| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_BASE_HPP_
 
- #define OPENCV_FLANN_BASE_HPP_
 
- #include <vector>
 
- #include <cassert>
 
- #include <cstdio>
 
- #include "general.h"
 
- #include "matrix.h"
 
- #include "params.h"
 
- #include "saving.h"
 
- #include "all_indices.h"
 
- namespace cvflann
 
- {
 
- /**
 
-  * Sets the log level used for all flann functions
 
-  * @param level Verbosity level
 
-  */
 
- inline void log_verbosity(int level)
 
- {
 
-     if (level >= 0) {
 
-         Logger::setLevel(level);
 
-     }
 
- }
 
- /**
 
-  * (Deprecated) Index parameters for creating a saved index.
 
-  */
 
- struct SavedIndexParams : public IndexParams
 
- {
 
-     SavedIndexParams(cv::String filename)
 
-     {
 
-         (* this)["algorithm"] = FLANN_INDEX_SAVED;
 
-         (*this)["filename"] = filename;
 
-     }
 
- };
 
- template<typename Distance>
 
- NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance)
 
- {
 
-     typedef typename Distance::ElementType ElementType;
 
-     FILE* fin = fopen(filename.c_str(), "rb");
 
-     if (fin == NULL) {
 
-         return NULL;
 
-     }
 
-     IndexHeader header = load_header(fin);
 
-     if (header.data_type != Datatype<ElementType>::type()) {
 
-         fclose(fin);
 
-         throw FLANNException("Datatype of saved index is different than of the one to be created.");
 
-     }
 
-     if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
 
-         fclose(fin);
 
-         throw FLANNException("The index saved belongs to a different dataset");
 
-     }
 
-     IndexParams params;
 
-     params["algorithm"] = header.index_type;
 
-     NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
 
-     nnIndex->loadIndex(fin);
 
-     fclose(fin);
 
-     return nnIndex;
 
- }
 
- template<typename Distance>
 
- class Index : public NNIndex<Distance>
 
- {
 
- public:
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
 
-         : index_params_(params)
 
-     {
 
-         flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
 
-         loaded_ = false;
 
-         if (index_type == FLANN_INDEX_SAVED) {
 
-             nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);
 
-             loaded_ = true;
 
-         }
 
-         else {
 
-             nnIndex_ = create_index_by_type<Distance>(features, params, distance);
 
-         }
 
-     }
 
-     ~Index()
 
-     {
 
-         delete nnIndex_;
 
-     }
 
-     /**
 
-      * Builds the index.
 
-      */
 
-     void buildIndex()
 
-     {
 
-         if (!loaded_) {
 
-             nnIndex_->buildIndex();
 
-         }
 
-     }
 
-     void save(cv::String filename)
 
-     {
 
-         FILE* fout = fopen(filename.c_str(), "wb");
 
-         if (fout == NULL) {
 
-             throw FLANNException("Cannot open file");
 
-         }
 
-         save_header(fout, *nnIndex_);
 
-         saveIndex(fout);
 
-         fclose(fout);
 
-     }
 
-     /**
 
-      * \brief Saves the index to a stream
 
-      * \param stream The stream to save the index to
 
-      */
 
-     virtual void saveIndex(FILE* stream)
 
-     {
 
-         nnIndex_->saveIndex(stream);
 
-     }
 
-     /**
 
-      * \brief Loads the index from a stream
 
-      * \param stream The stream from which the index is loaded
 
-      */
 
-     virtual void loadIndex(FILE* stream)
 
-     {
 
-         nnIndex_->loadIndex(stream);
 
-     }
 
-     /**
 
-      * \returns number of features in this index.
 
-      */
 
-     size_t veclen() const
 
-     {
 
-         return nnIndex_->veclen();
 
-     }
 
-     /**
 
-      * \returns The dimensionality of the features in this index.
 
-      */
 
-     size_t size() const
 
-     {
 
-         return nnIndex_->size();
 
-     }
 
-     /**
 
-      * \returns The index type (kdtree, kmeans,...)
 
-      */
 
-     flann_algorithm_t getType() const
 
-     {
 
-         return nnIndex_->getType();
 
-     }
 
-     /**
 
-      * \returns The amount of memory (in bytes) used by the index.
 
-      */
 
-     virtual int usedMemory() const
 
-     {
 
-         return nnIndex_->usedMemory();
 
-     }
 
-     /**
 
-      * \returns The index parameters
 
-      */
 
-     IndexParams getParameters() const
 
-     {
 
-         return nnIndex_->getParameters();
 
-     }
 
-     /**
 
-      * \brief Perform k-nearest neighbor search
 
-      * \param[in] queries The query points for which to find the nearest neighbors
 
-      * \param[out] indices The indices of the nearest neighbors found
 
-      * \param[out] dists Distances to the nearest neighbors found
 
-      * \param[in] knn Number of nearest neighbors to return
 
-      * \param[in] params Search parameters
 
-      */
 
-     void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
 
-     {
 
-         nnIndex_->knnSearch(queries, indices, dists, knn, params);
 
-     }
 
-     /**
 
-      * \brief Perform radius search
 
-      * \param[in] query The query point
 
-      * \param[out] indices The indinces of the neighbors found within the given radius
 
-      * \param[out] dists The distances to the nearest neighbors found
 
-      * \param[in] radius The radius used for search
 
-      * \param[in] params Search parameters
 
-      * \returns Number of neighbors found
 
-      */
 
-     int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
 
-     {
 
-         return nnIndex_->radiusSearch(query, indices, dists, radius, params);
 
-     }
 
-     /**
 
-      * \brief Method that searches for nearest-neighbours
 
-      */
 
-     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
 
-     {
 
-         nnIndex_->findNeighbors(result, vec, searchParams);
 
-     }
 
-     /**
 
-      * \brief Returns actual index
 
-      */
 
-     CV_DEPRECATED NNIndex<Distance>* getIndex()
 
-     {
 
-         return nnIndex_;
 
-     }
 
-     /**
 
-      * \brief Returns index parameters.
 
-      * \deprecated use getParameters() instead.
 
-      */
 
-     CV_DEPRECATED  const IndexParams* getIndexParameters()
 
-     {
 
-         return &index_params_;
 
-     }
 
- private:
 
-     /** Pointer to actual index class */
 
-     NNIndex<Distance>* nnIndex_;
 
-     /** Indices if the index was loaded from a file */
 
-     bool loaded_;
 
-     /** Parameters passed to the index */
 
-     IndexParams index_params_;
 
-     Index(const Index &); // copy disabled
 
-     Index& operator=(const Index &); // assign disabled
 
- };
 
- /**
 
-  * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
 
-  * the clustering tree to return a flat clustering.
 
-  * @param[in] points Points to be clustered
 
-  * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
 
-  *  number of clusters requested.
 
-  * @param params Clustering parameters (The same as for cvflann::KMeansIndex)
 
-  * @param d Distance to be used for clustering (eg: cvflann::L2)
 
-  * @return number of clusters computed (can be different than clusters.rows and is the highest number
 
-  * of the form (branching-1)*K+1 smaller than clusters.rows).
 
-  */
 
- template <typename Distance>
 
- int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
 
-                            const KMeansIndexParams& params, Distance d = Distance())
 
- {
 
-     KMeansIndex<Distance> kmeans(points, params, d);
 
-     kmeans.buildIndex();
 
-     int clusterNum = kmeans.getClusterCenters(centers);
 
-     return clusterNum;
 
- }
 
- }
 
- #endif /* OPENCV_FLANN_BASE_HPP_ */
 
 
  |