| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 | 
							- /*#******************************************************************************
 
-  ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
-  **
 
-  ** By downloading, copying, installing or using the software you agree to this license.
 
-  ** If you do not agree to this license, do not download, install,
 
-  ** copy or use the software.
 
-  **
 
-  **
 
-  ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models.
 
-  ** TransientAreasSegmentationModule Use: extract areas that present spatio-temporal changes.
 
-  ** => It should be used at the output of the cv::bioinspired::Retina::getMagnoRAW() output that enhances spatio-temporal changes
 
-  **
 
-  ** Maintainers : Listic lab (code author current affiliation & applications)
 
-  **
 
-  **  Creation - enhancement process 2007-2015
 
-  **      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
 
-  **
 
-  ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
 
-  ** Refer to the following research paper for more information:
 
-  ** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
 
-  ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
 
-  ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
 
-  ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
 
-  **
 
-  **
 
-  **                          License Agreement
 
-  **               For Open Source Computer Vision Library
 
-  **
 
-  ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
-  ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
 
-  **
 
-  **               For Human Visual System tools (bioinspired)
 
-  ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
 
-  **
 
-  ** Third party copyrights are property of their respective owners.
 
-  **
 
-  ** Redistribution and use in source and binary forms, with or without modification,
 
-  ** are permitted provided that the following conditions are met:
 
-  **
 
-  ** * Redistributions of source code must retain the above copyright notice,
 
-  **    this list of conditions and the following disclaimer.
 
-  **
 
-  ** * Redistributions in binary form must reproduce the above copyright notice,
 
-  **    this list of conditions and the following disclaimer in the documentation
 
-  **    and/or other materials provided with the distribution.
 
-  **
 
-  ** * The name of the copyright holders may not be used to endorse or promote products
 
-  **    derived from this software without specific prior written permission.
 
-  **
 
-  ** This software is provided by the copyright holders and contributors "as is" and
 
-  ** any express or implied warranties, including, but not limited to, the implied
 
-  ** warranties of merchantability and fitness for a particular purpose are disclaimed.
 
-  ** In no event shall the Intel Corporation or contributors be liable for any direct,
 
-  ** indirect, incidental, special, exemplary, or consequential damages
 
-  ** (including, but not limited to, procurement of substitute goods or services;
 
-  ** loss of use, data, or profits; or business interruption) however caused
 
-  ** and on any theory of liability, whether in contract, strict liability,
 
-  ** or tort (including negligence or otherwise) arising in any way out of
 
-  ** the use of this software, even if advised of the possibility of such damage.
 
-  *******************************************************************************/
 
- #ifndef SEGMENTATIONMODULE_HPP_
 
- #define SEGMENTATIONMODULE_HPP_
 
- /**
 
- @file
 
- @date 2007-2013
 
- @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com
 
- */
 
- #include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
 
- namespace cv
 
- {
 
- namespace bioinspired
 
- {
 
- //! @addtogroup bioinspired
 
- //! @{
 
- /** @brief parameter structure that stores the transient events detector setup parameters
 
- */
 
- struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries
 
- 	// default structure instance construction with default values	
 
- 	SegmentationParameters():
 
- 	    thresholdON(100),
 
- 	    thresholdOFF(100),
 
- 	    localEnergy_temporalConstant(0.5),
 
- 	    localEnergy_spatialConstant(5),
 
- 	    neighborhoodEnergy_temporalConstant(1),
 
- 	    neighborhoodEnergy_spatialConstant(15),
 
- 	    contextEnergy_temporalConstant(1),
 
- 	    contextEnergy_spatialConstant(75){};
 
- 	// all properties list
 
- 	float thresholdON;
 
- 	float thresholdOFF;
 
- 	//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
 
- 	float localEnergy_temporalConstant;
 
- 	//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
 
- 	float localEnergy_spatialConstant;
 
- 	//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
 
- 	float neighborhoodEnergy_temporalConstant;
 
- 	float neighborhoodEnergy_spatialConstant;
 
- 	//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
 
- 	float contextEnergy_temporalConstant;
 
- 	float contextEnergy_spatialConstant;
 
- };
 
- /** @brief class which provides a transient/moving areas segmentation module
 
- perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
 
- BENOIT thesis: "Le système visuel humain au secours de la vision par ordinateur"
 
- 3 spatio temporal filters are used:
 
- - a first one which filters the noise and local variations of the input motion energy
 
- - a second (more powerfull low pass spatial filter) which gives the neighborhood motion energy the
 
- segmentation consists in the comparison of these both outputs, if the local motion energy is higher
 
- to the neighborhood otion energy, then the area is considered as moving and is segmented
 
- - a stronger third low pass filter helps decision by providing a smooth information about the
 
- "motion context" in a wider area
 
-  */
 
- class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm
 
- {
 
- public:
 
-     /** @brief return the sze of the manage input and output images
 
-     */
 
-     CV_WRAP virtual Size getSize()=0;
 
-     /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
 
-     - if the xml file does not exist, then default setup is applied
 
-     - warning, Exceptions are thrown if read XML file is not valid
 
-     @param segmentationParameterFile : the parameters filename
 
-     @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
 
-      */
 
-     CV_WRAP virtual void setup(String segmentationParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
 
-     /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
 
-     - if the xml file does not exist, then default setup is applied
 
-     - warning, Exceptions are thrown if read XML file is not valid
 
-     @param fs : the open Filestorage which contains segmentation parameters
 
-     @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
 
-     */
 
-     virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
 
-     /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
 
-     - if the xml file does not exist, then default setup is applied
 
-     - warning, Exceptions are thrown if read XML file is not valid
 
-     @param newParameters : a parameters structures updated with the new target configuration
 
-      */
 
-     virtual void setup(SegmentationParameters newParameters)=0;
 
-     /** @brief return the current parameters setup
 
-     */
 
-     virtual SegmentationParameters getParameters()=0;
 
-     /** @brief parameters setup display method
 
-     @return a string which contains formatted parameters information
 
-     */
 
-     CV_WRAP virtual const String printSetup()=0;
 
-     /** @brief write xml/yml formated parameters information
 
-     @param fs : the filename of the xml file that will be open and writen with formatted parameters information
 
-     */
 
-     CV_WRAP virtual void write( String fs ) const=0;
 
-     /** @brief write xml/yml formated parameters information
 
-     @param fs : a cv::Filestorage object ready to be filled
 
-     */
 
-     virtual void write( cv::FileStorage& fs ) const=0;
 
-     /** @brief main processing method, get result using methods getSegmentationPicture()
 
-     @param inputToSegment : the image to process, it must match the instance buffer size !
 
-     @param channelIndex : the channel to process in case of multichannel images
 
-     */
 
-     CV_WRAP virtual void run(InputArray inputToSegment, const int channelIndex=0)=0;
 
-     /** @brief access function
 
-     @return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
 
-    */
 
-     CV_WRAP virtual void getSegmentationPicture(OutputArray transientAreas)=0;
 
-     /** @brief cleans all the buffers of the instance
 
-     */
 
-     CV_WRAP virtual void clearAllBuffers()=0;
 
-     /** @brief allocator
 
-     @param inputSize : size of the images input to segment (output will be the same size)
 
-      */
 
-     CV_WRAP static Ptr<TransientAreasSegmentationModule> create(Size inputSize);
 
- };
 
- //! @}
 
- }} // namespaces end : cv and bioinspired
 
- #endif
 
 
  |