| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_ALL_INDICES_H_
 
- #define OPENCV_FLANN_ALL_INDICES_H_
 
- #include "general.h"
 
- #include "nn_index.h"
 
- #include "kdtree_index.h"
 
- #include "kdtree_single_index.h"
 
- #include "kmeans_index.h"
 
- #include "composite_index.h"
 
- #include "linear_index.h"
 
- #include "hierarchical_clustering_index.h"
 
- #include "lsh_index.h"
 
- #include "autotuned_index.h"
 
- namespace cvflann
 
- {
 
- template<typename KDTreeCapability, typename VectorSpace, typename Distance>
 
- struct index_creator
 
- {
 
-     static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
 
-     {
 
-         flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
 
-         NNIndex<Distance>* nnIndex;
 
-         switch (index_type) {
 
-         case FLANN_INDEX_LINEAR:
 
-             nnIndex = new LinearIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_KDTREE_SINGLE:
 
-             nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_KDTREE:
 
-             nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_KMEANS:
 
-             nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_COMPOSITE:
 
-             nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_AUTOTUNED:
 
-             nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_HIERARCHICAL:
 
-             nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_LSH:
 
-             nnIndex = new LshIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         default:
 
-             throw FLANNException("Unknown index type");
 
-         }
 
-         return nnIndex;
 
-     }
 
- };
 
- template<typename VectorSpace, typename Distance>
 
- struct index_creator<False,VectorSpace,Distance>
 
- {
 
-     static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
 
-     {
 
-         flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
 
-         NNIndex<Distance>* nnIndex;
 
-         switch (index_type) {
 
-         case FLANN_INDEX_LINEAR:
 
-             nnIndex = new LinearIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_KMEANS:
 
-             nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_HIERARCHICAL:
 
-             nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_LSH:
 
-             nnIndex = new LshIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         default:
 
-             throw FLANNException("Unknown index type");
 
-         }
 
-         return nnIndex;
 
-     }
 
- };
 
- template<typename Distance>
 
- struct index_creator<False,False,Distance>
 
- {
 
-     static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
 
-     {
 
-         flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
 
-         NNIndex<Distance>* nnIndex;
 
-         switch (index_type) {
 
-         case FLANN_INDEX_LINEAR:
 
-             nnIndex = new LinearIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_HIERARCHICAL:
 
-             nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         case FLANN_INDEX_LSH:
 
-             nnIndex = new LshIndex<Distance>(dataset, params, distance);
 
-             break;
 
-         default:
 
-             throw FLANNException("Unknown index type");
 
-         }
 
-         return nnIndex;
 
-     }
 
- };
 
- template<typename Distance>
 
- NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
 
- {
 
-     return index_creator<typename Distance::is_kdtree_distance,
 
-                          typename Distance::is_vector_space_distance,
 
-                          Distance>::create(dataset, params,distance);
 
- }
 
- }
 
- #endif /* OPENCV_FLANN_ALL_INDICES_H_ */
 
 
  |