| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 | 
							- /***********************************************************************
 
-  * Software License Agreement (BSD License)
 
-  *
 
-  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 
-  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 
-  *
 
-  * THE BSD LICENSE
 
-  *
 
-  * Redistribution and use in source and binary forms, with or without
 
-  * modification, are permitted provided that the following conditions
 
-  * are met:
 
-  *
 
-  * 1. Redistributions of source code must retain the above copyright
 
-  *    notice, this list of conditions and the following disclaimer.
 
-  * 2. Redistributions in binary form must reproduce the above copyright
 
-  *    notice, this list of conditions and the following disclaimer in the
 
-  *    documentation and/or other materials provided with the distribution.
 
-  *
 
-  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 
-  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 
-  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 
-  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 
-  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 
-  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
-  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
-  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
-  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 
-  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-  *************************************************************************/
 
- #ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
 
- #define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
 
- namespace cvflann
 
- {
 
- /**
 
-     Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
 
-  */
 
- template <typename T>
 
- void addValue(int pos, float val, float* vals, T* point, T* points, int n)
 
- {
 
-     vals[pos] = val;
 
-     for (int i=0; i<n; ++i) {
 
-         points[pos*n+i] = point[i];
 
-     }
 
-     // bubble down
 
-     int j=pos;
 
-     while (j>0 && vals[j]<vals[j-1]) {
 
-         swap(vals[j],vals[j-1]);
 
-         for (int i=0; i<n; ++i) {
 
-             swap(points[j*n+i],points[(j-1)*n+i]);
 
-         }
 
-         --j;
 
-     }
 
- }
 
- /**
 
-     Simplex downhill optimization function.
 
-     Preconditions: points is a 2D mattrix of size (n+1) x n
 
-                     func is the cost function taking n an array of n params and returning float
 
-                     vals is the cost function in the n+1 simplex points, if NULL it will be computed
 
-     Postcondition: returns optimum value and points[0..n] are the optimum parameters
 
-  */
 
- template <typename T, typename F>
 
- float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
 
- {
 
-     const int MAX_ITERATIONS = 10;
 
-     assert(n>0);
 
-     T* p_o = new T[n];
 
-     T* p_r = new T[n];
 
-     T* p_e = new T[n];
 
-     int alpha = 1;
 
-     int iterations = 0;
 
-     bool ownVals = false;
 
-     if (vals == NULL) {
 
-         ownVals = true;
 
-         vals = new float[n+1];
 
-         for (int i=0; i<n+1; ++i) {
 
-             float val = func(points+i*n);
 
-             addValue(i, val, vals, points+i*n, points, n);
 
-         }
 
-     }
 
-     int nn = n*n;
 
-     while (true) {
 
-         if (iterations++ > MAX_ITERATIONS) break;
 
-         // compute average of simplex points (except the highest point)
 
-         for (int j=0; j<n; ++j) {
 
-             p_o[j] = 0;
 
-             for (int i=0; i<n; ++i) {
 
-                 p_o[i] += points[j*n+i];
 
-             }
 
-         }
 
-         for (int i=0; i<n; ++i) {
 
-             p_o[i] /= n;
 
-         }
 
-         bool converged = true;
 
-         for (int i=0; i<n; ++i) {
 
-             if (p_o[i] != points[nn+i]) {
 
-                 converged = false;
 
-             }
 
-         }
 
-         if (converged) break;
 
-         // trying a reflection
 
-         for (int i=0; i<n; ++i) {
 
-             p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
 
-         }
 
-         float val_r = func(p_r);
 
-         if ((val_r>=vals[0])&&(val_r<vals[n])) {
 
-             // reflection between second highest and lowest
 
-             // add it to the simplex
 
-             Logger::info("Choosing reflection\n");
 
-             addValue(n, val_r,vals, p_r, points, n);
 
-             continue;
 
-         }
 
-         if (val_r<vals[0]) {
 
-             // value is smaller than smalest in simplex
 
-             // expand some more to see if it drops further
 
-             for (int i=0; i<n; ++i) {
 
-                 p_e[i] = 2*p_r[i]-p_o[i];
 
-             }
 
-             float val_e = func(p_e);
 
-             if (val_e<val_r) {
 
-                 Logger::info("Choosing reflection and expansion\n");
 
-                 addValue(n, val_e,vals,p_e,points,n);
 
-             }
 
-             else {
 
-                 Logger::info("Choosing reflection\n");
 
-                 addValue(n, val_r,vals,p_r,points,n);
 
-             }
 
-             continue;
 
-         }
 
-         if (val_r>=vals[n]) {
 
-             for (int i=0; i<n; ++i) {
 
-                 p_e[i] = (p_o[i]+points[nn+i])/2;
 
-             }
 
-             float val_e = func(p_e);
 
-             if (val_e<vals[n]) {
 
-                 Logger::info("Choosing contraction\n");
 
-                 addValue(n,val_e,vals,p_e,points,n);
 
-                 continue;
 
-             }
 
-         }
 
-         {
 
-             Logger::info("Full contraction\n");
 
-             for (int j=1; j<=n; ++j) {
 
-                 for (int i=0; i<n; ++i) {
 
-                     points[j*n+i] = (points[j*n+i]+points[i])/2;
 
-                 }
 
-                 float val = func(points+j*n);
 
-                 addValue(j,val,vals,points+j*n,points,n);
 
-             }
 
-         }
 
-     }
 
-     float bestVal = vals[0];
 
-     delete[] p_r;
 
-     delete[] p_o;
 
-     delete[] p_e;
 
-     if (ownVals) delete[] vals;
 
-     return bestVal;
 
- }
 
- }
 
- #endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
 
 
  |