| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                           License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef OPENCV_FLANN_HPP
 
- #define OPENCV_FLANN_HPP
 
- #include "opencv2/core.hpp"
 
- #include "opencv2/flann/miniflann.hpp"
 
- #include "opencv2/flann/flann_base.hpp"
 
- /**
 
- @defgroup flann Clustering and Search in Multi-Dimensional Spaces
 
- This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
 
- Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
 
- neighbor search in large datasets and for high dimensional features. More information about FLANN
 
- can be found in @cite Muja2009 .
 
- */
 
- namespace cvflann
 
- {
 
-     CV_EXPORTS flann_distance_t flann_distance_type();
 
-     CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
 
- }
 
- namespace cv
 
- {
 
- namespace flann
 
- {
 
- //! @addtogroup flann
 
- //! @{
 
- template <typename T> struct CvType {};
 
- template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
 
- template <> struct CvType<char> { static int type() { return CV_8S; } };
 
- template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
 
- template <> struct CvType<short> { static int type() { return CV_16S; } };
 
- template <> struct CvType<int> { static int type() { return CV_32S; } };
 
- template <> struct CvType<float> { static int type() { return CV_32F; } };
 
- template <> struct CvType<double> { static int type() { return CV_64F; } };
 
- // bring the flann parameters into this namespace
 
- using ::cvflann::get_param;
 
- using ::cvflann::print_params;
 
- // bring the flann distances into this namespace
 
- using ::cvflann::L2_Simple;
 
- using ::cvflann::L2;
 
- using ::cvflann::L1;
 
- using ::cvflann::MinkowskiDistance;
 
- using ::cvflann::MaxDistance;
 
- using ::cvflann::HammingLUT;
 
- using ::cvflann::Hamming;
 
- using ::cvflann::Hamming2;
 
- using ::cvflann::HistIntersectionDistance;
 
- using ::cvflann::HellingerDistance;
 
- using ::cvflann::ChiSquareDistance;
 
- using ::cvflann::KL_Divergence;
 
- /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
 
- the index is built.
 
-  */
 
- template <typename Distance>
 
- class GenericIndex
 
- {
 
- public:
 
-         typedef typename Distance::ElementType ElementType;
 
-         typedef typename Distance::ResultType DistanceType;
 
-         /** @brief Constructs a nearest neighbor search index for a given dataset.
 
-         @param features Matrix of containing the features(points) to index. The size of the matrix is
 
-         num_features x feature_dimensionality and the data type of the elements in the matrix must
 
-         coincide with the type of the index.
 
-         @param params Structure containing the index parameters. The type of index that will be
 
-         constructed depends on the type of this parameter. See the description.
 
-         @param distance
 
-         The method constructs a fast search structure from a set of features using the specified algorithm
 
-         with specified parameters, as defined by params. params is a reference to one of the following class
 
-         IndexParams descendants:
 
-         - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
 
-         brute-force search. :
 
-         @code
 
-         struct LinearIndexParams : public IndexParams
 
-         {
 
-         };
 
-         @endcode
 
-         - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
 
-         a set of randomized kd-trees which will be searched in parallel. :
 
-         @code
 
-         struct KDTreeIndexParams : public IndexParams
 
-         {
 
-             KDTreeIndexParams( int trees = 4 );
 
-         };
 
-         @endcode
 
-         - **KMeansIndexParams** When passing an object of this type the index constructed will be a
 
-         hierarchical k-means tree. :
 
-         @code
 
-         struct KMeansIndexParams : public IndexParams
 
-         {
 
-             KMeansIndexParams(
 
-                 int branching = 32,
 
-                 int iterations = 11,
 
-                 flann_centers_init_t centers_init = CENTERS_RANDOM,
 
-                 float cb_index = 0.2 );
 
-         };
 
-         @endcode
 
-         - **CompositeIndexParams** When using a parameters object of this type the index created
 
-         combines the randomized kd-trees and the hierarchical k-means tree. :
 
-         @code
 
-         struct CompositeIndexParams : public IndexParams
 
-         {
 
-             CompositeIndexParams(
 
-                 int trees = 4,
 
-                 int branching = 32,
 
-                 int iterations = 11,
 
-                 flann_centers_init_t centers_init = CENTERS_RANDOM,
 
-                 float cb_index = 0.2 );
 
-         };
 
-         @endcode
 
-         - **LshIndexParams** When using a parameters object of this type the index created uses
 
-         multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
 
-         by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
 
-         International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :
 
-         @code
 
-         struct LshIndexParams : public IndexParams
 
-         {
 
-             LshIndexParams(
 
-                 unsigned int table_number,
 
-                 unsigned int key_size,
 
-                 unsigned int multi_probe_level );
 
-         };
 
-         @endcode
 
-         - **AutotunedIndexParams** When passing an object of this type the index created is
 
-         automatically tuned to offer the best performance, by choosing the optimal index type
 
-         (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
 
-         @code
 
-         struct AutotunedIndexParams : public IndexParams
 
-         {
 
-             AutotunedIndexParams(
 
-                 float target_precision = 0.9,
 
-                 float build_weight = 0.01,
 
-                 float memory_weight = 0,
 
-                 float sample_fraction = 0.1 );
 
-         };
 
-         @endcode
 
-         - **SavedIndexParams** This object type is used for loading a previously saved index from the
 
-         disk. :
 
-         @code
 
-         struct SavedIndexParams : public IndexParams
 
-         {
 
-             SavedIndexParams( String filename );
 
-         };
 
-         @endcode
 
-          */
 
-         GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
 
-         ~GenericIndex();
 
-         /** @brief Performs a K-nearest neighbor search for a given query point using the index.
 
-         @param query The query point
 
-         @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
 
-         at least knn size.
 
-         @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
 
-         at least knn size.
 
-         @param knn Number of nearest neighbors to search for.
 
-         @param params SearchParams
 
-          */
 
-         void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 
-                        std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
 
-         void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
 
-         int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 
-                          std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 
-         int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
 
-                          DistanceType radius, const ::cvflann::SearchParams& params);
 
-         void save(String filename) { nnIndex->save(filename); }
 
-         int veclen() const { return nnIndex->veclen(); }
 
-         int size() const { return nnIndex->size(); }
 
-         ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
 
-         CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
 
- private:
 
-         ::cvflann::Index<Distance>* nnIndex;
 
- };
 
- //! @cond IGNORED
 
- #define FLANN_DISTANCE_CHECK \
 
-     if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
 
-         printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
 
-         "the distance using cvflann::set_distance_type. This is no longer working as expected "\
 
-         "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
 
-         "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
 
-     }
 
- template <typename Distance>
 
- GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
 
- {
 
-     CV_Assert(dataset.type() == CvType<ElementType>::type());
 
-     CV_Assert(dataset.isContinuous());
 
-     ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 
-     nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
 
-     FLANN_DISTANCE_CHECK
 
-     nnIndex->buildIndex();
 
- }
 
- template <typename Distance>
 
- GenericIndex<Distance>::~GenericIndex()
 
- {
 
-     delete nnIndex;
 
- }
 
- template <typename Distance>
 
- void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 
- {
 
-     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 
-     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 
-     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 
-     FLANN_DISTANCE_CHECK
 
-     nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 
- }
 
- template <typename Distance>
 
- void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 
- {
 
-     CV_Assert(queries.type() == CvType<ElementType>::type());
 
-     CV_Assert(queries.isContinuous());
 
-     ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 
-     CV_Assert(indices.type() == CV_32S);
 
-     CV_Assert(indices.isContinuous());
 
-     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 
-     CV_Assert(dists.type() == CvType<DistanceType>::type());
 
-     CV_Assert(dists.isContinuous());
 
-     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 
-     FLANN_DISTANCE_CHECK
 
-     nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 
- }
 
- template <typename Distance>
 
- int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 
- {
 
-     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 
-     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 
-     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 
-     FLANN_DISTANCE_CHECK
 
-     return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
- }
 
- template <typename Distance>
 
- int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 
- {
 
-     CV_Assert(query.type() == CvType<ElementType>::type());
 
-     CV_Assert(query.isContinuous());
 
-     ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 
-     CV_Assert(indices.type() == CV_32S);
 
-     CV_Assert(indices.isContinuous());
 
-     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 
-     CV_Assert(dists.type() == CvType<DistanceType>::type());
 
-     CV_Assert(dists.isContinuous());
 
-     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 
-     FLANN_DISTANCE_CHECK
 
-     return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
- }
 
- //! @endcond
 
- /**
 
-  * @deprecated Use GenericIndex class instead
 
-  */
 
- template <typename T>
 
- class Index_
 
- {
 
- public:
 
-     typedef typename L2<T>::ElementType ElementType;
 
-     typedef typename L2<T>::ResultType DistanceType;
 
-     CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
 
-     {
 
-         printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
 
-         CV_Assert(dataset.type() == CvType<ElementType>::type());
 
-         CV_Assert(dataset.isContinuous());
 
-         ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 
-         if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 
-             nnIndex_L1 = NULL;
 
-             nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
 
-         }
 
-         else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 
-             nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
 
-             nnIndex_L2 = NULL;
 
-         }
 
-         else {
 
-             printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
 
-                    "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
 
-             CV_Assert(0);
 
-         }
 
-         if (nnIndex_L1) nnIndex_L1->buildIndex();
 
-         if (nnIndex_L2) nnIndex_L2->buildIndex();
 
-     }
 
-     CV_DEPRECATED ~Index_()
 
-     {
 
-         if (nnIndex_L1) delete nnIndex_L1;
 
-         if (nnIndex_L2) delete nnIndex_L2;
 
-     }
 
-     CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 
-     {
 
-         ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 
-         ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 
-         ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 
-         if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 
-         if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 
-     }
 
-     CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 
-     {
 
-         CV_Assert(queries.type() == CvType<ElementType>::type());
 
-         CV_Assert(queries.isContinuous());
 
-         ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 
-         CV_Assert(indices.type() == CV_32S);
 
-         CV_Assert(indices.isContinuous());
 
-         ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 
-         CV_Assert(dists.type() == CvType<DistanceType>::type());
 
-         CV_Assert(dists.isContinuous());
 
-         ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 
-         if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 
-         if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 
-     }
 
-     CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 
-     {
 
-         ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 
-         ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 
-         ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 
-         if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
-         if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
-     }
 
-     CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 
-     {
 
-         CV_Assert(query.type() == CvType<ElementType>::type());
 
-         CV_Assert(query.isContinuous());
 
-         ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 
-         CV_Assert(indices.type() == CV_32S);
 
-         CV_Assert(indices.isContinuous());
 
-         ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 
-         CV_Assert(dists.type() == CvType<DistanceType>::type());
 
-         CV_Assert(dists.isContinuous());
 
-         ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 
-         if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
-         if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 
-     }
 
-     CV_DEPRECATED void save(String filename)
 
-     {
 
-         if (nnIndex_L1) nnIndex_L1->save(filename);
 
-         if (nnIndex_L2) nnIndex_L2->save(filename);
 
-     }
 
-     CV_DEPRECATED int veclen() const
 
-     {
 
-         if (nnIndex_L1) return nnIndex_L1->veclen();
 
-         if (nnIndex_L2) return nnIndex_L2->veclen();
 
-     }
 
-     CV_DEPRECATED int size() const
 
-     {
 
-         if (nnIndex_L1) return nnIndex_L1->size();
 
-         if (nnIndex_L2) return nnIndex_L2->size();
 
-     }
 
-     CV_DEPRECATED ::cvflann::IndexParams getParameters()
 
-     {
 
-         if (nnIndex_L1) return nnIndex_L1->getParameters();
 
-         if (nnIndex_L2) return nnIndex_L2->getParameters();
 
-     }
 
-     CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
 
-     {
 
-         if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
 
-         if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
 
-     }
 
- private:
 
-     // providing backwards compatibility for L2 and L1 distances (most common)
 
-     ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
 
-     ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
 
- };
 
- /** @brief Clusters features using hierarchical k-means algorithm.
 
- @param features The points to be clustered. The matrix must have elements of type
 
- Distance::ElementType.
 
- @param centers The centers of the clusters obtained. The matrix must have type
 
- Distance::ResultType. The number of rows in this matrix represents the number of clusters desired,
 
- however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
 
- computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
 
- clusters desired, where branching is the tree's branching factor (see description of the
 
- KMeansIndexParams).
 
- @param params Parameters used in the construction of the hierarchical k-means tree.
 
- @param d Distance to be used for clustering.
 
- The method clusters the given feature vectors by constructing a hierarchical k-means tree and
 
- choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
 
- found.
 
-  */
 
- template <typename Distance>
 
- int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
 
-                            Distance d = Distance())
 
- {
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     CV_Assert(features.type() == CvType<ElementType>::type());
 
-     CV_Assert(features.isContinuous());
 
-     ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
 
-     CV_Assert(centers.type() == CvType<DistanceType>::type());
 
-     CV_Assert(centers.isContinuous());
 
-     ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
 
-     return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
 
- }
 
- /** @deprecated
 
- */
 
- template <typename ELEM_TYPE, typename DIST_TYPE>
 
- CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
 
- {
 
-     printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
 
-         "cv::flann::hierarchicalClustering<Distance> instead\n");
 
-     if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 
-         return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
 
-     }
 
-     else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 
-         return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
 
-     }
 
-     else {
 
-         printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
 
-         "compatibility for the L1 and L2 distances. "
 
-         "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
 
-         CV_Assert(0);
 
-     }
 
- }
 
- //! @} flann
 
- } } // namespace cv::flann
 
- #endif
 
 
  |