| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
 
- #define OPENCV_FLANN_COMPOSITE_INDEX_H_
 
- #include "general.h"
 
- #include "nn_index.h"
 
- #include "kdtree_index.h"
 
- #include "kmeans_index.h"
 
- namespace cvflann
 
- {
 
- /**
 
-  * Index parameters for the CompositeIndex.
 
-  */
 
- struct CompositeIndexParams : public IndexParams
 
- {
 
-     CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
 
-                          flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
 
-     {
 
-         (*this)["algorithm"] = FLANN_INDEX_KMEANS;
 
-         // number of randomized trees to use (for kdtree)
 
-         (*this)["trees"] = trees;
 
-         // branching factor
 
-         (*this)["branching"] = branching;
 
-         // max iterations to perform in one kmeans clustering (kmeans tree)
 
-         (*this)["iterations"] = iterations;
 
-         // algorithm used for picking the initial cluster centers for kmeans tree
 
-         (*this)["centers_init"] = centers_init;
 
-         // cluster boundary index. Used when searching the kmeans tree
 
-         (*this)["cb_index"] = cb_index;
 
-     }
 
- };
 
- /**
 
-  * This index builds a kd-tree index and a k-means index and performs nearest
 
-  * neighbour search both indexes. This gives a slight boost in search performance
 
-  * as some of the neighbours that are missed by one index are found by the other.
 
-  */
 
- template <typename Distance>
 
- class CompositeIndex : public NNIndex<Distance>
 
- {
 
- public:
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     /**
 
-      * Index constructor
 
-      * @param inputData dataset containing the points to index
 
-      * @param params Index parameters
 
-      * @param d Distance functor
 
-      * @return
 
-      */
 
-     CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
 
-                    Distance d = Distance()) : index_params_(params)
 
-     {
 
-         kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
 
-         kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);
 
-     }
 
-     CompositeIndex(const CompositeIndex&);
 
-     CompositeIndex& operator=(const CompositeIndex&);
 
-     virtual ~CompositeIndex()
 
-     {
 
-         delete kdtree_index_;
 
-         delete kmeans_index_;
 
-     }
 
-     /**
 
-      * @return The index type
 
-      */
 
-     flann_algorithm_t getType() const
 
-     {
 
-         return FLANN_INDEX_COMPOSITE;
 
-     }
 
-     /**
 
-      * @return Size of the index
 
-      */
 
-     size_t size() const
 
-     {
 
-         return kdtree_index_->size();
 
-     }
 
-     /**
 
-      * \returns The dimensionality of the features in this index.
 
-      */
 
-     size_t veclen() const
 
-     {
 
-         return kdtree_index_->veclen();
 
-     }
 
-     /**
 
-      * \returns The amount of memory (in bytes) used by the index.
 
-      */
 
-     int usedMemory() const
 
-     {
 
-         return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
 
-     }
 
-     /**
 
-      * \brief Builds the index
 
-      */
 
-     void buildIndex()
 
-     {
 
-         Logger::info("Building kmeans tree...\n");
 
-         kmeans_index_->buildIndex();
 
-         Logger::info("Building kdtree tree...\n");
 
-         kdtree_index_->buildIndex();
 
-     }
 
-     /**
 
-      * \brief Saves the index to a stream
 
-      * \param stream The stream to save the index to
 
-      */
 
-     void saveIndex(FILE* stream)
 
-     {
 
-         kmeans_index_->saveIndex(stream);
 
-         kdtree_index_->saveIndex(stream);
 
-     }
 
-     /**
 
-      * \brief Loads the index from a stream
 
-      * \param stream The stream from which the index is loaded
 
-      */
 
-     void loadIndex(FILE* stream)
 
-     {
 
-         kmeans_index_->loadIndex(stream);
 
-         kdtree_index_->loadIndex(stream);
 
-     }
 
-     /**
 
-      * \returns The index parameters
 
-      */
 
-     IndexParams getParameters() const
 
-     {
 
-         return index_params_;
 
-     }
 
-     /**
 
-      * \brief Method that searches for nearest-neighbours
 
-      */
 
-     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
 
-     {
 
-         kmeans_index_->findNeighbors(result, vec, searchParams);
 
-         kdtree_index_->findNeighbors(result, vec, searchParams);
 
-     }
 
- private:
 
-     /** The k-means index */
 
-     KMeansIndex<Distance>* kmeans_index_;
 
-     /** The kd-tree index */
 
-     KDTreeIndex<Distance>* kdtree_index_;
 
-     /** The index parameters */
 
-     const IndexParams index_params_;
 
- };
 
- }
 
- #endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
 
 
  |