| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_NNINDEX_H
 
- #define OPENCV_FLANN_NNINDEX_H
 
- #include "general.h"
 
- #include "matrix.h"
 
- #include "result_set.h"
 
- #include "params.h"
 
- namespace cvflann
 
- {
 
- /**
 
-  * Nearest-neighbour index base class
 
-  */
 
- template <typename Distance>
 
- class NNIndex
 
- {
 
-     typedef typename Distance::ElementType ElementType;
 
-     typedef typename Distance::ResultType DistanceType;
 
- public:
 
-     virtual ~NNIndex() {}
 
-     /**
 
-      * \brief Builds the index
 
-      */
 
-     virtual void buildIndex() = 0;
 
-     /**
 
-      * \brief Perform k-nearest neighbor search
 
-      * \param[in] queries The query points for which to find the nearest neighbors
 
-      * \param[out] indices The indices of the nearest neighbors found
 
-      * \param[out] dists Distances to the nearest neighbors found
 
-      * \param[in] knn Number of nearest neighbors to return
 
-      * \param[in] params Search parameters
 
-      */
 
-     virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
 
-     {
 
-         assert(queries.cols == veclen());
 
-         assert(indices.rows >= queries.rows);
 
-         assert(dists.rows >= queries.rows);
 
-         assert(int(indices.cols) >= knn);
 
-         assert(int(dists.cols) >= knn);
 
- #if 0
 
-         KNNResultSet<DistanceType> resultSet(knn);
 
-         for (size_t i = 0; i < queries.rows; i++) {
 
-             resultSet.init(indices[i], dists[i]);
 
-             findNeighbors(resultSet, queries[i], params);
 
-         }
 
- #else
 
-         KNNUniqueResultSet<DistanceType> resultSet(knn);
 
-         for (size_t i = 0; i < queries.rows; i++) {
 
-             resultSet.clear();
 
-             findNeighbors(resultSet, queries[i], params);
 
-             if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
 
-             else resultSet.copy(indices[i], dists[i], knn);
 
-         }
 
- #endif
 
-     }
 
-     /**
 
-      * \brief Perform radius search
 
-      * \param[in] query The query point
 
-      * \param[out] indices The indinces of the neighbors found within the given radius
 
-      * \param[out] dists The distances to the nearest neighbors found
 
-      * \param[in] radius The radius used for search
 
-      * \param[in] params Search parameters
 
-      * \returns Number of neighbors found
 
-      */
 
-     virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
 
-     {
 
-         if (query.rows != 1) {
 
-             fprintf(stderr, "I can only search one feature at a time for range search\n");
 
-             return -1;
 
-         }
 
-         assert(query.cols == veclen());
 
-         assert(indices.cols == dists.cols);
 
-         int n = 0;
 
-         int* indices_ptr = NULL;
 
-         DistanceType* dists_ptr = NULL;
 
-         if (indices.cols > 0) {
 
-             n = (int)indices.cols;
 
-             indices_ptr = indices[0];
 
-             dists_ptr = dists[0];
 
-         }
 
-         RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius);
 
-         resultSet.clear();
 
-         findNeighbors(resultSet, query[0], params);
 
-         if (n>0) {
 
-             if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
 
-             else resultSet.copy(indices_ptr, dists_ptr, n);
 
-         }
 
-         return (int)resultSet.size();
 
-     }
 
-     /**
 
-      * \brief Saves the index to a stream
 
-      * \param stream The stream to save the index to
 
-      */
 
-     virtual void saveIndex(FILE* stream) = 0;
 
-     /**
 
-      * \brief Loads the index from a stream
 
-      * \param stream The stream from which the index is loaded
 
-      */
 
-     virtual void loadIndex(FILE* stream) = 0;
 
-     /**
 
-      * \returns number of features in this index.
 
-      */
 
-     virtual size_t size() const = 0;
 
-     /**
 
-      * \returns The dimensionality of the features in this index.
 
-      */
 
-     virtual size_t veclen() const = 0;
 
-     /**
 
-      * \returns The amount of memory (in bytes) used by the index.
 
-      */
 
-     virtual int usedMemory() const = 0;
 
-     /**
 
-      * \returns The index type (kdtree, kmeans,...)
 
-      */
 
-     virtual flann_algorithm_t getType() const = 0;
 
-     /**
 
-      * \returns The index parameters
 
-      */
 
-     virtual IndexParams getParameters() const = 0;
 
-     /**
 
-      * \brief Method that searches for nearest-neighbours
 
-      */
 
-     virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
 
- };
 
- }
 
- #endif //OPENCV_FLANN_NNINDEX_H
 
 
  |