| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_INDEX_TESTING_H_
 
- #define OPENCV_FLANN_INDEX_TESTING_H_
 
- #include <cstring>
 
- #include <cassert>
 
- #include <cmath>
 
- #include "matrix.h"
 
- #include "nn_index.h"
 
- #include "result_set.h"
 
- #include "logger.h"
 
- #include "timer.h"
 
- namespace cvflann
 
- {
 
- inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
 
- {
 
-     int count = 0;
 
-     for (int i=0; i<n; ++i) {
 
-         for (int k=0; k<n; ++k) {
 
-             if (neighbors[i]==groundTruth[k]) {
 
-                 count++;
 
-                 break;
 
-             }
 
-         }
 
-     }
 
-     return count;
 
- }
 
- template <typename Distance>
 
- typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
 
-                                                     int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
 
- {
 
-     typedef typename Distance::ResultType DistanceType;
 
-     DistanceType ret = 0;
 
-     for (int i=0; i<n; ++i) {
 
-         DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
 
-         DistanceType num = distance(inputData[neighbors[i]], target, veclen);
 
-         if ((den==0)&&(num==0)) {
 
-             ret += 1;
 
-         }
 
-         else {
 
-             ret += num/den;
 
-         }
 
-     }
 
-     return ret;
 
- }
 
- template <typename Distance>
 
- float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
 
-                                const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
 
-                                float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
 
- {
 
-     typedef typename Distance::ResultType DistanceType;
 
-     if (matches.cols<size_t(nn)) {
 
-         Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
 
-         throw FLANNException("Ground truth is not computed for as many neighbors as requested");
 
-     }
 
-     KNNResultSet<DistanceType> resultSet(nn+skipMatches);
 
-     SearchParams searchParams(checks);
 
-     std::vector<int> indices(nn+skipMatches);
 
-     std::vector<DistanceType> dists(nn+skipMatches);
 
-     int* neighbors = &indices[skipMatches];
 
-     int correct = 0;
 
-     DistanceType distR = 0;
 
-     StartStopTimer t;
 
-     int repeats = 0;
 
-     while (t.value<0.2) {
 
-         repeats++;
 
-         t.start();
 
-         correct = 0;
 
-         distR = 0;
 
-         for (size_t i = 0; i < testData.rows; i++) {
 
-             resultSet.init(&indices[0], &dists[0]);
 
-             index.findNeighbors(resultSet, testData[i], searchParams);
 
-             correct += countCorrectMatches(neighbors,matches[i], nn);
 
-             distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
 
-         }
 
-         t.stop();
 
-     }
 
-     time = float(t.value/repeats);
 
-     float precicion = (float)correct/(nn*testData.rows);
 
-     dist = distR/(testData.rows*nn);
 
-     Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
 
-                  checks, precicion, time, 1000.0 * time / testData.rows, dist);
 
-     return precicion;
 
- }
 
- template <typename Distance>
 
- float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
 
-                         const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
 
-                         int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
 
- {
 
-     typedef typename Distance::ResultType DistanceType;
 
-     Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
 
-     Logger::info("---------------------------------------------------------\n");
 
-     float time = 0;
 
-     DistanceType dist = 0;
 
-     precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
 
-     return time;
 
- }
 
- template <typename Distance>
 
- float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
 
-                            const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
 
-                            float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
 
- {
 
-     typedef typename Distance::ResultType DistanceType;
 
-     const float SEARCH_EPS = 0.001f;
 
-     Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
 
-     Logger::info("---------------------------------------------------------\n");
 
-     int c2 = 1;
 
-     float p2;
 
-     int c1 = 1;
 
-     //float p1;
 
-     float time;
 
-     DistanceType dist;
 
-     p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
 
-     if (p2>precision) {
 
-         Logger::info("Got as close as I can\n");
 
-         checks = c2;
 
-         return time;
 
-     }
 
-     while (p2<precision) {
 
-         c1 = c2;
 
-         //p1 = p2;
 
-         c2 *=2;
 
-         p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
 
-     }
 
-     int cx;
 
-     float realPrecision;
 
-     if (fabs(p2-precision)>SEARCH_EPS) {
 
-         Logger::info("Start linear estimation\n");
 
-         // after we got to values in the vecinity of the desired precision
 
-         // use linear approximation get a better estimation
 
-         cx = (c1+c2)/2;
 
-         realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
 
-         while (fabs(realPrecision-precision)>SEARCH_EPS) {
 
-             if (realPrecision<precision) {
 
-                 c1 = cx;
 
-             }
 
-             else {
 
-                 c2 = cx;
 
-             }
 
-             cx = (c1+c2)/2;
 
-             if (cx==c1) {
 
-                 Logger::info("Got as close as I can\n");
 
-                 break;
 
-             }
 
-             realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
 
-         }
 
-         c2 = cx;
 
-         p2 = realPrecision;
 
-     }
 
-     else {
 
-         Logger::info("No need for linear estimation\n");
 
-         cx = c2;
 
-         realPrecision = p2;
 
-     }
 
-     checks = cx;
 
-     return time;
 
- }
 
- template <typename Distance>
 
- void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
 
-                            const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
 
-                            float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
 
- {
 
-     typedef typename Distance::ResultType DistanceType;
 
-     const float SEARCH_EPS = 0.001;
 
-     // make sure precisions array is sorted
 
-     std::sort(precisions, precisions+precisions_length);
 
-     int pindex = 0;
 
-     float precision = precisions[pindex];
 
-     Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
 
-     Logger::info("---------------------------------------------------------\n");
 
-     int c2 = 1;
 
-     float p2;
 
-     int c1 = 1;
 
-     float p1;
 
-     float time;
 
-     DistanceType dist;
 
-     p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
 
-     // if precision for 1 run down the tree is already
 
-     // better then some of the requested precisions, then
 
-     // skip those
 
-     while (precisions[pindex]<p2 && pindex<precisions_length) {
 
-         pindex++;
 
-     }
 
-     if (pindex==precisions_length) {
 
-         Logger::info("Got as close as I can\n");
 
-         return;
 
-     }
 
-     for (int i=pindex; i<precisions_length; ++i) {
 
-         precision = precisions[i];
 
-         while (p2<precision) {
 
-             c1 = c2;
 
-             p1 = p2;
 
-             c2 *=2;
 
-             p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
 
-             if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
 
-         }
 
-         int cx;
 
-         float realPrecision;
 
-         if (fabs(p2-precision)>SEARCH_EPS) {
 
-             Logger::info("Start linear estimation\n");
 
-             // after we got to values in the vecinity of the desired precision
 
-             // use linear approximation get a better estimation
 
-             cx = (c1+c2)/2;
 
-             realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
 
-             while (fabs(realPrecision-precision)>SEARCH_EPS) {
 
-                 if (realPrecision<precision) {
 
-                     c1 = cx;
 
-                 }
 
-                 else {
 
-                     c2 = cx;
 
-                 }
 
-                 cx = (c1+c2)/2;
 
-                 if (cx==c1) {
 
-                     Logger::info("Got as close as I can\n");
 
-                     break;
 
-                 }
 
-                 realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
 
-             }
 
-             c2 = cx;
 
-             p2 = realPrecision;
 
-         }
 
-         else {
 
-             Logger::info("No need for linear estimation\n");
 
-             cx = c2;
 
-             realPrecision = p2;
 
-         }
 
-     }
 
- }
 
- }
 
- #endif //OPENCV_FLANN_INDEX_TESTING_H_
 
 
  |