| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_KDTREE_INDEX_H_
 
- #define OPENCV_FLANN_KDTREE_INDEX_H_
 
- #include <algorithm>
 
- #include <map>
 
- #include <cassert>
 
- #include <cstring>
 
- #include "general.h"
 
- #include "nn_index.h"
 
- #include "dynamic_bitset.h"
 
- #include "matrix.h"
 
- #include "result_set.h"
 
- #include "heap.h"
 
- #include "allocator.h"
 
- #include "random.h"
 
- #include "saving.h"
 
- namespace cvflann
 
- {
 
- struct KDTreeIndexParams : public IndexParams
 
- {
 
-     KDTreeIndexParams(int trees = 4)
 
-     {
 
-         (*this)["algorithm"] = FLANN_INDEX_KDTREE;
 
-         (*this)["trees"] = trees;
 
-     }
 
- };
 
- /**
 
-  * Randomized kd-tree index
 
-  *
 
-  * Contains the k-d trees and other information for indexing a set of points
 
-  * for nearest-neighbor matching.
 
-  */
 
- template <typename Distance>
 
- class KDTreeIndex : public NNIndex<Distance>
 
- {
 
- public:
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     /**
 
-      * KDTree constructor
 
-      *
 
-      * Params:
 
-      *          inputData = dataset with the input features
 
-      *          params = parameters passed to the kdtree algorithm
 
-      */
 
-     KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
 
-                 Distance d = Distance() ) :
 
-         dataset_(inputData), index_params_(params), distance_(d)
 
-     {
 
-         size_ = dataset_.rows;
 
-         veclen_ = dataset_.cols;
 
-         trees_ = get_param(index_params_,"trees",4);
 
-         tree_roots_ = new NodePtr[trees_];
 
-         // Create a permutable array of indices to the input vectors.
 
-         vind_.resize(size_);
 
-         for (size_t i = 0; i < size_; ++i) {
 
-             vind_[i] = int(i);
 
-         }
 
-         mean_ = new DistanceType[veclen_];
 
-         var_ = new DistanceType[veclen_];
 
-     }
 
-     KDTreeIndex(const KDTreeIndex&);
 
-     KDTreeIndex& operator=(const KDTreeIndex&);
 
-     /**
 
-      * Standard destructor
 
-      */
 
-     ~KDTreeIndex()
 
-     {
 
-         if (tree_roots_!=NULL) {
 
-             delete[] tree_roots_;
 
-         }
 
-         delete[] mean_;
 
-         delete[] var_;
 
-     }
 
-     /**
 
-      * Builds the index
 
-      */
 
-     void buildIndex()
 
-     {
 
-         /* Construct the randomized trees. */
 
-         for (int i = 0; i < trees_; i++) {
 
-             /* Randomize the order of vectors to allow for unbiased sampling. */
 
- #ifndef OPENCV_FLANN_USE_STD_RAND
 
-             cv::randShuffle(vind_);
 
- #else
 
-             std::random_shuffle(vind_.begin(), vind_.end());
 
- #endif
 
-             tree_roots_[i] = divideTree(&vind_[0], int(size_) );
 
-         }
 
-     }
 
-     flann_algorithm_t getType() const
 
-     {
 
-         return FLANN_INDEX_KDTREE;
 
-     }
 
-     void saveIndex(FILE* stream)
 
-     {
 
-         save_value(stream, trees_);
 
-         for (int i=0; i<trees_; ++i) {
 
-             save_tree(stream, tree_roots_[i]);
 
-         }
 
-     }
 
-     void loadIndex(FILE* stream)
 
-     {
 
-         load_value(stream, trees_);
 
-         if (tree_roots_!=NULL) {
 
-             delete[] tree_roots_;
 
-         }
 
-         tree_roots_ = new NodePtr[trees_];
 
-         for (int i=0; i<trees_; ++i) {
 
-             load_tree(stream,tree_roots_[i]);
 
-         }
 
-         index_params_["algorithm"] = getType();
 
-         index_params_["trees"] = tree_roots_;
 
-     }
 
-     /**
 
-      *  Returns size of index.
 
-      */
 
-     size_t size() const
 
-     {
 
-         return size_;
 
-     }
 
-     /**
 
-      * Returns the length of an index feature.
 
-      */
 
-     size_t veclen() const
 
-     {
 
-         return veclen_;
 
-     }
 
-     /**
 
-      * Computes the inde memory usage
 
-      * Returns: memory used by the index
 
-      */
 
-     int usedMemory() const
 
-     {
 
-         return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
 
-     }
 
-     /**
 
-      * Find set of nearest neighbors to vec. Their indices are stored inside
 
-      * the result object.
 
-      *
 
-      * Params:
 
-      *     result = the result object in which the indices of the nearest-neighbors are stored
 
-      *     vec = the vector for which to search the nearest neighbors
 
-      *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
 
-      */
 
-     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
 
-     {
 
-         int maxChecks = get_param(searchParams,"checks", 32);
 
-         float epsError = 1+get_param(searchParams,"eps",0.0f);
 
-         if (maxChecks==FLANN_CHECKS_UNLIMITED) {
 
-             getExactNeighbors(result, vec, epsError);
 
-         }
 
-         else {
 
-             getNeighbors(result, vec, maxChecks, epsError);
 
-         }
 
-     }
 
-     IndexParams getParameters() const
 
-     {
 
-         return index_params_;
 
-     }
 
- private:
 
-     /*--------------------- Internal Data Structures --------------------------*/
 
-     struct Node
 
-     {
 
-         /**
 
-          * Dimension used for subdivision.
 
-          */
 
-         int divfeat;
 
-         /**
 
-          * The values used for subdivision.
 
-          */
 
-         DistanceType divval;
 
-         /**
 
-          * The child nodes.
 
-          */
 
-         Node* child1, * child2;
 
-     };
 
-     typedef Node* NodePtr;
 
-     typedef BranchStruct<NodePtr, DistanceType> BranchSt;
 
-     typedef BranchSt* Branch;
 
-     void save_tree(FILE* stream, NodePtr tree)
 
-     {
 
-         save_value(stream, *tree);
 
-         if (tree->child1!=NULL) {
 
-             save_tree(stream, tree->child1);
 
-         }
 
-         if (tree->child2!=NULL) {
 
-             save_tree(stream, tree->child2);
 
-         }
 
-     }
 
-     void load_tree(FILE* stream, NodePtr& tree)
 
-     {
 
-         tree = pool_.allocate<Node>();
 
-         load_value(stream, *tree);
 
-         if (tree->child1!=NULL) {
 
-             load_tree(stream, tree->child1);
 
-         }
 
-         if (tree->child2!=NULL) {
 
-             load_tree(stream, tree->child2);
 
-         }
 
-     }
 
-     /**
 
-      * Create a tree node that subdivides the list of vecs from vind[first]
 
-      * to vind[last].  The routine is called recursively on each sublist.
 
-      * Place a pointer to this new tree node in the location pTree.
 
-      *
 
-      * Params: pTree = the new node to create
 
-      *                  first = index of the first vector
 
-      *                  last = index of the last vector
 
-      */
 
-     NodePtr divideTree(int* ind, int count)
 
-     {
 
-         NodePtr node = pool_.allocate<Node>(); // allocate memory
 
-         /* If too few exemplars remain, then make this a leaf node. */
 
-         if ( count == 1) {
 
-             node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
 
-             node->divfeat = *ind;    /* Store index of this vec. */
 
-         }
 
-         else {
 
-             int idx;
 
-             int cutfeat;
 
-             DistanceType cutval;
 
-             meanSplit(ind, count, idx, cutfeat, cutval);
 
-             node->divfeat = cutfeat;
 
-             node->divval = cutval;
 
-             node->child1 = divideTree(ind, idx);
 
-             node->child2 = divideTree(ind+idx, count-idx);
 
-         }
 
-         return node;
 
-     }
 
-     /**
 
-      * Choose which feature to use in order to subdivide this set of vectors.
 
-      * Make a random choice among those with the highest variance, and use
 
-      * its variance as the threshold value.
 
-      */
 
-     void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
 
-     {
 
-         memset(mean_,0,veclen_*sizeof(DistanceType));
 
-         memset(var_,0,veclen_*sizeof(DistanceType));
 
-         /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
 
-             sampled to get a good estimate.
 
-          */
 
-         int cnt = std::min((int)SAMPLE_MEAN+1, count);
 
-         for (int j = 0; j < cnt; ++j) {
 
-             ElementType* v = dataset_[ind[j]];
 
-             for (size_t k=0; k<veclen_; ++k) {
 
-                 mean_[k] += v[k];
 
-             }
 
-         }
 
-         for (size_t k=0; k<veclen_; ++k) {
 
-             mean_[k] /= cnt;
 
-         }
 
-         /* Compute variances (no need to divide by count). */
 
-         for (int j = 0; j < cnt; ++j) {
 
-             ElementType* v = dataset_[ind[j]];
 
-             for (size_t k=0; k<veclen_; ++k) {
 
-                 DistanceType dist = v[k] - mean_[k];
 
-                 var_[k] += dist * dist;
 
-             }
 
-         }
 
-         /* Select one of the highest variance indices at random. */
 
-         cutfeat = selectDivision(var_);
 
-         cutval = mean_[cutfeat];
 
-         int lim1, lim2;
 
-         planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
 
-         if (lim1>count/2) index = lim1;
 
-         else if (lim2<count/2) index = lim2;
 
-         else index = count/2;
 
-         /* If either list is empty, it means that all remaining features
 
-          * are identical. Split in the middle to maintain a balanced tree.
 
-          */
 
-         if ((lim1==count)||(lim2==0)) index = count/2;
 
-     }
 
-     /**
 
-      * Select the top RAND_DIM largest values from v and return the index of
 
-      * one of these selected at random.
 
-      */
 
-     int selectDivision(DistanceType* v)
 
-     {
 
-         int num = 0;
 
-         size_t topind[RAND_DIM];
 
-         /* Create a list of the indices of the top RAND_DIM values. */
 
-         for (size_t i = 0; i < veclen_; ++i) {
 
-             if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
 
-                 /* Put this element at end of topind. */
 
-                 if (num < RAND_DIM) {
 
-                     topind[num++] = i;            /* Add to list. */
 
-                 }
 
-                 else {
 
-                     topind[num-1] = i;         /* Replace last element. */
 
-                 }
 
-                 /* Bubble end value down to right location by repeated swapping. */
 
-                 int j = num - 1;
 
-                 while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
 
-                     std::swap(topind[j], topind[j-1]);
 
-                     --j;
 
-                 }
 
-             }
 
-         }
 
-         /* Select a random integer in range [0,num-1], and return that index. */
 
-         int rnd = rand_int(num);
 
-         return (int)topind[rnd];
 
-     }
 
-     /**
 
-      *  Subdivide the list of points by a plane perpendicular on axe corresponding
 
-      *  to the 'cutfeat' dimension at 'cutval' position.
 
-      *
 
-      *  On return:
 
-      *  dataset[ind[0..lim1-1]][cutfeat]<cutval
 
-      *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
 
-      *  dataset[ind[lim2..count]][cutfeat]>cutval
 
-      */
 
-     void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
 
-     {
 
-         /* Move vector indices for left subtree to front of list. */
 
-         int left = 0;
 
-         int right = count-1;
 
-         for (;; ) {
 
-             while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
 
-             while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
 
-             if (left>right) break;
 
-             std::swap(ind[left], ind[right]); ++left; --right;
 
-         }
 
-         lim1 = left;
 
-         right = count-1;
 
-         for (;; ) {
 
-             while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
 
-             while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
 
-             if (left>right) break;
 
-             std::swap(ind[left], ind[right]); ++left; --right;
 
-         }
 
-         lim2 = left;
 
-     }
 
-     /**
 
-      * Performs an exact nearest neighbor search. The exact search performs a full
 
-      * traversal of the tree.
 
-      */
 
-     void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
 
-     {
 
-         //		checkID -= 1;  /* Set a different unique ID for each search. */
 
-         if (trees_ > 1) {
 
-             fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
 
-         }
 
-         if (trees_>0) {
 
-             searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
 
-         }
 
-         assert(result.full());
 
-     }
 
-     /**
 
-      * Performs the approximate nearest-neighbor search. The search is approximate
 
-      * because the tree traversal is abandoned after a given number of descends in
 
-      * the tree.
 
-      */
 
-     void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
 
-     {
 
-         int i;
 
-         BranchSt branch;
 
-         int checkCount = 0;
 
-         Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
 
-         DynamicBitset checked(size_);
 
-         /* Search once through each tree down to root. */
 
-         for (i = 0; i < trees_; ++i) {
 
-             searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
 
-         }
 
-         /* Keep searching other branches from heap until finished. */
 
-         while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
 
-             searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
 
-         }
 
-         delete heap;
 
-         assert(result.full());
 
-     }
 
-     /**
 
-      *  Search starting from a given node of the tree.  Based on any mismatches at
 
-      *  higher levels, all exemplars below this level must have a distance of
 
-      *  at least "mindistsq".
 
-      */
 
-     void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
 
-                      float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
 
-     {
 
-         if (result_set.worstDist()<mindist) {
 
-             //			printf("Ignoring branch, too far\n");
 
-             return;
 
-         }
 
-         /* If this is a leaf node, then do check and return. */
 
-         if ((node->child1 == NULL)&&(node->child2 == NULL)) {
 
-             /*  Do not check same node more than once when searching multiple trees.
 
-                 Once a vector is checked, we set its location in vind to the
 
-                 current checkID.
 
-              */
 
-             int index = node->divfeat;
 
-             if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
 
-             checked.set(index);
 
-             checkCount++;
 
-             DistanceType dist = distance_(dataset_[index], vec, veclen_);
 
-             result_set.addPoint(dist,index);
 
-             return;
 
-         }
 
-         /* Which child branch should be taken first? */
 
-         ElementType val = vec[node->divfeat];
 
-         DistanceType diff = val - node->divval;
 
-         NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
 
-         NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
 
-         /* Create a branch record for the branch not taken.  Add distance
 
-             of this feature boundary (we don't attempt to correct for any
 
-             use of this feature in a parent node, which is unlikely to
 
-             happen and would have only a small effect).  Don't bother
 
-             adding more branches to heap after halfway point, as cost of
 
-             adding exceeds their value.
 
-          */
 
-         DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
 
-         //		if (2 * checkCount < maxCheck  ||  !result.full()) {
 
-         if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
 
-             heap->insert( BranchSt(otherChild, new_distsq) );
 
-         }
 
-         /* Call recursively to search next level down. */
 
-         searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
 
-     }
 
-     /**
 
-      * Performs an exact search in the tree starting from a node.
 
-      */
 
-     void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
 
-     {
 
-         /* If this is a leaf node, then do check and return. */
 
-         if ((node->child1 == NULL)&&(node->child2 == NULL)) {
 
-             int index = node->divfeat;
 
-             DistanceType dist = distance_(dataset_[index], vec, veclen_);
 
-             result_set.addPoint(dist,index);
 
-             return;
 
-         }
 
-         /* Which child branch should be taken first? */
 
-         ElementType val = vec[node->divfeat];
 
-         DistanceType diff = val - node->divval;
 
-         NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
 
-         NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
 
-         /* Create a branch record for the branch not taken.  Add distance
 
-             of this feature boundary (we don't attempt to correct for any
 
-             use of this feature in a parent node, which is unlikely to
 
-             happen and would have only a small effect).  Don't bother
 
-             adding more branches to heap after halfway point, as cost of
 
-             adding exceeds their value.
 
-          */
 
-         DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
 
-         /* Call recursively to search next level down. */
 
-         searchLevelExact(result_set, vec, bestChild, mindist, epsError);
 
-         if (new_distsq*epsError<=result_set.worstDist()) {
 
-             searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
 
-         }
 
-     }
 
- private:
 
-     enum
 
-     {
 
-         /**
 
-          * To improve efficiency, only SAMPLE_MEAN random values are used to
 
-          * compute the mean and variance at each level when building a tree.
 
-          * A value of 100 seems to perform as well as using all values.
 
-          */
 
-         SAMPLE_MEAN = 100,
 
-         /**
 
-          * Top random dimensions to consider
 
-          *
 
-          * When creating random trees, the dimension on which to subdivide is
 
-          * selected at random from among the top RAND_DIM dimensions with the
 
-          * highest variance.  A value of 5 works well.
 
-          */
 
-         RAND_DIM=5
 
-     };
 
-     /**
 
-      * Number of randomized trees that are used
 
-      */
 
-     int trees_;
 
-     /**
 
-      *  Array of indices to vectors in the dataset.
 
-      */
 
-     std::vector<int> vind_;
 
-     /**
 
-      * The dataset used by this index
 
-      */
 
-     const Matrix<ElementType> dataset_;
 
-     IndexParams index_params_;
 
-     size_t size_;
 
-     size_t veclen_;
 
-     DistanceType* mean_;
 
-     DistanceType* var_;
 
-     /**
 
-      * Array of k-d trees used to find neighbours.
 
-      */
 
-     NodePtr* tree_roots_;
 
-     /**
 
-      * Pooled memory allocator.
 
-      *
 
-      * Using a pooled memory allocator is more efficient
 
-      * than allocating memory directly when there is a large
 
-      * number small of memory allocations.
 
-      */
 
-     PooledAllocator pool_;
 
-     Distance distance_;
 
- };   // class KDTreeForest
 
- }
 
- #endif //OPENCV_FLANN_KDTREE_INDEX_H_
 
 
  |