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
 
-     @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
 
-      */
 
-     CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
 
-     /** @brief Accessor of the details channel of the retina (models foveal vision).
 
-     Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
 
-     the non RAW method allows a normalized matrix to be retrieved.
 
-     @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
 
-     -   a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
 
-     -   RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
 
-     B2, ...Bn), this output is the original retina filter model output, without any
 
-     quantification or rescaling.
 
-     @see getParvoRAW
 
-      */
 
-     CV_WRAP virtual void getParvo(OutputArray retinaOutput_parvo)=0;
 
-     /** @brief Accessor of the details channel of the retina (models foveal vision).
 
-     @see getParvo
 
-      */
 
-     CV_WRAP virtual void getParvoRAW(OutputArray retinaOutput_parvo)=0;
 
-     /** @brief Accessor of the motion channel of the retina (models peripheral vision).
 
-     Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
 
-     the non RAW method allows a normalized matrix to be retrieved.
 
-     @param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
 
-     -   a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
 
-     -   RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
 
-     original retina filter model output, without any quantification or rescaling.
 
-     @see getMagnoRAW
 
-      */
 
-     CV_WRAP virtual void getMagno(OutputArray retinaOutput_magno)=0;
 
-     /** @brief Accessor of the motion channel of the retina (models peripheral vision).
 
-     @see getMagno
 
-      */
 
-     CV_WRAP virtual void getMagnoRAW(OutputArray retinaOutput_magno)=0;
 
-     /** @overload */
 
-     CV_WRAP virtual const Mat getMagnoRAW() const=0;
 
-     /** @overload */
 
-     CV_WRAP virtual const Mat getParvoRAW() const=0;
 
-     /** @brief Activate color saturation as the final step of the color demultiplexing process -\> this
 
-     saturation is a sigmoide function applied to each channel of the demultiplexed image.
 
-     @param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
 
-     @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
 
-     buffers
 
-      */
 
-     CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0;
 
-     /** @brief Clears all retina buffers
 
-     (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
 
-     transition occuring just after this method call.
 
-      */
 
-     CV_WRAP virtual void clearBuffers()=0;
 
-     /** @brief Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
 
-     default, it is activated
 
-     @param activate true if Magnocellular output should be activated, false if not... if activated,
 
-     the Magnocellular output can be retrieved using the **getMagno** methods
 
-      */
 
-     CV_WRAP virtual void activateMovingContoursProcessing(const bool activate)=0;
 
-     /** @brief Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
 
-     default, it is activated
 
-     @param activate true if Parvocellular (contours information extraction) output should be
 
-     activated, false if not... if activated, the Parvocellular output can be retrieved using the
 
-     Retina::getParvo methods
 
-      */
 
-     CV_WRAP virtual void activateContoursProcessing(const bool activate)=0;
 
-     /** @overload */
 
-     CV_WRAP static Ptr<Retina> create(Size inputSize);
 
-     /** @brief Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
 
-     @param inputSize the input frame size
 
-     @param colorMode the chosen processing mode : with or without color processing
 
-     @param colorSamplingMethod specifies which kind of color sampling will be used :
 
-     -   cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
 
-     -   cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
 
-     -   cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
 
-     @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
 
-     be used
 
-     @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
 
-     factor of the output frame (as the center (fovea) is high resolution and corners can be
 
-     underscaled, then a reduction of the output is allowed without precision leak
 
-     @param samplingStrenght only usefull if param useRetinaLogSampling=true, specifies the strenght of
 
-     the log scale that is applied
 
-      */
 
-     CV_WRAP static Ptr<Retina> create(Size inputSize, const bool colorMode,
 
-                                            int colorSamplingMethod=RETINA_COLOR_BAYER,
 
-                                            const bool useRetinaLogSampling=false,
 
-                                            const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
 
- };
 
- //! @}
 
- }
 
- }
 
- #endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */
 
 
  |