| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_KMEANS_INDEX_H_
 
- #define OPENCV_FLANN_KMEANS_INDEX_H_
 
- #include <algorithm>
 
- #include <map>
 
- #include <cassert>
 
- #include <limits>
 
- #include <cmath>
 
- #include "general.h"
 
- #include "nn_index.h"
 
- #include "dist.h"
 
- #include "matrix.h"
 
- #include "result_set.h"
 
- #include "heap.h"
 
- #include "allocator.h"
 
- #include "random.h"
 
- #include "saving.h"
 
- #include "logger.h"
 
- namespace cvflann
 
- {
 
- struct KMeansIndexParams : public IndexParams
 
- {
 
-     KMeansIndexParams(int branching = 32, int iterations = 11,
 
-                       flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
 
-     {
 
-         (*this)["algorithm"] = FLANN_INDEX_KMEANS;
 
-         // branching factor
 
-         (*this)["branching"] = branching;
 
-         // max iterations to perform in one kmeans clustering (kmeans tree)
 
-         (*this)["iterations"] = iterations;
 
-         // algorithm used for picking the initial cluster centers for kmeans tree
 
-         (*this)["centers_init"] = centers_init;
 
-         // cluster boundary index. Used when searching the kmeans tree
 
-         (*this)["cb_index"] = cb_index;
 
-     }
 
- };
 
- /**
 
-  * Hierarchical kmeans index
 
-  *
 
-  * Contains a tree constructed through a hierarchical kmeans clustering
 
-  * and other information for indexing a set of points for nearest-neighbour matching.
 
-  */
 
- template <typename Distance>
 
- class KMeansIndex : public NNIndex<Distance>
 
- {
 
- public:
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
-     typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
 
-     /**
 
-      * The function used for choosing the cluster centers.
 
-      */
 
-     centersAlgFunction chooseCenters;
 
-     /**
 
-      * Chooses the initial centers in the k-means clustering in a random manner.
 
-      *
 
-      * Params:
 
-      *     k = number of centers
 
-      *     vecs = the dataset of points
 
-      *     indices = indices in the dataset
 
-      *     indices_length = length of indices vector
 
-      *
 
-      */
 
-     void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
 
-     {
 
-         UniqueRandom r(indices_length);
 
-         int index;
 
-         for (index=0; index<k; ++index) {
 
-             bool duplicate = true;
 
-             int rnd;
 
-             while (duplicate) {
 
-                 duplicate = false;
 
-                 rnd = r.next();
 
-                 if (rnd<0) {
 
-                     centers_length = index;
 
-                     return;
 
-                 }
 
-                 centers[index] = indices[rnd];
 
-                 for (int j=0; j<index; ++j) {
 
-                     DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
 
-                     if (sq<1e-16) {
 
-                         duplicate = true;
 
-                     }
 
-                 }
 
-             }
 
-         }
 
-         centers_length = index;
 
-     }
 
-     /**
 
-      * Chooses the initial centers in the k-means using Gonzales' algorithm
 
-      * so that the centers are spaced apart from each other.
 
-      *
 
-      * Params:
 
-      *     k = number of centers
 
-      *     vecs = the dataset of points
 
-      *     indices = indices in the dataset
 
-      * Returns:
 
-      */
 
-     void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
 
-     {
 
-         int n = indices_length;
 
-         int rnd = rand_int(n);
 
-         assert(rnd >=0 && rnd < n);
 
-         centers[0] = indices[rnd];
 
-         int index;
 
-         for (index=1; index<k; ++index) {
 
-             int best_index = -1;
 
-             DistanceType best_val = 0;
 
-             for (int j=0; j<n; ++j) {
 
-                 DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
 
-                 for (int i=1; i<index; ++i) {
 
-                     DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
 
-                     if (tmp_dist<dist) {
 
-                         dist = tmp_dist;
 
-                     }
 
-                 }
 
-                 if (dist>best_val) {
 
-                     best_val = dist;
 
-                     best_index = j;
 
-                 }
 
-             }
 
-             if (best_index!=-1) {
 
-                 centers[index] = indices[best_index];
 
-             }
 
-             else {
 
-                 break;
 
-             }
 
-         }
 
-         centers_length = index;
 
-     }
 
-     /**
 
-      * Chooses the initial centers in the k-means using the algorithm
 
-      * proposed in the KMeans++ paper:
 
-      * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
 
-      *
 
-      * Implementation of this function was converted from the one provided in Arthur's code.
 
-      *
 
-      * Params:
 
-      *     k = number of centers
 
-      *     vecs = the dataset of points
 
-      *     indices = indices in the dataset
 
-      * Returns:
 
-      */
 
-     void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
 
-     {
 
-         int n = indices_length;
 
-         double currentPot = 0;
 
-         DistanceType* closestDistSq = new DistanceType[n];
 
-         // Choose one random center and set the closestDistSq values
 
-         int index = rand_int(n);
 
-         assert(index >=0 && index < n);
 
-         centers[0] = indices[index];
 
-         for (int i = 0; i < n; i++) {
 
-             closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
 
-             closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
 
-             currentPot += closestDistSq[i];
 
-         }
 
-         const int numLocalTries = 1;
 
-         // Choose each center
 
-         int centerCount;
 
-         for (centerCount = 1; centerCount < k; centerCount++) {
 
-             // Repeat several trials
 
-             double bestNewPot = -1;
 
-             int bestNewIndex = -1;
 
-             for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
 
-                 // Choose our center - have to be slightly careful to return a valid answer even accounting
 
-                 // for possible rounding errors
 
-                 double randVal = rand_double(currentPot);
 
-                 for (index = 0; index < n-1; index++) {
 
-                     if (randVal <= closestDistSq[index]) break;
 
-                     else randVal -= closestDistSq[index];
 
-                 }
 
-                 // Compute the new potential
 
-                 double newPot = 0;
 
-                 for (int i = 0; i < n; i++) {
 
-                     DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
 
-                     newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
 
-                 }
 
-                 // Store the best result
 
-                 if ((bestNewPot < 0)||(newPot < bestNewPot)) {
 
-                     bestNewPot = newPot;
 
-                     bestNewIndex = index;
 
-                 }
 
-             }
 
-             // Add the appropriate center
 
-             centers[centerCount] = indices[bestNewIndex];
 
-             currentPot = bestNewPot;
 
-             for (int i = 0; i < n; i++) {
 
-                 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
 
-                 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
 
-             }
 
-         }
 
-         centers_length = centerCount;
 
-         delete[] closestDistSq;
 
-     }
 
- public:
 
-     flann_algorithm_t getType() const
 
-     {
 
-         return FLANN_INDEX_KMEANS;
 
-     }
 
-     class KMeansDistanceComputer : public cv::ParallelLoopBody
 
-     {
 
-     public:
 
-         KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
 
-             const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen,
 
-             int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)
 
-             : distance(_distance)
 
-             , dataset(_dataset)
 
-             , branching(_branching)
 
-             , indices(_indices)
 
-             , dcenters(_dcenters)
 
-             , veclen(_veclen)
 
-             , count(_count)
 
-             , belongs_to(_belongs_to)
 
-             , radiuses(_radiuses)
 
-             , converged(_converged)
 
-             , mtx(_mtx)
 
-         {
 
-         }
 
-         void operator()(const cv::Range& range) const
 
-         {
 
-             const int begin = range.start;
 
-             const int end = range.end;
 
-             for( int i = begin; i<end; ++i)
 
-             {
 
-                 DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);
 
-                 int new_centroid = 0;
 
-                 for (int j=1; j<branching; ++j) {
 
-                     DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
 
-                     if (sq_dist>new_sq_dist) {
 
-                         new_centroid = j;
 
-                         sq_dist = new_sq_dist;
 
-                     }
 
-                 }
 
-                 if (sq_dist > radiuses[new_centroid]) {
 
-                     radiuses[new_centroid] = sq_dist;
 
-                 }
 
-                 if (new_centroid != belongs_to[i]) {
 
-                     count[belongs_to[i]]--;
 
-                     count[new_centroid]++;
 
-                     belongs_to[i] = new_centroid;
 
-                     mtx.lock();
 
-                     converged = false;
 
-                     mtx.unlock();
 
-                 }
 
-             }
 
-         }
 
-     private:
 
-         Distance distance;
 
-         const Matrix<ElementType>& dataset;
 
-         const int branching;
 
-         const int* indices;
 
-         const Matrix<double>& dcenters;
 
-         const size_t veclen;
 
-         int* count;
 
-         int* belongs_to;
 
-         std::vector<DistanceType>& radiuses;
 
-         bool& converged;
 
-         cv::Mutex& mtx;
 
-         KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
 
-     };
 
-     /**
 
-      * Index constructor
 
-      *
 
-      * Params:
 
-      *          inputData = dataset with the input features
 
-      *          params = parameters passed to the hierarchical k-means algorithm
 
-      */
 
-     KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
 
-                 Distance d = Distance())
 
-         : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
 
-     {
 
-         memoryCounter_ = 0;
 
-         size_ = dataset_.rows;
 
-         veclen_ = dataset_.cols;
 
-         branching_ = get_param(params,"branching",32);
 
-         iterations_ = get_param(params,"iterations",11);
 
-         if (iterations_<0) {
 
-             iterations_ = (std::numeric_limits<int>::max)();
 
-         }
 
-         centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
 
-         if (centers_init_==FLANN_CENTERS_RANDOM) {
 
-             chooseCenters = &KMeansIndex::chooseCentersRandom;
 
-         }
 
-         else if (centers_init_==FLANN_CENTERS_GONZALES) {
 
-             chooseCenters = &KMeansIndex::chooseCentersGonzales;
 
-         }
 
-         else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
 
-             chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
 
-         }
 
-         else {
 
-             throw FLANNException("Unknown algorithm for choosing initial centers.");
 
-         }
 
-         cb_index_ = 0.4f;
 
-     }
 
-     KMeansIndex(const KMeansIndex&);
 
-     KMeansIndex& operator=(const KMeansIndex&);
 
-     /**
 
-      * Index destructor.
 
-      *
 
-      * Release the memory used by the index.
 
-      */
 
-     virtual ~KMeansIndex()
 
-     {
 
-         if (root_ != NULL) {
 
-             free_centers(root_);
 
-         }
 
-         if (indices_!=NULL) {
 
-             delete[] indices_;
 
-         }
 
-     }
 
-     /**
 
-      *  Returns size of index.
 
-      */
 
-     size_t size() const
 
-     {
 
-         return size_;
 
-     }
 
-     /**
 
-      * Returns the length of an index feature.
 
-      */
 
-     size_t veclen() const
 
-     {
 
-         return veclen_;
 
-     }
 
-     void set_cb_index( float index)
 
-     {
 
-         cb_index_ = index;
 
-     }
 
-     /**
 
-      * Computes the inde memory usage
 
-      * Returns: memory used by the index
 
-      */
 
-     int usedMemory() const
 
-     {
 
-         return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
 
-     }
 
-     /**
 
-      * Builds the index
 
-      */
 
-     void buildIndex()
 
-     {
 
-         if (branching_<2) {
 
-             throw FLANNException("Branching factor must be at least 2");
 
-         }
 
-         indices_ = new int[size_];
 
-         for (size_t i=0; i<size_; ++i) {
 
-             indices_[i] = int(i);
 
-         }
 
-         root_ = pool_.allocate<KMeansNode>();
 
-         std::memset(root_, 0, sizeof(KMeansNode));
 
-         computeNodeStatistics(root_, indices_, (int)size_);
 
-         computeClustering(root_, indices_, (int)size_, branching_,0);
 
-     }
 
-     void saveIndex(FILE* stream)
 
-     {
 
-         save_value(stream, branching_);
 
-         save_value(stream, iterations_);
 
-         save_value(stream, memoryCounter_);
 
-         save_value(stream, cb_index_);
 
-         save_value(stream, *indices_, (int)size_);
 
-         save_tree(stream, root_);
 
-     }
 
-     void loadIndex(FILE* stream)
 
-     {
 
-         load_value(stream, branching_);
 
-         load_value(stream, iterations_);
 
-         load_value(stream, memoryCounter_);
 
-         load_value(stream, cb_index_);
 
-         if (indices_!=NULL) {
 
-             delete[] indices_;
 
-         }
 
-         indices_ = new int[size_];
 
-         load_value(stream, *indices_, size_);
 
-         if (root_!=NULL) {
 
-             free_centers(root_);
 
-         }
 
-         load_tree(stream, root_);
 
-         index_params_["algorithm"] = getType();
 
-         index_params_["branching"] = branching_;
 
-         index_params_["iterations"] = iterations_;
 
-         index_params_["centers_init"] = centers_init_;
 
-         index_params_["cb_index"] = cb_index_;
 
-     }
 
-     /**
 
-      * Find set of nearest neighbors to vec. Their indices are stored inside
 
-      * the result object.
 
-      *
 
-      * Params:
 
-      *     result = the result object in which the indices of the nearest-neighbors are stored
 
-      *     vec = the vector for which to search the nearest neighbors
 
-      *     searchParams = parameters that influence the search algorithm (checks, cb_index)
 
-      */
 
-     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
 
-     {
 
-         int maxChecks = get_param(searchParams,"checks",32);
 
-         if (maxChecks==FLANN_CHECKS_UNLIMITED) {
 
-             findExactNN(root_, result, vec);
 
-         }
 
-         else {
 
-             // Priority queue storing intermediate branches in the best-bin-first search
 
-             Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
 
-             int checks = 0;
 
-             findNN(root_, result, vec, checks, maxChecks, heap);
 
-             BranchSt branch;
 
-             while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
 
-                 KMeansNodePtr node = branch.node;
 
-                 findNN(node, result, vec, checks, maxChecks, heap);
 
-             }
 
-             assert(result.full());
 
-             delete heap;
 
-         }
 
-     }
 
-     /**
 
-      * Clustering function that takes a cut in the hierarchical k-means
 
-      * tree and return the clusters centers of that clustering.
 
-      * Params:
 
-      *     numClusters = number of clusters to have in the clustering computed
 
-      * Returns: number of cluster centers
 
-      */
 
-     int getClusterCenters(Matrix<DistanceType>& centers)
 
-     {
 
-         int numClusters = centers.rows;
 
-         if (numClusters<1) {
 
-             throw FLANNException("Number of clusters must be at least 1");
 
-         }
 
-         DistanceType variance;
 
-         KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
 
-         int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
 
-         Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
 
-         for (int i=0; i<clusterCount; ++i) {
 
-             DistanceType* center = clusters[i]->pivot;
 
-             for (size_t j=0; j<veclen_; ++j) {
 
-                 centers[i][j] = center[j];
 
-             }
 
-         }
 
-         delete[] clusters;
 
-         return clusterCount;
 
-     }
 
-     IndexParams getParameters() const
 
-     {
 
-         return index_params_;
 
-     }
 
- private:
 
-     /**
 
-      * Struture representing a node in the hierarchical k-means tree.
 
-      */
 
-     struct KMeansNode
 
-     {
 
-         /**
 
-          * The cluster center.
 
-          */
 
-         DistanceType* pivot;
 
-         /**
 
-          * The cluster radius.
 
-          */
 
-         DistanceType radius;
 
-         /**
 
-          * The cluster mean radius.
 
-          */
 
-         DistanceType mean_radius;
 
-         /**
 
-          * The cluster variance.
 
-          */
 
-         DistanceType variance;
 
-         /**
 
-          * The cluster size (number of points in the cluster)
 
-          */
 
-         int size;
 
-         /**
 
-          * Child nodes (only for non-terminal nodes)
 
-          */
 
-         KMeansNode** childs;
 
-         /**
 
-          * Node points (only for terminal nodes)
 
-          */
 
-         int* indices;
 
-         /**
 
-          * Level
 
-          */
 
-         int level;
 
-     };
 
-     typedef KMeansNode* KMeansNodePtr;
 
-     /**
 
-      * Alias definition for a nicer syntax.
 
-      */
 
-     typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
 
-     void save_tree(FILE* stream, KMeansNodePtr node)
 
-     {
 
-         save_value(stream, *node);
 
-         save_value(stream, *(node->pivot), (int)veclen_);
 
-         if (node->childs==NULL) {
 
-             int indices_offset = (int)(node->indices - indices_);
 
-             save_value(stream, indices_offset);
 
-         }
 
-         else {
 
-             for(int i=0; i<branching_; ++i) {
 
-                 save_tree(stream, node->childs[i]);
 
-             }
 
-         }
 
-     }
 
-     void load_tree(FILE* stream, KMeansNodePtr& node)
 
-     {
 
-         node = pool_.allocate<KMeansNode>();
 
-         load_value(stream, *node);
 
-         node->pivot = new DistanceType[veclen_];
 
-         load_value(stream, *(node->pivot), (int)veclen_);
 
-         if (node->childs==NULL) {
 
-             int indices_offset;
 
-             load_value(stream, indices_offset);
 
-             node->indices = indices_ + indices_offset;
 
-         }
 
-         else {
 
-             node->childs = pool_.allocate<KMeansNodePtr>(branching_);
 
-             for(int i=0; i<branching_; ++i) {
 
-                 load_tree(stream, node->childs[i]);
 
-             }
 
-         }
 
-     }
 
-     /**
 
-      * Helper function
 
-      */
 
-     void free_centers(KMeansNodePtr node)
 
-     {
 
-         delete[] node->pivot;
 
-         if (node->childs!=NULL) {
 
-             for (int k=0; k<branching_; ++k) {
 
-                 free_centers(node->childs[k]);
 
-             }
 
-         }
 
-     }
 
-     /**
 
-      * Computes the statistics of a node (mean, radius, variance).
 
-      *
 
-      * Params:
 
-      *     node = the node to use
 
-      *     indices = the indices of the points belonging to the node
 
-      */
 
-     void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
 
-     {
 
-         DistanceType radius = 0;
 
-         DistanceType variance = 0;
 
-         DistanceType* mean = new DistanceType[veclen_];
 
-         memoryCounter_ += int(veclen_*sizeof(DistanceType));
 
-         memset(mean,0,veclen_*sizeof(DistanceType));
 
-         for (size_t i=0; i<size_; ++i) {
 
-             ElementType* vec = dataset_[indices[i]];
 
-             for (size_t j=0; j<veclen_; ++j) {
 
-                 mean[j] += vec[j];
 
-             }
 
-             variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
 
-         }
 
-         for (size_t j=0; j<veclen_; ++j) {
 
-             mean[j] /= size_;
 
-         }
 
-         variance /= size_;
 
-         variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
 
-         DistanceType tmp = 0;
 
-         for (int i=0; i<indices_length; ++i) {
 
-             tmp = distance_(mean, dataset_[indices[i]], veclen_);
 
-             if (tmp>radius) {
 
-                 radius = tmp;
 
-             }
 
-         }
 
-         node->variance = variance;
 
-         node->radius = radius;
 
-         node->pivot = mean;
 
-     }
 
-     /**
 
-      * The method responsible with actually doing the recursive hierarchical
 
-      * clustering
 
-      *
 
-      * Params:
 
-      *     node = the node to cluster
 
-      *     indices = indices of the points belonging to the current node
 
-      *     branching = the branching factor to use in the clustering
 
-      *
 
-      * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
 
-      */
 
-     void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
 
-     {
 
-         node->size = indices_length;
 
-         node->level = level;
 
-         if (indices_length < branching) {
 
-             node->indices = indices;
 
-             std::sort(node->indices,node->indices+indices_length);
 
-             node->childs = NULL;
 
-             return;
 
-         }
 
-         cv::AutoBuffer<int> centers_idx_buf(branching);
 
-         int* centers_idx = (int*)centers_idx_buf;
 
-         int centers_length;
 
-         (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
 
-         if (centers_length<branching) {
 
-             node->indices = indices;
 
-             std::sort(node->indices,node->indices+indices_length);
 
-             node->childs = NULL;
 
-             return;
 
-         }
 
-         cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
 
-         Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);
 
-         for (int i=0; i<centers_length; ++i) {
 
-             ElementType* vec = dataset_[centers_idx[i]];
 
-             for (size_t k=0; k<veclen_; ++k) {
 
-                 dcenters[i][k] = double(vec[k]);
 
-             }
 
-         }
 
-         std::vector<DistanceType> radiuses(branching);
 
-         cv::AutoBuffer<int> count_buf(branching);
 
-         int* count = (int*)count_buf;
 
-         for (int i=0; i<branching; ++i) {
 
-             radiuses[i] = 0;
 
-             count[i] = 0;
 
-         }
 
-         //	assign points to clusters
 
-         cv::AutoBuffer<int> belongs_to_buf(indices_length);
 
-         int* belongs_to = (int*)belongs_to_buf;
 
-         for (int i=0; i<indices_length; ++i) {
 
-             DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
 
-             belongs_to[i] = 0;
 
-             for (int j=1; j<branching; ++j) {
 
-                 DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
 
-                 if (sq_dist>new_sq_dist) {
 
-                     belongs_to[i] = j;
 
-                     sq_dist = new_sq_dist;
 
-                 }
 
-             }
 
-             if (sq_dist>radiuses[belongs_to[i]]) {
 
-                 radiuses[belongs_to[i]] = sq_dist;
 
-             }
 
-             count[belongs_to[i]]++;
 
-         }
 
-         bool converged = false;
 
-         int iteration = 0;
 
-         while (!converged && iteration<iterations_) {
 
-             converged = true;
 
-             iteration++;
 
-             // compute the new cluster centers
 
-             for (int i=0; i<branching; ++i) {
 
-                 memset(dcenters[i],0,sizeof(double)*veclen_);
 
-                 radiuses[i] = 0;
 
-             }
 
-             for (int i=0; i<indices_length; ++i) {
 
-                 ElementType* vec = dataset_[indices[i]];
 
-                 double* center = dcenters[belongs_to[i]];
 
-                 for (size_t k=0; k<veclen_; ++k) {
 
-                     center[k] += vec[k];
 
-                 }
 
-             }
 
-             for (int i=0; i<branching; ++i) {
 
-                 int cnt = count[i];
 
-                 for (size_t k=0; k<veclen_; ++k) {
 
-                     dcenters[i][k] /= cnt;
 
-                 }
 
-             }
 
-             // reassign points to clusters
 
-             cv::Mutex mtx;
 
-             KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);
 
-             parallel_for_(cv::Range(0, (int)indices_length), invoker);
 
-             for (int i=0; i<branching; ++i) {
 
-                 // if one cluster converges to an empty cluster,
 
-                 // move an element into that cluster
 
-                 if (count[i]==0) {
 
-                     int j = (i+1)%branching;
 
-                     while (count[j]<=1) {
 
-                         j = (j+1)%branching;
 
-                     }
 
-                     for (int k=0; k<indices_length; ++k) {
 
-                         if (belongs_to[k]==j) {
 
-                             // for cluster j, we move the furthest element from the center to the empty cluster i
 
-                             if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
 
-                                 belongs_to[k] = i;
 
-                                 count[j]--;
 
-                                 count[i]++;
 
-                                 break;
 
-                             }
 
-                         }
 
-                     }
 
-                     converged = false;
 
-                 }
 
-             }
 
-         }
 
-         DistanceType** centers = new DistanceType*[branching];
 
-         for (int i=0; i<branching; ++i) {
 
-             centers[i] = new DistanceType[veclen_];
 
-             memoryCounter_ += (int)(veclen_*sizeof(DistanceType));
 
-             for (size_t k=0; k<veclen_; ++k) {
 
-                 centers[i][k] = (DistanceType)dcenters[i][k];
 
-             }
 
-         }
 
-         // compute kmeans clustering for each of the resulting clusters
 
-         node->childs = pool_.allocate<KMeansNodePtr>(branching);
 
-         int start = 0;
 
-         int end = start;
 
-         for (int c=0; c<branching; ++c) {
 
-             int s = count[c];
 
-             DistanceType variance = 0;
 
-             DistanceType mean_radius =0;
 
-             for (int i=0; i<indices_length; ++i) {
 
-                 if (belongs_to[i]==c) {
 
-                     DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
 
-                     variance += d;
 
-                     mean_radius += sqrt(d);
 
-                     std::swap(indices[i],indices[end]);
 
-                     std::swap(belongs_to[i],belongs_to[end]);
 
-                     end++;
 
-                 }
 
-             }
 
-             variance /= s;
 
-             mean_radius /= s;
 
-             variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
 
-             node->childs[c] = pool_.allocate<KMeansNode>();
 
-             std::memset(node->childs[c], 0, sizeof(KMeansNode));
 
-             node->childs[c]->radius = radiuses[c];
 
-             node->childs[c]->pivot = centers[c];
 
-             node->childs[c]->variance = variance;
 
-             node->childs[c]->mean_radius = mean_radius;
 
-             computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
 
-             start=end;
 
-         }
 
-         delete[] centers;
 
-     }
 
-     /**
 
-      * Performs one descent in the hierarchical k-means tree. The branches not
 
-      * visited are stored in a priority queue.
 
-      *
 
-      * Params:
 
-      *      node = node to explore
 
-      *      result = container for the k-nearest neighbors found
 
-      *      vec = query points
 
-      *      checks = how many points in the dataset have been checked so far
 
-      *      maxChecks = maximum dataset points to checks
 
-      */
 
-     void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
 
-                 Heap<BranchSt>* heap)
 
-     {
 
-         // Ignore those clusters that are too far away
 
-         {
 
-             DistanceType bsq = distance_(vec, node->pivot, veclen_);
 
-             DistanceType rsq = node->radius;
 
-             DistanceType wsq = result.worstDist();
 
-             DistanceType val = bsq-rsq-wsq;
 
-             DistanceType val2 = val*val-4*rsq*wsq;
 
-             //if (val>0) {
 
-             if ((val>0)&&(val2>0)) {
 
-                 return;
 
-             }
 
-         }
 
-         if (node->childs==NULL) {
 
-             if (checks>=maxChecks) {
 
-                 if (result.full()) return;
 
-             }
 
-             checks += node->size;
 
-             for (int i=0; i<node->size; ++i) {
 
-                 int index = node->indices[i];
 
-                 DistanceType dist = distance_(dataset_[index], vec, veclen_);
 
-                 result.addPoint(dist, index);
 
-             }
 
-         }
 
-         else {
 
-             DistanceType* domain_distances = new DistanceType[branching_];
 
-             int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
 
-             delete[] domain_distances;
 
-             findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
 
-         }
 
-     }
 
-     /**
 
-      * Helper function that computes the nearest childs of a node to a given query point.
 
-      * Params:
 
-      *     node = the node
 
-      *     q = the query point
 
-      *     distances = array with the distances to each child node.
 
-      * Returns:
 
-      */
 
-     int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
 
-     {
 
-         int best_index = 0;
 
-         domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
 
-         for (int i=1; i<branching_; ++i) {
 
-             domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
 
-             if (domain_distances[i]<domain_distances[best_index]) {
 
-                 best_index = i;
 
-             }
 
-         }
 
-         //		float* best_center = node->childs[best_index]->pivot;
 
-         for (int i=0; i<branching_; ++i) {
 
-             if (i != best_index) {
 
-                 domain_distances[i] -= cb_index_*node->childs[i]->variance;
 
-                 //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
 
-                 //				if (domain_distances[i]<dist_to_border) {
 
-                 //					domain_distances[i] = dist_to_border;
 
-                 //				}
 
-                 heap->insert(BranchSt(node->childs[i],domain_distances[i]));
 
-             }
 
-         }
 
-         return best_index;
 
-     }
 
-     /**
 
-      * Function the performs exact nearest neighbor search by traversing the entire tree.
 
-      */
 
-     void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
 
-     {
 
-         // Ignore those clusters that are too far away
 
-         {
 
-             DistanceType bsq = distance_(vec, node->pivot, veclen_);
 
-             DistanceType rsq = node->radius;
 
-             DistanceType wsq = result.worstDist();
 
-             DistanceType val = bsq-rsq-wsq;
 
-             DistanceType val2 = val*val-4*rsq*wsq;
 
-             //                  if (val>0) {
 
-             if ((val>0)&&(val2>0)) {
 
-                 return;
 
-             }
 
-         }
 
-         if (node->childs==NULL) {
 
-             for (int i=0; i<node->size; ++i) {
 
-                 int index = node->indices[i];
 
-                 DistanceType dist = distance_(dataset_[index], vec, veclen_);
 
-                 result.addPoint(dist, index);
 
-             }
 
-         }
 
-         else {
 
-             int* sort_indices = new int[branching_];
 
-             getCenterOrdering(node, vec, sort_indices);
 
-             for (int i=0; i<branching_; ++i) {
 
-                 findExactNN(node->childs[sort_indices[i]],result,vec);
 
-             }
 
-             delete[] sort_indices;
 
-         }
 
-     }
 
-     /**
 
-      * Helper function.
 
-      *
 
-      * I computes the order in which to traverse the child nodes of a particular node.
 
-      */
 
-     void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
 
-     {
 
-         DistanceType* domain_distances = new DistanceType[branching_];
 
-         for (int i=0; i<branching_; ++i) {
 
-             DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
 
-             int j=0;
 
-             while (domain_distances[j]<dist && j<i) j++;
 
-             for (int k=i; k>j; --k) {
 
-                 domain_distances[k] = domain_distances[k-1];
 
-                 sort_indices[k] = sort_indices[k-1];
 
-             }
 
-             domain_distances[j] = dist;
 
-             sort_indices[j] = i;
 
-         }
 
-         delete[] domain_distances;
 
-     }
 
-     /**
 
-      * Method that computes the squared distance from the query point q
 
-      * from inside region with center c to the border between this
 
-      * region and the region with center p
 
-      */
 
-     DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
 
-     {
 
-         DistanceType sum = 0;
 
-         DistanceType sum2 = 0;
 
-         for (int i=0; i<veclen_; ++i) {
 
-             DistanceType t = c[i]-p[i];
 
-             sum += t*(q[i]-(c[i]+p[i])/2);
 
-             sum2 += t*t;
 
-         }
 
-         return sum*sum/sum2;
 
-     }
 
-     /**
 
-      * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
 
-      * the overall variance of the clustering.
 
-      * Params:
 
-      *     root = root node
 
-      *     clusters = array with clusters centers (return value)
 
-      *     varianceValue = variance of the clustering (return value)
 
-      * Returns:
 
-      */
 
-     int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
 
-     {
 
-         int clusterCount = 1;
 
-         clusters[0] = root;
 
-         DistanceType meanVariance = root->variance*root->size;
 
-         while (clusterCount<clusters_length) {
 
-             DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
 
-             int splitIndex = -1;
 
-             for (int i=0; i<clusterCount; ++i) {
 
-                 if (clusters[i]->childs != NULL) {
 
-                     DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
 
-                     for (int j=0; j<branching_; ++j) {
 
-                         variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
 
-                     }
 
-                     if (variance<minVariance) {
 
-                         minVariance = variance;
 
-                         splitIndex = i;
 
-                     }
 
-                 }
 
-             }
 
-             if (splitIndex==-1) break;
 
-             if ( (branching_+clusterCount-1) > clusters_length) break;
 
-             meanVariance = minVariance;
 
-             // split node
 
-             KMeansNodePtr toSplit = clusters[splitIndex];
 
-             clusters[splitIndex] = toSplit->childs[0];
 
-             for (int i=1; i<branching_; ++i) {
 
-                 clusters[clusterCount++] = toSplit->childs[i];
 
-             }
 
-         }
 
-         varianceValue = meanVariance/root->size;
 
-         return clusterCount;
 
-     }
 
- private:
 
-     /** The branching factor used in the hierarchical k-means clustering */
 
-     int branching_;
 
-     /** Maximum number of iterations to use when performing k-means clustering */
 
-     int iterations_;
 
-     /** Algorithm for choosing the cluster centers */
 
-     flann_centers_init_t centers_init_;
 
-     /**
 
-      * Cluster border index. This is used in the tree search phase when determining
 
-      * the closest cluster to explore next. A zero value takes into account only
 
-      * the cluster centres, a value greater then zero also take into account the size
 
-      * of the cluster.
 
-      */
 
-     float cb_index_;
 
-     /**
 
-      * The dataset used by this index
 
-      */
 
-     const Matrix<ElementType> dataset_;
 
-     /** Index parameters */
 
-     IndexParams index_params_;
 
-     /**
 
-      * Number of features in the dataset.
 
-      */
 
-     size_t size_;
 
-     /**
 
-      * Length of each feature.
 
-      */
 
-     size_t veclen_;
 
-     /**
 
-      * The root node in the tree.
 
-      */
 
-     KMeansNodePtr root_;
 
-     /**
 
-      *  Array of indices to vectors in the dataset.
 
-      */
 
-     int* indices_;
 
-     /**
 
-      * The distance
 
-      */
 
-     Distance distance_;
 
-     /**
 
-      * Pooled memory allocator.
 
-      */
 
-     PooledAllocator pool_;
 
-     /**
 
-      * Memory occupied by the index.
 
-      */
 
-     int memoryCounter_;
 
- };
 
- }
 
- #endif //OPENCV_FLANN_KMEANS_INDEX_H_
 
 
  |