| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                           License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef OPENCV_FEATURES_2D_HPP
 
- #define OPENCV_FEATURES_2D_HPP
 
- #include "opencv2/opencv_modules.hpp"
 
- #include "opencv2/core.hpp"
 
- #ifdef HAVE_OPENCV_FLANN
 
- #include "opencv2/flann/miniflann.hpp"
 
- #endif
 
- /**
 
-   @defgroup features2d 2D Features Framework
 
-   @{
 
-     @defgroup features2d_main Feature Detection and Description
 
-     @defgroup features2d_match Descriptor Matchers
 
- Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
 
- easily switch between different algorithms solving the same problem. This section is devoted to
 
- matching descriptors that are represented as vectors in a multidimensional space. All objects that
 
- implement vector descriptor matchers inherit the DescriptorMatcher interface.
 
- @note
 
-    -   An example explaining keypoint matching can be found at
 
-         opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
 
-     -   An example on descriptor matching evaluation can be found at
 
-         opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
 
-     -   An example on one to many image matching can be found at
 
-         opencv_source_code/samples/cpp/matching_to_many_images.cpp
 
-     @defgroup features2d_draw Drawing Function of Keypoints and Matches
 
-     @defgroup features2d_category Object Categorization
 
- This section describes approaches based on local 2D features and used to categorize objects.
 
- @note
 
-    -   A complete Bag-Of-Words sample can be found at
 
-         opencv_source_code/samples/cpp/bagofwords_classification.cpp
 
-     -   (Python) An example using the features2D framework to perform object categorization can be
 
-         found at opencv_source_code/samples/python/find_obj.py
 
-   @}
 
-  */
 
- namespace cv
 
- {
 
- //! @addtogroup features2d
 
- //! @{
 
- // //! writes vector of keypoints to the file storage
 
- // CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
 
- // //! reads vector of keypoints from the specified file storage node
 
- // CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
 
- /** @brief A class filters a vector of keypoints.
 
-  Because now it is difficult to provide a convenient interface for all usage scenarios of the
 
-  keypoints filter class, it has only several needed by now static methods.
 
-  */
 
- class CV_EXPORTS KeyPointsFilter
 
- {
 
- public:
 
-     KeyPointsFilter(){}
 
-     /*
 
-      * Remove keypoints within borderPixels of an image edge.
 
-      */
 
-     static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
 
-     /*
 
-      * Remove keypoints of sizes out of range.
 
-      */
 
-     static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize,
 
-                                    float maxSize=FLT_MAX );
 
-     /*
 
-      * Remove keypoints from some image by mask for pixels of this image.
 
-      */
 
-     static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask );
 
-     /*
 
-      * Remove duplicated keypoints.
 
-      */
 
-     static void removeDuplicated( std::vector<KeyPoint>& keypoints );
 
-     /*
 
-      * Remove duplicated keypoints and sort the remaining keypoints
 
-      */
 
-     static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
 
-     /*
 
-      * Retain the specified number of the best keypoints (according to the response)
 
-      */
 
-     static void retainBest( std::vector<KeyPoint>& keypoints, int npoints );
 
- };
 
- /************************************ Base Classes ************************************/
 
- /** @brief Abstract base class for 2D image feature detectors and descriptor extractors
 
- */
 
- class CV_EXPORTS_W Feature2D : public virtual Algorithm
 
- {
 
- public:
 
-     virtual ~Feature2D();
 
-     /** @brief Detects keypoints in an image (first variant) or image set (second variant).
 
-     @param image Image.
 
-     @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
 
-     of keypoints detected in images[i] .
 
-     @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
 
-     matrix with non-zero values in the region of interest.
 
-      */
 
-     CV_WRAP virtual void detect( InputArray image,
 
-                                  CV_OUT std::vector<KeyPoint>& keypoints,
 
-                                  InputArray mask=noArray() );
 
-     /** @overload
 
-     @param images Image set.
 
-     @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
 
-     of keypoints detected in images[i] .
 
-     @param masks Masks for each input image specifying where to look for keypoints (optional).
 
-     masks[i] is a mask for images[i].
 
-     */
 
-     CV_WRAP virtual void detect( InputArrayOfArrays images,
 
-                          CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
 
-                          InputArrayOfArrays masks=noArray() );
 
-     /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
 
-     (second variant).
 
-     @param image Image.
 
-     @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
 
-     computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
 
-     with several dominant orientations (for each orientation).
 
-     @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
 
-     descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
 
-     descriptor for keypoint j-th keypoint.
 
-      */
 
-     CV_WRAP virtual void compute( InputArray image,
 
-                                   CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
 
-                                   OutputArray descriptors );
 
-     /** @overload
 
-     @param images Image set.
 
-     @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
 
-     computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
 
-     with several dominant orientations (for each orientation).
 
-     @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
 
-     descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
 
-     descriptor for keypoint j-th keypoint.
 
-     */
 
-     CV_WRAP virtual void compute( InputArrayOfArrays images,
 
-                           CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
 
-                           OutputArrayOfArrays descriptors );
 
-     /** Detects keypoints and computes the descriptors */
 
-     CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
 
-                                            CV_OUT std::vector<KeyPoint>& keypoints,
 
-                                            OutputArray descriptors,
 
-                                            bool useProvidedKeypoints=false );
 
-     CV_WRAP virtual int descriptorSize() const;
 
-     CV_WRAP virtual int descriptorType() const;
 
-     CV_WRAP virtual int defaultNorm() const;
 
-     CV_WRAP void write( const String& fileName ) const;
 
-     CV_WRAP void read( const String& fileName );
 
-     virtual void write( FileStorage&) const;
 
-     virtual void read( const FileNode&);
 
-     //! Return true if detector object is empty
 
-     CV_WRAP virtual bool empty() const;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
 
- between different algorithms solving the same problem. All objects that implement keypoint detectors
 
- inherit the FeatureDetector interface. */
 
- typedef Feature2D FeatureDetector;
 
- /** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
 
- to easily switch between different algorithms solving the same problem. This section is devoted to
 
- computing descriptors represented as vectors in a multidimensional space. All objects that implement
 
- the vector descriptor extractors inherit the DescriptorExtractor interface.
 
-  */
 
- typedef Feature2D DescriptorExtractor;
 
- //! @addtogroup features2d_main
 
- //! @{
 
- /** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
 
-  */
 
- class CV_EXPORTS_W BRISK : public Feature2D
 
- {
 
- public:
 
-     /** @brief The BRISK constructor
 
-     @param thresh AGAST detection threshold score.
 
-     @param octaves detection octaves. Use 0 to do single scale.
 
-     @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
 
-     keypoint.
 
-      */
 
-     CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
 
-     /** @brief The BRISK constructor for a custom pattern
 
-     @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
 
-     keypoint scale 1).
 
-     @param numberList defines the number of sampling points on the sampling circle. Must be the same
 
-     size as radiusList..
 
-     @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
 
-     scale 1).
 
-     @param dMin threshold for the long pairings used for orientation determination (in pixels for
 
-     keypoint scale 1).
 
-     @param indexChange index remapping of the bits. */
 
-     CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
 
-         float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
 
-     /** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
 
-     @param thresh AGAST detection threshold score.
 
-     @param octaves detection octaves. Use 0 to do single scale.
 
-     @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
 
-     keypoint scale 1).
 
-     @param numberList defines the number of sampling points on the sampling circle. Must be the same
 
-     size as radiusList..
 
-     @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
 
-     scale 1).
 
-     @param dMin threshold for the long pairings used for orientation determination (in pixels for
 
-     keypoint scale 1).
 
-     @param indexChange index remapping of the bits. */
 
-     CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
 
-         const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
 
-         const std::vector<int>& indexChange=std::vector<int>());
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
 
- described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
 
- the strongest features using FAST or Harris response, finds their orientation using first-order
 
- moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
 
- k-tuples) are rotated according to the measured orientation).
 
-  */
 
- class CV_EXPORTS_W ORB : public Feature2D
 
- {
 
- public:
 
-     enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
 
-     /** @brief The ORB constructor
 
-     @param nfeatures The maximum number of features to retain.
 
-     @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
 
-     pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
 
-     will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
 
-     will mean that to cover certain scale range you will need more pyramid levels and so the speed
 
-     will suffer.
 
-     @param nlevels The number of pyramid levels. The smallest level will have linear size equal to
 
-     input_image_linear_size/pow(scaleFactor, nlevels).
 
-     @param edgeThreshold This is size of the border where the features are not detected. It should
 
-     roughly match the patchSize parameter.
 
-     @param firstLevel It should be 0 in the current implementation.
 
-     @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
 
-     default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
 
-     so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
 
-     random points (of course, those point coordinates are random, but they are generated from the
 
-     pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
 
-     rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
 
-     output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
 
-     denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
 
-     bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
 
-     @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
 
-     (the score is written to KeyPoint::score and is used to retain best nfeatures features);
 
-     FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
 
-     but it is a little faster to compute.
 
-     @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
 
-     pyramid layers the perceived image area covered by a feature will be larger.
 
-     @param fastThreshold
 
-      */
 
-     CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
 
-         int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
 
-     CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
 
-     CV_WRAP virtual int getMaxFeatures() const = 0;
 
-     CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
 
-     CV_WRAP virtual double getScaleFactor() const = 0;
 
-     CV_WRAP virtual void setNLevels(int nlevels) = 0;
 
-     CV_WRAP virtual int getNLevels() const = 0;
 
-     CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0;
 
-     CV_WRAP virtual int getEdgeThreshold() const = 0;
 
-     CV_WRAP virtual void setFirstLevel(int firstLevel) = 0;
 
-     CV_WRAP virtual int getFirstLevel() const = 0;
 
-     CV_WRAP virtual void setWTA_K(int wta_k) = 0;
 
-     CV_WRAP virtual int getWTA_K() const = 0;
 
-     CV_WRAP virtual void setScoreType(int scoreType) = 0;
 
-     CV_WRAP virtual int getScoreType() const = 0;
 
-     CV_WRAP virtual void setPatchSize(int patchSize) = 0;
 
-     CV_WRAP virtual int getPatchSize() const = 0;
 
-     CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
 
-     CV_WRAP virtual int getFastThreshold() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @brief Maximally stable extremal region extractor
 
- The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
 
- article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
 
- - there are two different implementation of %MSER: one for grey image, one for color image
 
- - the grey image algorithm is taken from: @cite nister2008linear ;  the paper claims to be faster
 
- than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
 
- - the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
 
- than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
 
- code which is distributed under GPL.
 
- - (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
 
- */
 
- class CV_EXPORTS_W MSER : public Feature2D
 
- {
 
- public:
 
-     /** @brief Full consturctor for %MSER detector
 
-     @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
 
-     @param _min_area prune the area which smaller than minArea
 
-     @param _max_area prune the area which bigger than maxArea
 
-     @param _max_variation prune the area have simliar size to its children
 
-     @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
 
-     @param _max_evolution  for color image, the evolution steps
 
-     @param _area_threshold for color image, the area threshold to cause re-initialize
 
-     @param _min_margin for color image, ignore too small margin
 
-     @param _edge_blur_size for color image, the aperture size for edge blur
 
-      */
 
-     CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400,
 
-           double _max_variation=0.25, double _min_diversity=.2,
 
-           int _max_evolution=200, double _area_threshold=1.01,
 
-           double _min_margin=0.003, int _edge_blur_size=5 );
 
-     /** @brief Detect %MSER regions
 
-     @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
 
-     @param msers resulting list of point sets
 
-     @param bboxes resulting bounding boxes
 
-     */
 
-     CV_WRAP virtual void detectRegions( InputArray image,
 
-                                         CV_OUT std::vector<std::vector<Point> >& msers,
 
-                                         CV_OUT std::vector<Rect>& bboxes ) = 0;
 
-     CV_WRAP virtual void setDelta(int delta) = 0;
 
-     CV_WRAP virtual int getDelta() const = 0;
 
-     CV_WRAP virtual void setMinArea(int minArea) = 0;
 
-     CV_WRAP virtual int getMinArea() const = 0;
 
-     CV_WRAP virtual void setMaxArea(int maxArea) = 0;
 
-     CV_WRAP virtual int getMaxArea() const = 0;
 
-     CV_WRAP virtual void setPass2Only(bool f) = 0;
 
-     CV_WRAP virtual bool getPass2Only() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @overload */
 
- CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 
-                       int threshold, bool nonmaxSuppression=true );
 
- /** @brief Detects corners using the FAST algorithm
 
- @param image grayscale image where keypoints (corners) are detected.
 
- @param keypoints keypoints detected on the image.
 
- @param threshold threshold on difference between intensity of the central pixel and pixels of a
 
- circle around this pixel.
 
- @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
 
- (keypoints).
 
- @param type one of the three neighborhoods as defined in the paper:
 
- FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
 
- FastFeatureDetector::TYPE_5_8
 
- Detects corners using the FAST algorithm by @cite Rosten06 .
 
- @note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
 
- cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
 
- detection, use cv2.FAST.detect() method.
 
-  */
 
- CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 
-                       int threshold, bool nonmaxSuppression, int type );
 
- //! @} features2d_main
 
- //! @addtogroup features2d_main
 
- //! @{
 
- /** @brief Wrapping class for feature detection using the FAST method. :
 
-  */
 
- class CV_EXPORTS_W FastFeatureDetector : public Feature2D
 
- {
 
- public:
 
-     enum
 
-     {
 
-         TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2,
 
-         THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002,
 
-     };
 
-     CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10,
 
-                                                     bool nonmaxSuppression=true,
 
-                                                     int type=FastFeatureDetector::TYPE_9_16 );
 
-     CV_WRAP virtual void setThreshold(int threshold) = 0;
 
-     CV_WRAP virtual int getThreshold() const = 0;
 
-     CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
 
-     CV_WRAP virtual bool getNonmaxSuppression() const = 0;
 
-     CV_WRAP virtual void setType(int type) = 0;
 
-     CV_WRAP virtual int getType() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @overload */
 
- CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 
-                       int threshold, bool nonmaxSuppression=true );
 
- /** @brief Detects corners using the AGAST algorithm
 
- @param image grayscale image where keypoints (corners) are detected.
 
- @param keypoints keypoints detected on the image.
 
- @param threshold threshold on difference between intensity of the central pixel and pixels of a
 
- circle around this pixel.
 
- @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
 
- (keypoints).
 
- @param type one of the four neighborhoods as defined in the paper:
 
- AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
 
- AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
 
- For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
 
- The 32-bit binary tree tables were generated automatically from original code using perl script.
 
- The perl script and examples of tree generation are placed in features2d/doc folder.
 
- Detects corners using the AGAST algorithm by @cite mair2010_agast .
 
-  */
 
- CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
 
-                       int threshold, bool nonmaxSuppression, int type );
 
- //! @} features2d_main
 
- //! @addtogroup features2d_main
 
- //! @{
 
- /** @brief Wrapping class for feature detection using the AGAST method. :
 
-  */
 
- class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
 
- {
 
- public:
 
-     enum
 
-     {
 
-         AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
 
-         THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
 
-     };
 
-     CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
 
-                                                      bool nonmaxSuppression=true,
 
-                                                      int type=AgastFeatureDetector::OAST_9_16 );
 
-     CV_WRAP virtual void setThreshold(int threshold) = 0;
 
-     CV_WRAP virtual int getThreshold() const = 0;
 
-     CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
 
-     CV_WRAP virtual bool getNonmaxSuppression() const = 0;
 
-     CV_WRAP virtual void setType(int type) = 0;
 
-     CV_WRAP virtual int getType() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
 
-  */
 
- class CV_EXPORTS_W GFTTDetector : public Feature2D
 
- {
 
- public:
 
-     CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
 
-                                              int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
 
-     CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
 
-                                              int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
 
-     CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
 
-     CV_WRAP virtual int getMaxFeatures() const = 0;
 
-     CV_WRAP virtual void setQualityLevel(double qlevel) = 0;
 
-     CV_WRAP virtual double getQualityLevel() const = 0;
 
-     CV_WRAP virtual void setMinDistance(double minDistance) = 0;
 
-     CV_WRAP virtual double getMinDistance() const = 0;
 
-     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
 
-     CV_WRAP virtual int getBlockSize() const = 0;
 
-     CV_WRAP virtual void setHarrisDetector(bool val) = 0;
 
-     CV_WRAP virtual bool getHarrisDetector() const = 0;
 
-     CV_WRAP virtual void setK(double k) = 0;
 
-     CV_WRAP virtual double getK() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @brief Class for extracting blobs from an image. :
 
- The class implements a simple algorithm for extracting blobs from an image:
 
- 1.  Convert the source image to binary images by applying thresholding with several thresholds from
 
-     minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
 
-     neighboring thresholds.
 
- 2.  Extract connected components from every binary image by findContours and calculate their
 
-     centers.
 
- 3.  Group centers from several binary images by their coordinates. Close centers form one group that
 
-     corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
 
- 4.  From the groups, estimate final centers of blobs and their radiuses and return as locations and
 
-     sizes of keypoints.
 
- This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
 
- to turn on/off corresponding filtration. Available filtrations:
 
- -   **By color**. This filter compares the intensity of a binary image at the center of a blob to
 
- blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
 
- and blobColor = 255 to extract light blobs.
 
- -   **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
 
- -   **By circularity**. Extracted blobs have circularity
 
- (\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
 
- maxCircularity (exclusive).
 
- -   **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
 
- between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
 
- -   **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
 
- minConvexity (inclusive) and maxConvexity (exclusive).
 
- Default values of parameters are tuned to extract dark circular blobs.
 
-  */
 
- class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
 
- {
 
- public:
 
-   struct CV_EXPORTS_W_SIMPLE Params
 
-   {
 
-       CV_WRAP Params();
 
-       CV_PROP_RW float thresholdStep;
 
-       CV_PROP_RW float minThreshold;
 
-       CV_PROP_RW float maxThreshold;
 
-       CV_PROP_RW size_t minRepeatability;
 
-       CV_PROP_RW float minDistBetweenBlobs;
 
-       CV_PROP_RW bool filterByColor;
 
-       CV_PROP_RW uchar blobColor;
 
-       CV_PROP_RW bool filterByArea;
 
-       CV_PROP_RW float minArea, maxArea;
 
-       CV_PROP_RW bool filterByCircularity;
 
-       CV_PROP_RW float minCircularity, maxCircularity;
 
-       CV_PROP_RW bool filterByInertia;
 
-       CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
 
-       CV_PROP_RW bool filterByConvexity;
 
-       CV_PROP_RW float minConvexity, maxConvexity;
 
-       void read( const FileNode& fn );
 
-       void write( FileStorage& fs ) const;
 
-   };
 
-   CV_WRAP static Ptr<SimpleBlobDetector>
 
-     create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
 
-   CV_WRAP virtual String getDefaultName() const;
 
- };
 
- //! @} features2d_main
 
- //! @addtogroup features2d_main
 
- //! @{
 
- /** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
 
- @note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
 
- F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
 
- (ECCV), Fiorenze, Italy, October 2012.
 
- */
 
- class CV_EXPORTS_W KAZE : public Feature2D
 
- {
 
- public:
 
-     enum
 
-     {
 
-         DIFF_PM_G1 = 0,
 
-         DIFF_PM_G2 = 1,
 
-         DIFF_WEICKERT = 2,
 
-         DIFF_CHARBONNIER = 3
 
-     };
 
-     /** @brief The KAZE constructor
 
-     @param extended Set to enable extraction of extended (128-byte) descriptor.
 
-     @param upright Set to enable use of upright descriptors (non rotation-invariant).
 
-     @param threshold Detector response threshold to accept point
 
-     @param nOctaves Maximum octave evolution of the image
 
-     @param nOctaveLayers Default number of sublevels per scale level
 
-     @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
 
-     DIFF_CHARBONNIER
 
-      */
 
-     CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
 
-                                     float threshold = 0.001f,
 
-                                     int nOctaves = 4, int nOctaveLayers = 4,
 
-                                     int diffusivity = KAZE::DIFF_PM_G2);
 
-     CV_WRAP virtual void setExtended(bool extended) = 0;
 
-     CV_WRAP virtual bool getExtended() const = 0;
 
-     CV_WRAP virtual void setUpright(bool upright) = 0;
 
-     CV_WRAP virtual bool getUpright() const = 0;
 
-     CV_WRAP virtual void setThreshold(double threshold) = 0;
 
-     CV_WRAP virtual double getThreshold() const = 0;
 
-     CV_WRAP virtual void setNOctaves(int octaves) = 0;
 
-     CV_WRAP virtual int getNOctaves() const = 0;
 
-     CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
 
-     CV_WRAP virtual int getNOctaveLayers() const = 0;
 
-     CV_WRAP virtual void setDiffusivity(int diff) = 0;
 
-     CV_WRAP virtual int getDiffusivity() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- /** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
 
- @details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
 
- @note When you need descriptors use Feature2D::detectAndCompute, which
 
- provides better performance. When using Feature2D::detect followed by
 
- Feature2D::compute scale space pyramid is computed twice.
 
- @note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
 
- will use OpenCL.
 
- @note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
 
- Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
 
- British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
 
- */
 
- class CV_EXPORTS_W AKAZE : public Feature2D
 
- {
 
- public:
 
-     // AKAZE descriptor type
 
-     enum
 
-     {
 
-         DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
 
-         DESCRIPTOR_KAZE = 3,
 
-         DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
 
-         DESCRIPTOR_MLDB = 5
 
-     };
 
-     /** @brief The AKAZE constructor
 
-     @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
 
-     DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
 
-     @param descriptor_size Size of the descriptor in bits. 0 -\> Full size
 
-     @param descriptor_channels Number of channels in the descriptor (1, 2, 3)
 
-     @param threshold Detector response threshold to accept point
 
-     @param nOctaves Maximum octave evolution of the image
 
-     @param nOctaveLayers Default number of sublevels per scale level
 
-     @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
 
-     DIFF_CHARBONNIER
 
-      */
 
-     CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB,
 
-                                      int descriptor_size = 0, int descriptor_channels = 3,
 
-                                      float threshold = 0.001f, int nOctaves = 4,
 
-                                      int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2);
 
-     CV_WRAP virtual void setDescriptorType(int dtype) = 0;
 
-     CV_WRAP virtual int getDescriptorType() const = 0;
 
-     CV_WRAP virtual void setDescriptorSize(int dsize) = 0;
 
-     CV_WRAP virtual int getDescriptorSize() const = 0;
 
-     CV_WRAP virtual void setDescriptorChannels(int dch) = 0;
 
-     CV_WRAP virtual int getDescriptorChannels() const = 0;
 
-     CV_WRAP virtual void setThreshold(double threshold) = 0;
 
-     CV_WRAP virtual double getThreshold() const = 0;
 
-     CV_WRAP virtual void setNOctaves(int octaves) = 0;
 
-     CV_WRAP virtual int getNOctaves() const = 0;
 
-     CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
 
-     CV_WRAP virtual int getNOctaveLayers() const = 0;
 
-     CV_WRAP virtual void setDiffusivity(int diff) = 0;
 
-     CV_WRAP virtual int getDiffusivity() const = 0;
 
-     CV_WRAP virtual String getDefaultName() const;
 
- };
 
- //! @} features2d_main
 
- /****************************************************************************************\
 
- *                                      Distance                                          *
 
- \****************************************************************************************/
 
- template<typename T>
 
- struct CV_EXPORTS Accumulator
 
- {
 
-     typedef T Type;
 
- };
 
- template<> struct Accumulator<unsigned char>  { typedef float Type; };
 
- template<> struct Accumulator<unsigned short> { typedef float Type; };
 
- template<> struct Accumulator<char>   { typedef float Type; };
 
- template<> struct Accumulator<short>  { typedef float Type; };
 
- /*
 
-  * Squared Euclidean distance functor
 
-  */
 
- template<class T>
 
- struct CV_EXPORTS SL2
 
- {
 
-     enum { normType = NORM_L2SQR };
 
-     typedef T ValueType;
 
-     typedef typename Accumulator<T>::Type ResultType;
 
-     ResultType operator()( const T* a, const T* b, int size ) const
 
-     {
 
-         return normL2Sqr<ValueType, ResultType>(a, b, size);
 
-     }
 
- };
 
- /*
 
-  * Euclidean distance functor
 
-  */
 
- template<class T>
 
- struct CV_EXPORTS L2
 
- {
 
-     enum { normType = NORM_L2 };
 
-     typedef T ValueType;
 
-     typedef typename Accumulator<T>::Type ResultType;
 
-     ResultType operator()( const T* a, const T* b, int size ) const
 
-     {
 
-         return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
 
-     }
 
- };
 
- /*
 
-  * Manhattan distance (city block distance) functor
 
-  */
 
- template<class T>
 
- struct CV_EXPORTS L1
 
- {
 
-     enum { normType = NORM_L1 };
 
-     typedef T ValueType;
 
-     typedef typename Accumulator<T>::Type ResultType;
 
-     ResultType operator()( const T* a, const T* b, int size ) const
 
-     {
 
-         return normL1<ValueType, ResultType>(a, b, size);
 
-     }
 
- };
 
- /****************************************************************************************\
 
- *                                  DescriptorMatcher                                     *
 
- \****************************************************************************************/
 
- //! @addtogroup features2d_match
 
- //! @{
 
- /** @brief Abstract base class for matching keypoint descriptors.
 
- It has two groups of match methods: for matching descriptors of an image with another image or with
 
- an image set.
 
-  */
 
- class CV_EXPORTS_W DescriptorMatcher : public Algorithm
 
- {
 
- public:
 
-    enum
 
-     {
 
-         FLANNBASED            = 1,
 
-         BRUTEFORCE            = 2,
 
-         BRUTEFORCE_L1         = 3,
 
-         BRUTEFORCE_HAMMING    = 4,
 
-         BRUTEFORCE_HAMMINGLUT = 5,
 
-         BRUTEFORCE_SL2        = 6
 
-     };
 
-     virtual ~DescriptorMatcher();
 
-     /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
 
-     collection.
 
-     If the collection is not empty, the new descriptors are added to existing train descriptors.
 
-     @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
 
-     train image.
 
-      */
 
-     CV_WRAP virtual void add( InputArrayOfArrays descriptors );
 
-     /** @brief Returns a constant link to the train descriptor collection trainDescCollection .
 
-      */
 
-     CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
 
-     /** @brief Clears the train descriptor collections.
 
-      */
 
-     CV_WRAP virtual void clear();
 
-     /** @brief Returns true if there are no train descriptors in the both collections.
 
-      */
 
-     CV_WRAP virtual bool empty() const;
 
-     /** @brief Returns true if the descriptor matcher supports masking permissible matches.
 
-      */
 
-     CV_WRAP virtual bool isMaskSupported() const = 0;
 
-     /** @brief Trains a descriptor matcher
 
-     Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
 
-     train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
 
-     have an empty implementation of this method. Other matchers really train their inner structures (for
 
-     example, FlannBasedMatcher trains flann::Index ).
 
-      */
 
-     CV_WRAP virtual void train();
 
-     /** @brief Finds the best match for each descriptor from a query set.
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 
-     collection stored in the class object.
 
-     @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
 
-     descriptor. So, matches size may be smaller than the query descriptors count.
 
-     @param mask Mask specifying permissible matches between an input query and train matrices of
 
-     descriptors.
 
-     In the first variant of this method, the train descriptors are passed as an input argument. In the
 
-     second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
 
-     used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
 
-     matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
 
-     mask.at\<uchar\>(i,j) is non-zero.
 
-      */
 
-     CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
 
-                 CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
 
-     /** @brief Finds the k best matches for each descriptor from a query set.
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 
-     collection stored in the class object.
 
-     @param mask Mask specifying permissible matches between an input query and train matrices of
 
-     descriptors.
 
-     @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
 
-     @param k Count of best matches found per each query descriptor or less if a query descriptor has
 
-     less than k possible matches in total.
 
-     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 
-     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 
-     the matches vector does not contain matches for fully masked-out query descriptors.
 
-     These extended variants of DescriptorMatcher::match methods find several best matches for each query
 
-     descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
 
-     for the details about query and train descriptors.
 
-      */
 
-     CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
 
-                    CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
 
-                    InputArray mask=noArray(), bool compactResult=false ) const;
 
-     /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
 
-     collection stored in the class object.
 
-     @param matches Found matches.
 
-     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 
-     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 
-     the matches vector does not contain matches for fully masked-out query descriptors.
 
-     @param maxDistance Threshold for the distance between matched descriptors. Distance means here
 
-     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
 
-     in Pixels)!
 
-     @param mask Mask specifying permissible matches between an input query and train matrices of
 
-     descriptors.
 
-     For each query descriptor, the methods find such training descriptors that the distance between the
 
-     query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
 
-     returned in the distance increasing order.
 
-      */
 
-     CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
 
-                       CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
 
-                       InputArray mask=noArray(), bool compactResult=false ) const;
 
-     /** @overload
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
 
-     descriptor. So, matches size may be smaller than the query descriptors count.
 
-     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 
-     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 
-     */
 
-     CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
 
-                         InputArrayOfArrays masks=noArray() );
 
-     /** @overload
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
 
-     @param k Count of best matches found per each query descriptor or less if a query descriptor has
 
-     less than k possible matches in total.
 
-     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 
-     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 
-     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 
-     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 
-     the matches vector does not contain matches for fully masked-out query descriptors.
 
-     */
 
-     CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
 
-                            InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     /** @overload
 
-     @param queryDescriptors Query set of descriptors.
 
-     @param matches Found matches.
 
-     @param maxDistance Threshold for the distance between matched descriptors. Distance means here
 
-     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
 
-     in Pixels)!
 
-     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
 
-     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
 
-     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
 
-     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
 
-     the matches vector does not contain matches for fully masked-out query descriptors.
 
-     */
 
-     CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
 
-                       InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     CV_WRAP void write( const String& fileName ) const
 
-     {
 
-         FileStorage fs(fileName, FileStorage::WRITE);
 
-         write(fs);
 
-     }
 
-     CV_WRAP void read( const String& fileName )
 
-     {
 
-         FileStorage fs(fileName, FileStorage::READ);
 
-         read(fs.root());
 
-     }
 
-     // Reads matcher object from a file node
 
-     virtual void read( const FileNode& );
 
-     // Writes matcher object to a file storage
 
-     virtual void write( FileStorage& ) const;
 
-     /** @brief Clones the matcher.
 
-     @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
 
-     that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
 
-     object copy with the current parameters but with empty train data.
 
-      */
 
-     CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
 
-     /** @brief Creates a descriptor matcher of a given type with the default parameters (using default
 
-     constructor).
 
-     @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
 
-     supported:
 
-     -   `BruteForce` (it uses L2 )
 
-     -   `BruteForce-L1`
 
-     -   `BruteForce-Hamming`
 
-     -   `BruteForce-Hamming(2)`
 
-     -   `FlannBased`
 
-      */
 
-     CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
 
-     CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType );
 
- protected:
 
-     /**
 
-      * Class to work with descriptors from several images as with one merged matrix.
 
-      * It is used e.g. in FlannBasedMatcher.
 
-      */
 
-     class CV_EXPORTS DescriptorCollection
 
-     {
 
-     public:
 
-         DescriptorCollection();
 
-         DescriptorCollection( const DescriptorCollection& collection );
 
-         virtual ~DescriptorCollection();
 
-         // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
 
-         void set( const std::vector<Mat>& descriptors );
 
-         virtual void clear();
 
-         const Mat& getDescriptors() const;
 
-         const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
 
-         const Mat getDescriptor( int globalDescIdx ) const;
 
-         void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
 
-         int size() const;
 
-     protected:
 
-         Mat mergedDescriptors;
 
-         std::vector<int> startIdxs;
 
-     };
 
-     //! In fact the matching is implemented only by the following two methods. These methods suppose
 
-     //! that the class object has been trained already. Public match methods call these methods
 
-     //! after calling train().
 
-     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
 
-     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
 
-     static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx );
 
-     static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx );
 
-     static Mat clone_op( Mat m ) { return m.clone(); }
 
-     void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
 
-     //! Collection of descriptors from train images.
 
-     std::vector<Mat> trainDescCollection;
 
-     std::vector<UMat> utrainDescCollection;
 
- };
 
- /** @brief Brute-force descriptor matcher.
 
- For each descriptor in the first set, this matcher finds the closest descriptor in the second set
 
- by trying each one. This descriptor matcher supports masking permissible matches of descriptor
 
- sets.
 
-  */
 
- class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
 
- {
 
- public:
 
-     /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
 
-      *
 
-      *
 
-     */
 
-     CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
 
-     virtual ~BFMatcher() {}
 
-     virtual bool isMaskSupported() const { return true; }
 
-     /** @brief Brute-force matcher create method.
 
-     @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
 
-     preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
 
-     BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
 
-     description).
 
-     @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
 
-     nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
 
-     k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
 
-     matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
 
-     pairs. Such technique usually produces best results with minimal number of outliers when there are
 
-     enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
 
-      */
 
-     CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
 
-     virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
 
- protected:
 
-     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     int normType;
 
-     bool crossCheck;
 
- };
 
- #if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
 
- /** @brief Flann-based descriptor matcher.
 
- This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
 
- methods to find the best matches. So, this matcher may be faster when matching a large train
 
- collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
 
- matches of descriptor sets because flann::Index does not support this. :
 
-  */
 
- class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
 
- {
 
- public:
 
-     CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
 
-                        const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
 
-     virtual void add( InputArrayOfArrays descriptors );
 
-     virtual void clear();
 
-     // Reads matcher object from a file node
 
-     virtual void read( const FileNode& );
 
-     // Writes matcher object to a file storage
 
-     virtual void write( FileStorage& ) const;
 
-     virtual void train();
 
-     virtual bool isMaskSupported() const;
 
-     CV_WRAP static Ptr<FlannBasedMatcher> create();
 
-     virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
 
- protected:
 
-     static void convertToDMatches( const DescriptorCollection& descriptors,
 
-                                    const Mat& indices, const Mat& distances,
 
-                                    std::vector<std::vector<DMatch> >& matches );
 
-     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
 
-         InputArrayOfArrays masks=noArray(), bool compactResult=false );
 
-     Ptr<flann::IndexParams> indexParams;
 
-     Ptr<flann::SearchParams> searchParams;
 
-     Ptr<flann::Index> flannIndex;
 
-     DescriptorCollection mergedDescriptors;
 
-     int addedDescCount;
 
- };
 
- #endif
 
- //! @} features2d_match
 
- /****************************************************************************************\
 
- *                                   Drawing functions                                    *
 
- \****************************************************************************************/
 
- //! @addtogroup features2d_draw
 
- //! @{
 
- struct CV_EXPORTS DrawMatchesFlags
 
- {
 
-     enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
 
-                        //!< i.e. existing memory of output image may be reused.
 
-                        //!< Two source image, matches and single keypoints will be drawn.
 
-                        //!< For each keypoint only the center point will be drawn (without
 
-                        //!< the circle around keypoint with keypoint size and orientation).
 
-           DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
 
-                                 //!< Matches will be drawn on existing content of output image.
 
-           NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
 
-           DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
 
-                                   //!< orientation will be drawn.
 
-         };
 
- };
 
- /** @brief Draws keypoints.
 
- @param image Source image.
 
- @param keypoints Keypoints from the source image.
 
- @param outImage Output image. Its content depends on the flags value defining what is drawn in the
 
- output image. See possible flags bit values below.
 
- @param color Color of keypoints.
 
- @param flags Flags setting drawing features. Possible flags bit values are defined by
 
- DrawMatchesFlags. See details above in drawMatches .
 
- @note
 
- For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
 
- cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
 
- cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
 
-  */
 
- CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
 
-                                const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
 
- /** @brief Draws the found matches of keypoints from two images.
 
- @param img1 First source image.
 
- @param keypoints1 Keypoints from the first source image.
 
- @param img2 Second source image.
 
- @param keypoints2 Keypoints from the second source image.
 
- @param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
 
- has a corresponding point in keypoints2[matches[i]] .
 
- @param outImg Output image. Its content depends on the flags value defining what is drawn in the
 
- output image. See possible flags bit values below.
 
- @param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
 
- , the color is generated randomly.
 
- @param singlePointColor Color of single keypoints (circles), which means that keypoints do not
 
- have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
 
- @param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
 
- drawn.
 
- @param flags Flags setting drawing features. Possible flags bit values are defined by
 
- DrawMatchesFlags.
 
- This function draws matches of keypoints from two images in the output image. Match is a line
 
- connecting two keypoints (circles). See cv::DrawMatchesFlags.
 
-  */
 
- CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
 
-                              InputArray img2, const std::vector<KeyPoint>& keypoints2,
 
-                              const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
 
-                              const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 
-                              const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
 
- /** @overload */
 
- CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
 
-                              InputArray img2, const std::vector<KeyPoint>& keypoints2,
 
-                              const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
 
-                              const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
 
-                              const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
 
- //! @} features2d_draw
 
- /****************************************************************************************\
 
- *   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
 
- \****************************************************************************************/
 
- CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
 
-                                          std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2,
 
-                                          float& repeatability, int& correspCount,
 
-                                          const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
 
- CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
 
-                                              const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
 
-                                              std::vector<Point2f>& recallPrecisionCurve );
 
- CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
 
- CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
 
- /****************************************************************************************\
 
- *                                     Bag of visual words                                *
 
- \****************************************************************************************/
 
- //! @addtogroup features2d_category
 
- //! @{
 
- /** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
 
- For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
 
- Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
 
-  */
 
- class CV_EXPORTS_W BOWTrainer
 
- {
 
- public:
 
-     BOWTrainer();
 
-     virtual ~BOWTrainer();
 
-     /** @brief Adds descriptors to a training set.
 
-     @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
 
-     descriptor.
 
-     The training set is clustered using clustermethod to construct the vocabulary.
 
-      */
 
-     CV_WRAP void add( const Mat& descriptors );
 
-     /** @brief Returns a training set of descriptors.
 
-     */
 
-     CV_WRAP const std::vector<Mat>& getDescriptors() const;
 
-     /** @brief Returns the count of all descriptors stored in the training set.
 
-     */
 
-     CV_WRAP int descriptorsCount() const;
 
-     CV_WRAP virtual void clear();
 
-     /** @overload */
 
-     CV_WRAP virtual Mat cluster() const = 0;
 
-     /** @brief Clusters train descriptors.
 
-     @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
 
-     Descriptors are not added to the inner train descriptor set.
 
-     The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
 
-     variant of the method, train descriptors stored in the object are clustered. In the second variant,
 
-     input descriptors are clustered.
 
-      */
 
-     CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
 
- protected:
 
-     std::vector<Mat> descriptors;
 
-     int size;
 
- };
 
- /** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
 
-  */
 
- class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
 
- {
 
- public:
 
-     /** @brief The constructor.
 
-     @see cv::kmeans
 
-     */
 
-     CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
 
-                       int attempts=3, int flags=KMEANS_PP_CENTERS );
 
-     virtual ~BOWKMeansTrainer();
 
-     // Returns trained vocabulary (i.e. cluster centers).
 
-     CV_WRAP virtual Mat cluster() const;
 
-     CV_WRAP virtual Mat cluster( const Mat& descriptors ) const;
 
- protected:
 
-     int clusterCount;
 
-     TermCriteria termcrit;
 
-     int attempts;
 
-     int flags;
 
- };
 
- /** @brief Class to compute an image descriptor using the *bag of visual words*.
 
- Such a computation consists of the following steps:
 
- 1.  Compute descriptors for a given image and its keypoints set.
 
- 2.  Find the nearest visual words from the vocabulary for each keypoint descriptor.
 
- 3.  Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
 
- encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
 
- vocabulary in the given image.
 
-  */
 
- class CV_EXPORTS_W BOWImgDescriptorExtractor
 
- {
 
- public:
 
-     /** @brief The constructor.
 
-     @param dextractor Descriptor extractor that is used to compute descriptors for an input image and
 
-     its keypoints.
 
-     @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
 
-     for each keypoint descriptor of the image.
 
-      */
 
-     CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
 
-                                const Ptr<DescriptorMatcher>& dmatcher );
 
-     /** @overload */
 
-     BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
 
-     virtual ~BOWImgDescriptorExtractor();
 
-     /** @brief Sets a visual vocabulary.
 
-     @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
 
-     vocabulary is a visual word (cluster center).
 
-      */
 
-     CV_WRAP void setVocabulary( const Mat& vocabulary );
 
-     /** @brief Returns the set vocabulary.
 
-     */
 
-     CV_WRAP const Mat& getVocabulary() const;
 
-     /** @brief Computes an image descriptor using the set visual vocabulary.
 
-     @param image Image, for which the descriptor is computed.
 
-     @param keypoints Keypoints detected in the input image.
 
-     @param imgDescriptor Computed output image descriptor.
 
-     @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
 
-     pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
 
-     returned if it is non-zero.
 
-     @param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
 
-      */
 
-     void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
 
-                   std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
 
-     /** @overload
 
-     @param keypointDescriptors Computed descriptors to match with vocabulary.
 
-     @param imgDescriptor Computed output image descriptor.
 
-     @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
 
-     pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
 
-     returned if it is non-zero.
 
-     */
 
-     void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
 
-                   std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
 
-     // compute() is not constant because DescriptorMatcher::match is not constant
 
-     CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
 
-     { compute(image,keypoints,imgDescriptor); }
 
-     /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
 
-     */
 
-     CV_WRAP int descriptorSize() const;
 
-     /** @brief Returns an image descriptor type.
 
-      */
 
-     CV_WRAP int descriptorType() const;
 
- protected:
 
-     Mat vocabulary;
 
-     Ptr<DescriptorExtractor> dextractor;
 
-     Ptr<DescriptorMatcher> dmatcher;
 
- };
 
- //! @} features2d_category
 
- //! @} features2d
 
- } /* namespace cv */
 
- #endif
 
 
  |