| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                          License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef OPENCV_OBJDETECT_HPP
 
- #define OPENCV_OBJDETECT_HPP
 
- #include "opencv2/core.hpp"
 
- /**
 
- @defgroup objdetect Object Detection
 
- Haar Feature-based Cascade Classifier for Object Detection
 
- ----------------------------------------------------------
 
- The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
 
- improved by Rainer Lienhart @cite Lienhart02 .
 
- First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
 
- trained with a few hundred sample views of a particular object (i.e., a face or a car), called
 
- positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
 
- images of the same size.
 
- After a classifier is trained, it can be applied to a region of interest (of the same size as used
 
- during the training) in an input image. The classifier outputs a "1" if the region is likely to show
 
- the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
 
- move the search window across the image and check every location using the classifier. The
 
- classifier is designed so that it can be easily "resized" in order to be able to find the objects of
 
- interest at different sizes, which is more efficient than resizing the image itself. So, to find an
 
- object of an unknown size in the image the scan procedure should be done several times at different
 
- scales.
 
- The word "cascade" in the classifier name means that the resultant classifier consists of several
 
- simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
 
- stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
 
- classifiers at every stage of the cascade are complex themselves and they are built out of basic
 
- classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
 
- Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
 
- decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
 
- classifiers, and are calculated as described below. The current algorithm uses the following
 
- Haar-like features:
 
- 
 
- The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
 
- the region of interest and the scale (this scale is not the same as the scale used at the detection
 
- stage, though these two scales are multiplied). For example, in the case of the third line feature
 
- (2c) the response is calculated as the difference between the sum of image pixels under the
 
- rectangle covering the whole feature (including the two white stripes and the black stripe in the
 
- middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
 
- compensate for the differences in the size of areas. The sums of pixel values over a rectangular
 
- regions are calculated rapidly using integral images (see below and the integral description).
 
- To see the object detector at work, have a look at the facedetect demo:
 
- <https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
 
- The following reference is for the detection part only. There is a separate application called
 
- opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
 
- @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
 
- addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
 
- using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
 
- <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
 
- @{
 
-     @defgroup objdetect_c C API
 
- @}
 
-  */
 
- typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
 
- namespace cv
 
- {
 
- //! @addtogroup objdetect
 
- //! @{
 
- ///////////////////////////// Object Detection ////////////////////////////
 
- //! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
 
- //! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
 
- class CV_EXPORTS SimilarRects
 
- {
 
- public:
 
-     SimilarRects(double _eps) : eps(_eps) {}
 
-     inline bool operator()(const Rect& r1, const Rect& r2) const
 
-     {
 
-         double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5;
 
-         return std::abs(r1.x - r2.x) <= delta &&
 
-             std::abs(r1.y - r2.y) <= delta &&
 
-             std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
 
-             std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
 
-     }
 
-     double eps;
 
- };
 
- /** @brief Groups the object candidate rectangles.
 
- @param rectList Input/output vector of rectangles. Output vector includes retained and grouped
 
- rectangles. (The Python list is not modified in place.)
 
- @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
 
- group of rectangles to retain it.
 
- @param eps Relative difference between sides of the rectangles to merge them into a group.
 
- The function is a wrapper for the generic function partition . It clusters all the input rectangles
 
- using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
 
- locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
 
- \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
 
- clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
 
- cluster, the average rectangle is computed and put into the output rectangle list.
 
-  */
 
- CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
 
- /** @overload */
 
- CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
 
-                                   int groupThreshold, double eps = 0.2);
 
- /** @overload */
 
- CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
 
-                                   double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
 
- /** @overload */
 
- CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
 
-                                   std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
 
- /** @overload */
 
- CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
 
-                                             std::vector<double>& foundScales,
 
-                                             double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
 
- template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const;
 
- enum { CASCADE_DO_CANNY_PRUNING    = 1,
 
-        CASCADE_SCALE_IMAGE         = 2,
 
-        CASCADE_FIND_BIGGEST_OBJECT = 4,
 
-        CASCADE_DO_ROUGH_SEARCH     = 8
 
-      };
 
- class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
 
- {
 
- public:
 
-     virtual ~BaseCascadeClassifier();
 
-     virtual bool empty() const = 0;
 
-     virtual bool load( const String& filename ) = 0;
 
-     virtual void detectMultiScale( InputArray image,
 
-                            CV_OUT std::vector<Rect>& objects,
 
-                            double scaleFactor,
 
-                            int minNeighbors, int flags,
 
-                            Size minSize, Size maxSize ) = 0;
 
-     virtual void detectMultiScale( InputArray image,
 
-                            CV_OUT std::vector<Rect>& objects,
 
-                            CV_OUT std::vector<int>& numDetections,
 
-                            double scaleFactor,
 
-                            int minNeighbors, int flags,
 
-                            Size minSize, Size maxSize ) = 0;
 
-     virtual void detectMultiScale( InputArray image,
 
-                                    CV_OUT std::vector<Rect>& objects,
 
-                                    CV_OUT std::vector<int>& rejectLevels,
 
-                                    CV_OUT std::vector<double>& levelWeights,
 
-                                    double scaleFactor,
 
-                                    int minNeighbors, int flags,
 
-                                    Size minSize, Size maxSize,
 
-                                    bool outputRejectLevels ) = 0;
 
-     virtual bool isOldFormatCascade() const = 0;
 
-     virtual Size getOriginalWindowSize() const = 0;
 
-     virtual int getFeatureType() const = 0;
 
-     virtual void* getOldCascade() = 0;
 
-     class CV_EXPORTS MaskGenerator
 
-     {
 
-     public:
 
-         virtual ~MaskGenerator() {}
 
-         virtual Mat generateMask(const Mat& src)=0;
 
-         virtual void initializeMask(const Mat& /*src*/) { }
 
-     };
 
-     virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
 
-     virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
 
- };
 
- /** @example facedetect.cpp
 
- This program demonstrates usage of the Cascade classifier class
 
- \image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254
 
- */
 
- /** @brief Cascade classifier class for object detection.
 
-  */
 
- class CV_EXPORTS_W CascadeClassifier
 
- {
 
- public:
 
-     CV_WRAP CascadeClassifier();
 
-     /** @brief Loads a classifier from a file.
 
-     @param filename Name of the file from which the classifier is loaded.
 
-      */
 
-     CV_WRAP CascadeClassifier(const String& filename);
 
-     ~CascadeClassifier();
 
-     /** @brief Checks whether the classifier has been loaded.
 
-     */
 
-     CV_WRAP bool empty() const;
 
-     /** @brief Loads a classifier from a file.
 
-     @param filename Name of the file from which the classifier is loaded. The file may contain an old
 
-     HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
 
-     traincascade application.
 
-      */
 
-     CV_WRAP bool load( const String& filename );
 
-     /** @brief Reads a classifier from a FileStorage node.
 
-     @note The file may contain a new cascade classifier (trained traincascade application) only.
 
-      */
 
-     CV_WRAP bool read( const FileNode& node );
 
-     /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 
-     of rectangles.
 
-     @param image Matrix of the type CV_8U containing an image where objects are detected.
 
-     @param objects Vector of rectangles where each rectangle contains the detected object, the
 
-     rectangles may be partially outside the original image.
 
-     @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 
-     @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 
-     to retain it.
 
-     @param flags Parameter with the same meaning for an old cascade as in the function
 
-     cvHaarDetectObjects. It is not used for a new cascade.
 
-     @param minSize Minimum possible object size. Objects smaller than that are ignored.
 
-     @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
 
-     The function is parallelized with the TBB library.
 
-     @note
 
-        -   (Python) A face detection example using cascade classifiers can be found at
 
-             opencv_source_code/samples/python/facedetect.py
 
-     */
 
-     CV_WRAP void detectMultiScale( InputArray image,
 
-                           CV_OUT std::vector<Rect>& objects,
 
-                           double scaleFactor = 1.1,
 
-                           int minNeighbors = 3, int flags = 0,
 
-                           Size minSize = Size(),
 
-                           Size maxSize = Size() );
 
-     /** @overload
 
-     @param image Matrix of the type CV_8U containing an image where objects are detected.
 
-     @param objects Vector of rectangles where each rectangle contains the detected object, the
 
-     rectangles may be partially outside the original image.
 
-     @param numDetections Vector of detection numbers for the corresponding objects. An object's number
 
-     of detections is the number of neighboring positively classified rectangles that were joined
 
-     together to form the object.
 
-     @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 
-     @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 
-     to retain it.
 
-     @param flags Parameter with the same meaning for an old cascade as in the function
 
-     cvHaarDetectObjects. It is not used for a new cascade.
 
-     @param minSize Minimum possible object size. Objects smaller than that are ignored.
 
-     @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
 
-     */
 
-     CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
 
-                           CV_OUT std::vector<Rect>& objects,
 
-                           CV_OUT std::vector<int>& numDetections,
 
-                           double scaleFactor=1.1,
 
-                           int minNeighbors=3, int flags=0,
 
-                           Size minSize=Size(),
 
-                           Size maxSize=Size() );
 
-     /** @overload
 
-     This function allows you to retrieve the final stage decision certainty of classification.
 
-     For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter.
 
-     For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage.
 
-     This value can then be used to separate strong from weaker classifications.
 
-     A code sample on how to use it efficiently can be found below:
 
-     @code
 
-     Mat img;
 
-     vector<double> weights;
 
-     vector<int> levels;
 
-     vector<Rect> detections;
 
-     CascadeClassifier model("/path/to/your/model.xml");
 
-     model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
 
-     cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
 
-     @endcode
 
-     */
 
-     CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
 
-                                   CV_OUT std::vector<Rect>& objects,
 
-                                   CV_OUT std::vector<int>& rejectLevels,
 
-                                   CV_OUT std::vector<double>& levelWeights,
 
-                                   double scaleFactor = 1.1,
 
-                                   int minNeighbors = 3, int flags = 0,
 
-                                   Size minSize = Size(),
 
-                                   Size maxSize = Size(),
 
-                                   bool outputRejectLevels = false );
 
-     CV_WRAP bool isOldFormatCascade() const;
 
-     CV_WRAP Size getOriginalWindowSize() const;
 
-     CV_WRAP int getFeatureType() const;
 
-     void* getOldCascade();
 
-     CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
 
-     void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
 
-     Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
 
-     Ptr<BaseCascadeClassifier> cc;
 
- };
 
- CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
 
- //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
 
- //! struct for detection region of interest (ROI)
 
- struct DetectionROI
 
- {
 
-    //! scale(size) of the bounding box
 
-    double scale;
 
-    //! set of requrested locations to be evaluated
 
-    std::vector<cv::Point> locations;
 
-    //! vector that will contain confidence values for each location
 
-    std::vector<double> confidences;
 
- };
 
- /**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
 
- the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 .
 
- useful links:
 
- https://hal.inria.fr/inria-00548512/document/
 
- https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
 
- https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
 
- http://www.learnopencv.com/histogram-of-oriented-gradients
 
- http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
 
-  */
 
- struct CV_EXPORTS_W HOGDescriptor
 
- {
 
- public:
 
-     enum { L2Hys = 0 //!< Default histogramNormType
 
-          };
 
-     enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value.
 
-          };
 
-     /**@brief Creates the HOG descriptor and detector with default params.
 
-     aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 )
 
-     */
 
-     CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
 
-         cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
 
-         histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
 
-         free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
 
-     {}
 
-     /** @overload
 
-     @param _winSize sets winSize with given value.
 
-     @param _blockSize sets blockSize with given value.
 
-     @param _blockStride sets blockStride with given value.
 
-     @param _cellSize sets cellSize with given value.
 
-     @param _nbins sets nbins with given value.
 
-     @param _derivAperture sets derivAperture with given value.
 
-     @param _winSigma sets winSigma with given value.
 
-     @param _histogramNormType sets histogramNormType with given value.
 
-     @param _L2HysThreshold sets L2HysThreshold with given value.
 
-     @param _gammaCorrection sets gammaCorrection with given value.
 
-     @param _nlevels sets nlevels with given value.
 
-     @param _signedGradient sets signedGradient with given value.
 
-     */
 
-     CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
 
-                   Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
 
-                   int _histogramNormType=HOGDescriptor::L2Hys,
 
-                   double _L2HysThreshold=0.2, bool _gammaCorrection=false,
 
-                   int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
 
-     : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
 
-     nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
 
-     histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
 
-     gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
 
-     {}
 
-     /** @overload
 
-     @param filename the file name containing  HOGDescriptor properties and coefficients of the trained classifier
 
-     */
 
-     CV_WRAP HOGDescriptor(const String& filename)
 
-     {
 
-         load(filename);
 
-     }
 
-     /** @overload
 
-     @param d the HOGDescriptor which cloned to create a new one.
 
-     */
 
-     HOGDescriptor(const HOGDescriptor& d)
 
-     {
 
-         d.copyTo(*this);
 
-     }
 
-     /**@brief Default destructor.
 
-     */
 
-     virtual ~HOGDescriptor() {}
 
-     /**@brief Returns the number of coefficients required for the classification.
 
-     */
 
-     CV_WRAP size_t getDescriptorSize() const;
 
-     /** @brief Checks if detector size equal to descriptor size.
 
-     */
 
-     CV_WRAP bool checkDetectorSize() const;
 
-     /** @brief Returns winSigma value
 
-     */
 
-     CV_WRAP double getWinSigma() const;
 
-     /**@example peopledetect.cpp
 
-     */
 
-     /**@brief Sets coefficients for the linear SVM classifier.
 
-     @param _svmdetector coefficients for the linear SVM classifier.
 
-     */
 
-     CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
 
-     /** @brief Reads HOGDescriptor parameters from a file node.
 
-     @param fn File node
 
-     */
 
-     virtual bool read(FileNode& fn);
 
-     /** @brief Stores HOGDescriptor parameters in a file storage.
 
-     @param fs File storage
 
-     @param objname Object name
 
-     */
 
-     virtual void write(FileStorage& fs, const String& objname) const;
 
-     /** @brief loads coefficients for the linear SVM classifier from a file
 
-     @param filename Name of the file to read.
 
-     @param objname The optional name of the node to read (if empty, the first top-level node will be used).
 
-     */
 
-     CV_WRAP virtual bool load(const String& filename, const String& objname = String());
 
-     /** @brief saves coefficients for the linear SVM classifier to a file
 
-     @param filename File name
 
-     @param objname Object name
 
-     */
 
-     CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
 
-     /** @brief clones the HOGDescriptor
 
-     @param c cloned HOGDescriptor
 
-     */
 
-     virtual void copyTo(HOGDescriptor& c) const;
 
-     /**@example train_HOG.cpp
 
-     */
 
-     /** @brief Computes HOG descriptors of given image.
 
-     @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
 
-     @param descriptors Matrix of the type CV_32F
 
-     @param winStride Window stride. It must be a multiple of block stride.
 
-     @param padding Padding
 
-     @param locations Vector of Point
 
-     */
 
-     CV_WRAP virtual void compute(InputArray img,
 
-                          CV_OUT std::vector<float>& descriptors,
 
-                          Size winStride = Size(), Size padding = Size(),
 
-                          const std::vector<Point>& locations = std::vector<Point>()) const;
 
-     /** @brief Performs object detection without a multi-scale window.
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
 
-     @param weights Vector that will contain confidence values for each detected object.
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 
-     Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
 
-     But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 
-     @param winStride Window stride. It must be a multiple of block stride.
 
-     @param padding Padding
 
-     @param searchLocations Vector of Point includes set of requrested locations to be evaluated.
 
-     */
 
-     CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
 
-                         CV_OUT std::vector<double>& weights,
 
-                         double hitThreshold = 0, Size winStride = Size(),
 
-                         Size padding = Size(),
 
-                         const std::vector<Point>& searchLocations = std::vector<Point>()) const;
 
-     /** @brief Performs object detection without a multi-scale window.
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 
-     Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
 
-     But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 
-     @param winStride Window stride. It must be a multiple of block stride.
 
-     @param padding Padding
 
-     @param searchLocations Vector of Point includes locations to search.
 
-     */
 
-     virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
 
-                         double hitThreshold = 0, Size winStride = Size(),
 
-                         Size padding = Size(),
 
-                         const std::vector<Point>& searchLocations=std::vector<Point>()) const;
 
-     /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 
-     of rectangles.
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 
-     @param foundWeights Vector that will contain confidence values for each detected object.
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 
-     Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
 
-     But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 
-     @param winStride Window stride. It must be a multiple of block stride.
 
-     @param padding Padding
 
-     @param scale Coefficient of the detection window increase.
 
-     @param finalThreshold Final threshold
 
-     @param useMeanshiftGrouping indicates grouping algorithm
 
-     */
 
-     CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 
-                                   CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
 
-                                   Size winStride = Size(), Size padding = Size(), double scale = 1.05,
 
-                                   double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
 
-     /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 
-     of rectangles.
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane.
 
-     Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient).
 
-     But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 
-     @param winStride Window stride. It must be a multiple of block stride.
 
-     @param padding Padding
 
-     @param scale Coefficient of the detection window increase.
 
-     @param finalThreshold Final threshold
 
-     @param useMeanshiftGrouping indicates grouping algorithm
 
-     */
 
-     virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 
-                                   double hitThreshold = 0, Size winStride = Size(),
 
-                                   Size padding = Size(), double scale = 1.05,
 
-                                   double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
 
-     /** @brief  Computes gradients and quantized gradient orientations.
 
-     @param img Matrix contains the image to be computed
 
-     @param grad Matrix of type CV_32FC2 contains computed gradients
 
-     @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
 
-     @param paddingTL Padding from top-left
 
-     @param paddingBR Padding from bottom-right
 
-     */
 
-     CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
 
-                                  Size paddingTL = Size(), Size paddingBR = Size()) const;
 
-     /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
 
-     */
 
-     CV_WRAP static std::vector<float> getDefaultPeopleDetector();
 
-     /**@example hog.cpp
 
-     */
 
-     /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
 
-     */
 
-     CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
 
-     //! Detection window size. Align to block size and block stride. Default value is Size(64,128).
 
-     CV_PROP Size winSize;
 
-     //! Block size in pixels. Align to cell size. Default value is Size(16,16).
 
-     CV_PROP Size blockSize;
 
-     //! Block stride. It must be a multiple of cell size. Default value is Size(8,8).
 
-     CV_PROP Size blockStride;
 
-     //! Cell size. Default value is Size(8,8).
 
-     CV_PROP Size cellSize;
 
-     //! Number of bins used in the calculation of histogram of gradients. Default value is 9.
 
-     CV_PROP int nbins;
 
-     //! not documented
 
-     CV_PROP int derivAperture;
 
-     //! Gaussian smoothing window parameter.
 
-     CV_PROP double winSigma;
 
-     //! histogramNormType
 
-     CV_PROP int histogramNormType;
 
-     //! L2-Hys normalization method shrinkage.
 
-     CV_PROP double L2HysThreshold;
 
-     //! Flag to specify whether the gamma correction preprocessing is required or not.
 
-     CV_PROP bool gammaCorrection;
 
-     //! coefficients for the linear SVM classifier.
 
-     CV_PROP std::vector<float> svmDetector;
 
-     //! coefficients for the linear SVM classifier used when OpenCL is enabled
 
-     UMat oclSvmDetector;
 
-     //! not documented
 
-     float free_coef;
 
-     //! Maximum number of detection window increases. Default value is 64
 
-     CV_PROP int nlevels;
 
-     //! Indicates signed gradient will be used or not
 
-     CV_PROP bool signedGradient;
 
-     /** @brief evaluate specified ROI and return confidence value for each location
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param locations Vector of Point
 
-     @param foundLocations Vector of Point where each Point is detected object's top-left point.
 
-     @param confidences confidences
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
 
-     it is 0 and should be specfied in the detector coefficients (as the last free coefficient). But if
 
-     the free coefficient is omitted (which is allowed), you can specify it manually here
 
-     @param winStride winStride
 
-     @param padding padding
 
-     */
 
-     virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
 
-                                    CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
 
-                                    double hitThreshold = 0, cv::Size winStride = Size(),
 
-                                    cv::Size padding = Size()) const;
 
-     /** @brief evaluate specified ROI and return confidence value for each location in multiple scales
 
-     @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
 
-     @param foundLocations Vector of rectangles where each rectangle contains the detected object.
 
-     @param locations Vector of DetectionROI
 
-     @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specfied
 
-     in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 
-     @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
 
-     */
 
-     virtual void detectMultiScaleROI(const cv::Mat& img,
 
-                                      CV_OUT std::vector<cv::Rect>& foundLocations,
 
-                                      std::vector<DetectionROI>& locations,
 
-                                      double hitThreshold = 0,
 
-                                      int groupThreshold = 0) const;
 
-     /** @brief read/parse Dalal's alt model file
 
-     @param modelfile Path of Dalal's alt model file.
 
-     */
 
-     void readALTModel(String modelfile);
 
-     /** @brief Groups the object candidate rectangles.
 
-     @param rectList  Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
 
-     @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
 
-     @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
 
-     @param eps Relative difference between sides of the rectangles to merge them into a group.
 
-     */
 
-     void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
 
- };
 
- //! @} objdetect
 
- }
 
- #include "opencv2/objdetect/detection_based_tracker.hpp"
 
- #ifndef DISABLE_OPENCV_24_COMPATIBILITY
 
- #include "opencv2/objdetect/objdetect_c.h"
 
- #endif
 
- #endif
 
 
  |