| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 | 
							- // This file is part of OpenCV project.
 
- // It is subject to the license terms in the LICENSE file found in the top-level directory
 
- // of this distribution and at http://opencv.org/license.html.
 
- // Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
 
- // Third party copyrights are property of their respective owners.
 
- #ifndef __OPENCV_FACEREC_HPP__
 
- #define __OPENCV_FACEREC_HPP__
 
- #include "opencv2/face.hpp"
 
- #include "opencv2/core.hpp"
 
- namespace cv { namespace face {
 
- //! @addtogroup face
 
- //! @{
 
- // base for two classes
 
- class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
 
- {
 
- public:
 
-     /** @see setNumComponents */
 
-     CV_WRAP int getNumComponents() const;
 
-     /** @copybrief getNumComponents @see getNumComponents */
 
-     CV_WRAP void setNumComponents(int val);
 
-     /** @see setThreshold */
 
-     CV_WRAP double getThreshold() const;
 
-     /** @copybrief getThreshold @see getThreshold */
 
-     CV_WRAP void setThreshold(double val);
 
-     CV_WRAP std::vector<cv::Mat> getProjections() const;
 
-     CV_WRAP cv::Mat getLabels() const;
 
-     CV_WRAP cv::Mat getEigenValues() const;
 
-     CV_WRAP cv::Mat getEigenVectors() const;
 
-     CV_WRAP cv::Mat getMean() const;
 
-     virtual void read(const FileNode& fn);
 
-     virtual void write(FileStorage& fs) const;
 
-     virtual bool empty() const;
 
-     using FaceRecognizer::read;
 
-     using FaceRecognizer::write;
 
- protected:
 
-     int _num_components;
 
-     double _threshold;
 
-     std::vector<Mat> _projections;
 
-     Mat _labels;
 
-     Mat _eigenvectors;
 
-     Mat _eigenvalues;
 
-     Mat _mean;
 
- };
 
- class CV_EXPORTS_W EigenFaceRecognizer : public BasicFaceRecognizer
 
- {
 
- public:
 
-     /**
 
-     @param num_components The number of components (read: Eigenfaces) kept for this Principal
 
-     Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
 
-     kept for good reconstruction capabilities. It is based on your input data, so experiment with the
 
-     number. Keeping 80 components should almost always be sufficient.
 
-     @param threshold The threshold applied in the prediction.
 
-     ### Notes:
 
-     -   Training and prediction must be done on grayscale images, use cvtColor to convert between the
 
-         color spaces.
 
-     -   **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
 
-         SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
 
-         input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
 
-         the images.
 
-     -   This model does not support updating.
 
-     ### Model internal data:
 
-     -   num_components see EigenFaceRecognizer::create.
 
-     -   threshold see EigenFaceRecognizer::create.
 
-     -   eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
 
-     -   eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
 
-         eigenvalue).
 
-     -   mean The sample mean calculated from the training data.
 
-     -   projections The projections of the training data.
 
-     -   labels The threshold applied in the prediction. If the distance to the nearest neighbor is
 
-         larger than the threshold, this method returns -1.
 
-      */
 
-     CV_WRAP static Ptr<EigenFaceRecognizer> create(int num_components = 0, double threshold = DBL_MAX);
 
- };
 
- class CV_EXPORTS_W FisherFaceRecognizer : public BasicFaceRecognizer
 
- {
 
- public:
 
-     /**
 
-     @param num_components The number of components (read: Fisherfaces) kept for this Linear
 
-     Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
 
-     means the number of your classes c (read: subjects, persons you want to recognize). If you leave
 
-     this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
 
-     correct number (c-1) automatically.
 
-     @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
 
-     is larger than the threshold, this method returns -1.
 
-     ### Notes:
 
-     -   Training and prediction must be done on grayscale images, use cvtColor to convert between the
 
-         color spaces.
 
-     -   **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
 
-         SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
 
-         input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
 
-         the images.
 
-     -   This model does not support updating.
 
-     ### Model internal data:
 
-     -   num_components see FisherFaceRecognizer::create.
 
-     -   threshold see FisherFaceRecognizer::create.
 
-     -   eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
 
-     -   eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
 
-         eigenvalue).
 
-     -   mean The sample mean calculated from the training data.
 
-     -   projections The projections of the training data.
 
-     -   labels The labels corresponding to the projections.
 
-      */
 
-     CV_WRAP static Ptr<FisherFaceRecognizer> create(int num_components = 0, double threshold = DBL_MAX);
 
- };
 
- class CV_EXPORTS_W LBPHFaceRecognizer : public FaceRecognizer
 
- {
 
- public:
 
-     /** @see setGridX */
 
-     CV_WRAP virtual int getGridX() const = 0;
 
-     /** @copybrief getGridX @see getGridX */
 
-     CV_WRAP virtual void setGridX(int val) = 0;
 
-     /** @see setGridY */
 
-     CV_WRAP virtual int getGridY() const = 0;
 
-     /** @copybrief getGridY @see getGridY */
 
-     CV_WRAP virtual void setGridY(int val) = 0;
 
-     /** @see setRadius */
 
-     CV_WRAP virtual int getRadius() const = 0;
 
-     /** @copybrief getRadius @see getRadius */
 
-     CV_WRAP virtual void setRadius(int val) = 0;
 
-     /** @see setNeighbors */
 
-     CV_WRAP virtual int getNeighbors() const = 0;
 
-     /** @copybrief getNeighbors @see getNeighbors */
 
-     CV_WRAP virtual void setNeighbors(int val) = 0;
 
-     /** @see setThreshold */
 
-     CV_WRAP virtual double getThreshold() const = 0;
 
-     /** @copybrief getThreshold @see getThreshold */
 
-     CV_WRAP virtual void setThreshold(double val) = 0;
 
-     CV_WRAP virtual std::vector<cv::Mat> getHistograms() const = 0;
 
-     CV_WRAP virtual cv::Mat getLabels() const = 0;
 
-     /**
 
-     @param radius The radius used for building the Circular Local Binary Pattern. The greater the
 
-     radius, the smoother the image but more spatial information you can get.
 
-     @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
 
-     appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
 
-     the higher the computational cost.
 
-     @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
 
-     publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
 
-     feature vector.
 
-     @param grid_y The number of cells in the vertical direction, 8 is a common value used in
 
-     publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
 
-     feature vector.
 
-     @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
 
-     is larger than the threshold, this method returns -1.
 
-     ### Notes:
 
-     -   The Circular Local Binary Patterns (used in training and prediction) expect the data given as
 
-         grayscale images, use cvtColor to convert between the color spaces.
 
-     -   This model supports updating.
 
-     ### Model internal data:
 
-     -   radius see LBPHFaceRecognizer::create.
 
-     -   neighbors see LBPHFaceRecognizer::create.
 
-     -   grid_x see LLBPHFaceRecognizer::create.
 
-     -   grid_y see LBPHFaceRecognizer::create.
 
-     -   threshold see LBPHFaceRecognizer::create.
 
-     -   histograms Local Binary Patterns Histograms calculated from the given training data (empty if
 
-         none was given).
 
-     -   labels Labels corresponding to the calculated Local Binary Patterns Histograms.
 
-      */
 
-     CV_WRAP static Ptr<LBPHFaceRecognizer> create(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
 
- };
 
- //! @}
 
- }} //namespace cv::face
 
- #endif //__OPENCV_FACEREC_HPP__
 
 
  |