| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
 
- #define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
 
- #include <algorithm>
 
- #include <map>
 
- #include <cassert>
 
- #include <cstring>
 
- #include "general.h"
 
- #include "nn_index.h"
 
- #include "matrix.h"
 
- #include "result_set.h"
 
- #include "heap.h"
 
- #include "allocator.h"
 
- #include "random.h"
 
- #include "saving.h"
 
- namespace cvflann
 
- {
 
- struct KDTreeSingleIndexParams : public IndexParams
 
- {
 
-     KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
 
-     {
 
-         (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
 
-         (*this)["leaf_max_size"] = leaf_max_size;
 
-         (*this)["reorder"] = reorder;
 
-         (*this)["dim"] = dim;
 
-     }
 
- };
 
- /**
 
-  * Randomized kd-tree index
 
-  *
 
-  * Contains the k-d trees and other information for indexing a set of points
 
-  * for nearest-neighbor matching.
 
-  */
 
- template <typename Distance>
 
- class KDTreeSingleIndex : public NNIndex<Distance>
 
- {
 
- public:
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     /**
 
-      * KDTree constructor
 
-      *
 
-      * Params:
 
-      *          inputData = dataset with the input features
 
-      *          params = parameters passed to the kdtree algorithm
 
-      */
 
-     KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
 
-                       Distance d = Distance() ) :
 
-         dataset_(inputData), index_params_(params), distance_(d)
 
-     {
 
-         size_ = dataset_.rows;
 
-         dim_ = dataset_.cols;
 
-         root_node_ = 0;
 
-         int dim_param = get_param(params,"dim",-1);
 
-         if (dim_param>0) dim_ = dim_param;
 
-         leaf_max_size_ = get_param(params,"leaf_max_size",10);
 
-         reorder_ = get_param(params,"reorder",true);
 
-         // Create a permutable array of indices to the input vectors.
 
-         vind_.resize(size_);
 
-         for (size_t i = 0; i < size_; i++) {
 
-             vind_[i] = (int)i;
 
-         }
 
-     }
 
-     KDTreeSingleIndex(const KDTreeSingleIndex&);
 
-     KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
 
-     /**
 
-      * Standard destructor
 
-      */
 
-     ~KDTreeSingleIndex()
 
-     {
 
-         if (reorder_) delete[] data_.data;
 
-     }
 
-     /**
 
-      * Builds the index
 
-      */
 
-     void buildIndex()
 
-     {
 
-         computeBoundingBox(root_bbox_);
 
-         root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree
 
-         if (reorder_) {
 
-             delete[] data_.data;
 
-             data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
 
-             for (size_t i=0; i<size_; ++i) {
 
-                 for (size_t j=0; j<dim_; ++j) {
 
-                     data_[i][j] = dataset_[vind_[i]][j];
 
-                 }
 
-             }
 
-         }
 
-         else {
 
-             data_ = dataset_;
 
-         }
 
-     }
 
-     flann_algorithm_t getType() const
 
-     {
 
-         return FLANN_INDEX_KDTREE_SINGLE;
 
-     }
 
-     void saveIndex(FILE* stream)
 
-     {
 
-         save_value(stream, size_);
 
-         save_value(stream, dim_);
 
-         save_value(stream, root_bbox_);
 
-         save_value(stream, reorder_);
 
-         save_value(stream, leaf_max_size_);
 
-         save_value(stream, vind_);
 
-         if (reorder_) {
 
-             save_value(stream, data_);
 
-         }
 
-         save_tree(stream, root_node_);
 
-     }
 
-     void loadIndex(FILE* stream)
 
-     {
 
-         load_value(stream, size_);
 
-         load_value(stream, dim_);
 
-         load_value(stream, root_bbox_);
 
-         load_value(stream, reorder_);
 
-         load_value(stream, leaf_max_size_);
 
-         load_value(stream, vind_);
 
-         if (reorder_) {
 
-             load_value(stream, data_);
 
-         }
 
-         else {
 
-             data_ = dataset_;
 
-         }
 
-         load_tree(stream, root_node_);
 
-         index_params_["algorithm"] = getType();
 
-         index_params_["leaf_max_size"] = leaf_max_size_;
 
-         index_params_["reorder"] = reorder_;
 
-     }
 
-     /**
 
-      *  Returns size of index.
 
-      */
 
-     size_t size() const
 
-     {
 
-         return size_;
 
-     }
 
-     /**
 
-      * Returns the length of an index feature.
 
-      */
 
-     size_t veclen() const
 
-     {
 
-         return dim_;
 
-     }
 
-     /**
 
-      * Computes the inde memory usage
 
-      * Returns: memory used by the index
 
-      */
 
-     int usedMemory() const
 
-     {
 
-         return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
 
-     }
 
-     /**
 
-      * \brief Perform k-nearest neighbor search
 
-      * \param[in] queries The query points for which to find the nearest neighbors
 
-      * \param[out] indices The indices of the nearest neighbors found
 
-      * \param[out] dists Distances to the nearest neighbors found
 
-      * \param[in] knn Number of nearest neighbors to return
 
-      * \param[in] params Search parameters
 
-      */
 
-     void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
 
-     {
 
-         assert(queries.cols == veclen());
 
-         assert(indices.rows >= queries.rows);
 
-         assert(dists.rows >= queries.rows);
 
-         assert(int(indices.cols) >= knn);
 
-         assert(int(dists.cols) >= knn);
 
-         KNNSimpleResultSet<DistanceType> resultSet(knn);
 
-         for (size_t i = 0; i < queries.rows; i++) {
 
-             resultSet.init(indices[i], dists[i]);
 
-             findNeighbors(resultSet, queries[i], params);
 
-         }
 
-     }
 
-     IndexParams getParameters() const
 
-     {
 
-         return index_params_;
 
-     }
 
-     /**
 
-      * Find set of nearest neighbors to vec. Their indices are stored inside
 
-      * the result object.
 
-      *
 
-      * Params:
 
-      *     result = the result object in which the indices of the nearest-neighbors are stored
 
-      *     vec = the vector for which to search the nearest neighbors
 
-      *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
 
-      */
 
-     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
 
-     {
 
-         float epsError = 1+get_param(searchParams,"eps",0.0f);
 
-         std::vector<DistanceType> dists(dim_,0);
 
-         DistanceType distsq = computeInitialDistances(vec, dists);
 
-         searchLevel(result, vec, root_node_, distsq, dists, epsError);
 
-     }
 
- private:
 
-     /*--------------------- Internal Data Structures --------------------------*/
 
-     struct Node
 
-     {
 
-         /**
 
-          * Indices of points in leaf node
 
-          */
 
-         int left, right;
 
-         /**
 
-          * Dimension used for subdivision.
 
-          */
 
-         int divfeat;
 
-         /**
 
-          * The values used for subdivision.
 
-          */
 
-         DistanceType divlow, divhigh;
 
-         /**
 
-          * The child nodes.
 
-          */
 
-         Node* child1, * child2;
 
-     };
 
-     typedef Node* NodePtr;
 
-     struct Interval
 
-     {
 
-         DistanceType low, high;
 
-     };
 
-     typedef std::vector<Interval> BoundingBox;
 
-     typedef BranchStruct<NodePtr, DistanceType> BranchSt;
 
-     typedef BranchSt* Branch;
 
-     void save_tree(FILE* stream, NodePtr tree)
 
-     {
 
-         save_value(stream, *tree);
 
-         if (tree->child1!=NULL) {
 
-             save_tree(stream, tree->child1);
 
-         }
 
-         if (tree->child2!=NULL) {
 
-             save_tree(stream, tree->child2);
 
-         }
 
-     }
 
-     void load_tree(FILE* stream, NodePtr& tree)
 
-     {
 
-         tree = pool_.allocate<Node>();
 
-         load_value(stream, *tree);
 
-         if (tree->child1!=NULL) {
 
-             load_tree(stream, tree->child1);
 
-         }
 
-         if (tree->child2!=NULL) {
 
-             load_tree(stream, tree->child2);
 
-         }
 
-     }
 
-     void computeBoundingBox(BoundingBox& bbox)
 
-     {
 
-         bbox.resize(dim_);
 
-         for (size_t i=0; i<dim_; ++i) {
 
-             bbox[i].low = (DistanceType)dataset_[0][i];
 
-             bbox[i].high = (DistanceType)dataset_[0][i];
 
-         }
 
-         for (size_t k=1; k<dataset_.rows; ++k) {
 
-             for (size_t i=0; i<dim_; ++i) {
 
-                 if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
 
-                 if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
 
-             }
 
-         }
 
-     }
 
-     /**
 
-      * Create a tree node that subdivides the list of vecs from vind[first]
 
-      * to vind[last].  The routine is called recursively on each sublist.
 
-      * Place a pointer to this new tree node in the location pTree.
 
-      *
 
-      * Params: pTree = the new node to create
 
-      *                  first = index of the first vector
 
-      *                  last = index of the last vector
 
-      */
 
-     NodePtr divideTree(int left, int right, BoundingBox& bbox)
 
-     {
 
-         NodePtr node = pool_.allocate<Node>(); // allocate memory
 
-         /* If too few exemplars remain, then make this a leaf node. */
 
-         if ( (right-left) <= leaf_max_size_) {
 
-             node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
 
-             node->left = left;
 
-             node->right = right;
 
-             // compute bounding-box of leaf points
 
-             for (size_t i=0; i<dim_; ++i) {
 
-                 bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
 
-                 bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
 
-             }
 
-             for (int k=left+1; k<right; ++k) {
 
-                 for (size_t i=0; i<dim_; ++i) {
 
-                     if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
 
-                     if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
 
-                 }
 
-             }
 
-         }
 
-         else {
 
-             int idx;
 
-             int cutfeat;
 
-             DistanceType cutval;
 
-             middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
 
-             node->divfeat = cutfeat;
 
-             BoundingBox left_bbox(bbox);
 
-             left_bbox[cutfeat].high = cutval;
 
-             node->child1 = divideTree(left, left+idx, left_bbox);
 
-             BoundingBox right_bbox(bbox);
 
-             right_bbox[cutfeat].low = cutval;
 
-             node->child2 = divideTree(left+idx, right, right_bbox);
 
-             node->divlow = left_bbox[cutfeat].high;
 
-             node->divhigh = right_bbox[cutfeat].low;
 
-             for (size_t i=0; i<dim_; ++i) {
 
-                 bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
 
-                 bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
 
-             }
 
-         }
 
-         return node;
 
-     }
 
-     void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
 
-     {
 
-         min_elem = dataset_[ind[0]][dim];
 
-         max_elem = dataset_[ind[0]][dim];
 
-         for (int i=1; i<count; ++i) {
 
-             ElementType val = dataset_[ind[i]][dim];
 
-             if (val<min_elem) min_elem = val;
 
-             if (val>max_elem) max_elem = val;
 
-         }
 
-     }
 
-     void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
 
-     {
 
-         // find the largest span from the approximate bounding box
 
-         ElementType max_span = bbox[0].high-bbox[0].low;
 
-         cutfeat = 0;
 
-         cutval = (bbox[0].high+bbox[0].low)/2;
 
-         for (size_t i=1; i<dim_; ++i) {
 
-             ElementType span = bbox[i].high-bbox[i].low;
 
-             if (span>max_span) {
 
-                 max_span = span;
 
-                 cutfeat = i;
 
-                 cutval = (bbox[i].high+bbox[i].low)/2;
 
-             }
 
-         }
 
-         // compute exact span on the found dimension
 
-         ElementType min_elem, max_elem;
 
-         computeMinMax(ind, count, cutfeat, min_elem, max_elem);
 
-         cutval = (min_elem+max_elem)/2;
 
-         max_span = max_elem - min_elem;
 
-         // check if a dimension of a largest span exists
 
-         size_t k = cutfeat;
 
-         for (size_t i=0; i<dim_; ++i) {
 
-             if (i==k) continue;
 
-             ElementType span = bbox[i].high-bbox[i].low;
 
-             if (span>max_span) {
 
-                 computeMinMax(ind, count, i, min_elem, max_elem);
 
-                 span = max_elem - min_elem;
 
-                 if (span>max_span) {
 
-                     max_span = span;
 
-                     cutfeat = i;
 
-                     cutval = (min_elem+max_elem)/2;
 
-                 }
 
-             }
 
-         }
 
-         int lim1, lim2;
 
-         planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
 
-         if (lim1>count/2) index = lim1;
 
-         else if (lim2<count/2) index = lim2;
 
-         else index = count/2;
 
-     }
 
-     void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
 
-     {
 
-         const float EPS=0.00001f;
 
-         DistanceType max_span = bbox[0].high-bbox[0].low;
 
-         for (size_t i=1; i<dim_; ++i) {
 
-             DistanceType span = bbox[i].high-bbox[i].low;
 
-             if (span>max_span) {
 
-                 max_span = span;
 
-             }
 
-         }
 
-         DistanceType max_spread = -1;
 
-         cutfeat = 0;
 
-         for (size_t i=0; i<dim_; ++i) {
 
-             DistanceType span = bbox[i].high-bbox[i].low;
 
-             if (span>(DistanceType)((1-EPS)*max_span)) {
 
-                 ElementType min_elem, max_elem;
 
-                 computeMinMax(ind, count, cutfeat, min_elem, max_elem);
 
-                 DistanceType spread = (DistanceType)(max_elem-min_elem);
 
-                 if (spread>max_spread) {
 
-                     cutfeat = (int)i;
 
-                     max_spread = spread;
 
-                 }
 
-             }
 
-         }
 
-         // split in the middle
 
-         DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
 
-         ElementType min_elem, max_elem;
 
-         computeMinMax(ind, count, cutfeat, min_elem, max_elem);
 
-         if (split_val<min_elem) cutval = (DistanceType)min_elem;
 
-         else if (split_val>max_elem) cutval = (DistanceType)max_elem;
 
-         else cutval = split_val;
 
-         int lim1, lim2;
 
-         planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
 
-         if (lim1>count/2) index = lim1;
 
-         else if (lim2<count/2) index = lim2;
 
-         else index = count/2;
 
-     }
 
-     /**
 
-      *  Subdivide the list of points by a plane perpendicular on axe corresponding
 
-      *  to the 'cutfeat' dimension at 'cutval' position.
 
-      *
 
-      *  On return:
 
-      *  dataset[ind[0..lim1-1]][cutfeat]<cutval
 
-      *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
 
-      *  dataset[ind[lim2..count]][cutfeat]>cutval
 
-      */
 
-     void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
 
-     {
 
-         /* Move vector indices for left subtree to front of list. */
 
-         int left = 0;
 
-         int right = count-1;
 
-         for (;; ) {
 
-             while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
 
-             while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
 
-             if (left>right) break;
 
-             std::swap(ind[left], ind[right]); ++left; --right;
 
-         }
 
-         /* If either list is empty, it means that all remaining features
 
-          * are identical. Split in the middle to maintain a balanced tree.
 
-          */
 
-         lim1 = left;
 
-         right = count-1;
 
-         for (;; ) {
 
-             while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
 
-             while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
 
-             if (left>right) break;
 
-             std::swap(ind[left], ind[right]); ++left; --right;
 
-         }
 
-         lim2 = left;
 
-     }
 
-     DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
 
-     {
 
-         DistanceType distsq = 0.0;
 
-         for (size_t i = 0; i < dim_; ++i) {
 
-             if (vec[i] < root_bbox_[i].low) {
 
-                 dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
 
-                 distsq += dists[i];
 
-             }
 
-             if (vec[i] > root_bbox_[i].high) {
 
-                 dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
 
-                 distsq += dists[i];
 
-             }
 
-         }
 
-         return distsq;
 
-     }
 
-     /**
 
-      * Performs an exact search in the tree starting from a node.
 
-      */
 
-     void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
 
-                      std::vector<DistanceType>& dists, const float epsError)
 
-     {
 
-         /* If this is a leaf node, then do check and return. */
 
-         if ((node->child1 == NULL)&&(node->child2 == NULL)) {
 
-             DistanceType worst_dist = result_set.worstDist();
 
-             for (int i=node->left; i<node->right; ++i) {
 
-                 int index = reorder_ ? i : vind_[i];
 
-                 DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
 
-                 if (dist<worst_dist) {
 
-                     result_set.addPoint(dist,vind_[i]);
 
-                 }
 
-             }
 
-             return;
 
-         }
 
-         /* Which child branch should be taken first? */
 
-         int idx = node->divfeat;
 
-         ElementType val = vec[idx];
 
-         DistanceType diff1 = val - node->divlow;
 
-         DistanceType diff2 = val - node->divhigh;
 
-         NodePtr bestChild;
 
-         NodePtr otherChild;
 
-         DistanceType cut_dist;
 
-         if ((diff1+diff2)<0) {
 
-             bestChild = node->child1;
 
-             otherChild = node->child2;
 
-             cut_dist = distance_.accum_dist(val, node->divhigh, idx);
 
-         }
 
-         else {
 
-             bestChild = node->child2;
 
-             otherChild = node->child1;
 
-             cut_dist = distance_.accum_dist( val, node->divlow, idx);
 
-         }
 
-         /* Call recursively to search next level down. */
 
-         searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
 
-         DistanceType dst = dists[idx];
 
-         mindistsq = mindistsq + cut_dist - dst;
 
-         dists[idx] = cut_dist;
 
-         if (mindistsq*epsError<=result_set.worstDist()) {
 
-             searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
 
-         }
 
-         dists[idx] = dst;
 
-     }
 
- private:
 
-     /**
 
-      * The dataset used by this index
 
-      */
 
-     const Matrix<ElementType> dataset_;
 
-     IndexParams index_params_;
 
-     int leaf_max_size_;
 
-     bool reorder_;
 
-     /**
 
-      *  Array of indices to vectors in the dataset.
 
-      */
 
-     std::vector<int> vind_;
 
-     Matrix<ElementType> data_;
 
-     size_t size_;
 
-     size_t dim_;
 
-     /**
 
-      * Array of k-d trees used to find neighbours.
 
-      */
 
-     NodePtr root_node_;
 
-     BoundingBox root_bbox_;
 
-     /**
 
-      * Pooled memory allocator.
 
-      *
 
-      * Using a pooled memory allocator is more efficient
 
-      * than allocating memory directly when there is a large
 
-      * number small of memory allocations.
 
-      */
 
-     PooledAllocator pool_;
 
-     Distance distance_;
 
- };   // class KDTree
 
- }
 
- #endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
 
 
  |