| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
-  //
 
-  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
-  //
 
-  //  By downloading, copying, installing or using the software you agree to this license.
 
-  //  If you do not agree to this license, do not download, install,
 
-  //  copy or use the software.
 
-  //
 
-  //
 
-  //                           License Agreement
 
-  //                For Open Source Computer Vision Library
 
-  //
 
-  // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
 
-  // Third party copyrights are property of their respective owners.
 
-  //
 
-  // Redistribution and use in source and binary forms, with or without modification,
 
-  // are permitted provided that the following conditions are met:
 
-  //
 
-  //   * Redistribution's of source code must retain the above copyright notice,
 
-  //     this list of conditions and the following disclaimer.
 
-  //
 
-  //   * Redistribution's in binary form must reproduce the above copyright notice,
 
-  //     this list of conditions and the following disclaimer in the documentation
 
-  //     and/or other materials provided with the distribution.
 
-  //
 
-  //   * The name of the copyright holders may not be used to endorse or promote products
 
-  //     derived from this software without specific prior written permission.
 
-  //
 
-  // This software is provided by the copyright holders and contributors "as is" and
 
-  // any express or implied warranties, including, but not limited to, the implied
 
-  // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
-  // In no event shall the Intel Corporation or contributors be liable for any direct,
 
-  // indirect, incidental, special, exemplary, or consequential damages
 
-  // (including, but not limited to, procurement of substitute goods or services;
 
-  // loss of use, data, or profits; or business interruption) however caused
 
-  // and on any theory of liability, whether in contract, strict liability,
 
-  // or tort (including negligence or otherwise) arising in any way out of
 
-  // the use of this software, even if advised of the possibility of such damage.
 
-  //
 
-  //M*/
 
- #ifndef __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
 
- #define __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
 
- #include <cstdio>
 
- #include <string>
 
- #include <iostream>
 
- #include <stdint.h>
 
- #include "saliencyBaseClasses.hpp"
 
- #include "opencv2/core.hpp"
 
- namespace cv
 
- {
 
- namespace saliency
 
- {
 
- //! @addtogroup saliency
 
- //! @{
 
- /************************************ Specific Static Saliency Specialized Classes ************************************/
 
- /** @brief the Spectral Residual approach from  @cite SR
 
- Starting from the principle of natural image statistics, this method simulate the behavior of
 
- pre-attentive visual search. The algorithm analyze the log spectrum of each image and obtain the
 
- spectral residual. Then transform the spectral residual to spatial domain to obtain the saliency
 
- map, which suggests the positions of proto-objects.
 
-  */
 
- class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
 
- {
 
- public:
 
-   StaticSaliencySpectralResidual();
 
-   virtual ~StaticSaliencySpectralResidual();
 
-   CV_WRAP static Ptr<StaticSaliencySpectralResidual> create()
 
-   {
 
-     return makePtr<StaticSaliencySpectralResidual>();
 
-   }
 
-   CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
 
-   {
 
-     if( image.empty() )
 
-       return false;
 
-     return computeSaliencyImpl( image, saliencyMap );
 
-   }
 
-   CV_WRAP void read( const FileNode& fn );
 
-   void write( FileStorage& fs ) const;
 
-   CV_WRAP int getImageWidth() const
 
-   {
 
-     return resImWidth;
 
-   }
 
-   CV_WRAP inline void setImageWidth(int val)
 
-   {
 
-     resImWidth = val;
 
-   }
 
-   CV_WRAP int getImageHeight() const
 
-   {
 
-     return resImHeight;
 
-   }
 
-   CV_WRAP void setImageHeight(int val)
 
-   {
 
-     resImHeight = val;
 
-   }
 
- protected:
 
-   bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
 
-   CV_PROP_RW int resImWidth;
 
-   CV_PROP_RW int resImHeight;
 
- };
 
- /** @brief the Fine Grained Saliency approach from @cite FGS
 
- This method calculates saliency based on center-surround differences.
 
- High resolution saliency maps are generated in real time by using integral images.
 
-  */
 
- class CV_EXPORTS_W StaticSaliencyFineGrained : public StaticSaliency
 
- {
 
- public:
 
-   StaticSaliencyFineGrained();
 
-   CV_WRAP static Ptr<StaticSaliencyFineGrained> create()
 
-   {
 
-     return makePtr<StaticSaliencyFineGrained>();
 
-   }
 
-   CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
 
-   {
 
-     if( image.empty() )
 
-       return false;
 
-     return computeSaliencyImpl( image, saliencyMap );
 
-   }
 
-   virtual ~StaticSaliencyFineGrained();
 
- protected:
 
-   bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
 
- private:
 
-   void calcIntensityChannel(Mat src, Mat dst);
 
-   void copyImage(Mat src, Mat dst);
 
-   void getIntensityScaled(Mat integralImage, Mat gray, Mat saliencyOn, Mat saliencyOff, int neighborhood);
 
-   float getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal);
 
-   void mixScales(Mat *saliencyOn, Mat intensityOn, Mat *saliencyOff, Mat intensityOff, const int numScales);
 
-   void mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensity);
 
-   void getIntensity(Mat srcArg, Mat dstArg,  Mat dstOnArg,  Mat dstOffArg, bool generateOnOff);
 
- };
 
- /************************************ Specific Motion Saliency Specialized Classes ************************************/
 
- /*!
 
-  * A Fast Self-tuning Background Subtraction Algorithm.
 
-  *
 
-  * This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
 
-  * [2]  B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
 
-  *
 
-  */
 
- /** @brief the Fast Self-tuning Background Subtraction Algorithm from @cite BinWangApr2014
 
-  */
 
- class CV_EXPORTS_W MotionSaliencyBinWangApr2014 : public MotionSaliency
 
- {
 
- public:
 
-   MotionSaliencyBinWangApr2014();
 
-   virtual ~MotionSaliencyBinWangApr2014();
 
-   CV_WRAP static Ptr<MotionSaliencyBinWangApr2014> create()
 
-   {
 
-     return makePtr<MotionSaliencyBinWangApr2014>();
 
-   }
 
-   CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
 
-   {
 
-     if( image.empty() )
 
-       return false;
 
-     return computeSaliencyImpl( image, saliencyMap );
 
-   }
 
-   /** @brief This is a utility function that allows to set the correct size (taken from the input image) in the
 
-     corresponding variables that will be used to size the data structures of the algorithm.
 
-     @param W width of input image
 
-     @param H height of input image
 
-   */
 
-   CV_WRAP void setImagesize( int W, int H );
 
-   /** @brief This function allows the correct initialization of all data structures that will be used by the
 
-     algorithm.
 
-   */
 
-   CV_WRAP bool init();
 
-   CV_WRAP int getImageWidth() const
 
-   {
 
-     return imageWidth;
 
-   }
 
-   CV_WRAP inline void setImageWidth(int val)
 
-   {
 
-     imageWidth = val;
 
-   }
 
-   CV_WRAP int getImageHeight() const
 
-   {
 
-     return imageHeight;
 
-   }
 
-   CV_WRAP void setImageHeight(int val)
 
-   {
 
-     imageHeight = val;
 
-   }
 
- protected:
 
-   /** @brief Performs all the operations and calls all internal functions necessary for the accomplishment of the
 
-     Fast Self-tuning Background Subtraction Algorithm algorithm.
 
-     @param image input image. According to the needs of this specialized algorithm, the param image is a
 
-     single *Mat*.
 
-     @param saliencyMap Saliency Map. Is a binarized map that, in accordance with the nature of the algorithm, highlights the moving objects or areas of change in the scene.
 
-        The saliency map is given by a single *Mat* (one for each frame of an hypothetical video
 
-         stream).
 
-   */
 
-   bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
 
- private:
 
-   // classification (and adaptation) functions
 
-   bool fullResolutionDetection( const Mat& image, Mat& highResBFMask );
 
-   bool lowResolutionDetection( const Mat& image, Mat& lowResBFMask );
 
-   // Background model maintenance functions
 
-   bool templateOrdering();
 
-   bool templateReplacement( const Mat& finalBFMask, const Mat& image );
 
-   // Decision threshold adaptation and Activity control function
 
-   bool activityControl(const Mat& current_noisePixelsMask);
 
-   bool decisionThresholdAdaptation();
 
-   // changing structure
 
-   std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
 
-   // Matrices are two-channel matrix. In the first layer there are the B (background value)
 
-   // for each pixel. In the second layer, there are the C (efficacy) value for each pixel
 
-   Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
 
-                           // and in the secon level there are the Ca value, the counter for each potential value.
 
-   Mat epslonPixelsValue;// epslon threshold
 
-   Mat activityPixelsValue;// Activity level of each pixel
 
-   //vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
 
-   Mat noisePixelMask;// We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
 
-   //detection process,however, after the low resolution detection, it has become a
 
-   // background pixel. The matrix is  two-channel matrix. In the first layer there is the mask ( the identified noise-pixels are set to 1 while other pixels are 0)
 
-   // for each pixel. In the second layer, there is the value of activity level A for each pixel.
 
-   //fixed parameter
 
-   bool activityControlFlag;
 
-   bool neighborhoodCheck;
 
-   int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
 
-   CV_PROP_RW int imageWidth;// Width of input image
 
-   CV_PROP_RW int imageHeight;//Height of input image
 
-   int K;// Number of background model template
 
-   int N;// NxN is the size of the block for downsampling in the lowlowResolutionDetection
 
-   float alpha;// Learning rate
 
-   int L0, L1;// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
 
-   int thetaL;// T0, T1 swap threshold
 
-   int thetaA;// Potential background value threshold
 
-   int gamma;// Parameter that controls the time that the newly updated long-term background value will remain in the
 
-             // long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
 
-             //restrain the generation of ghosts.
 
-   uchar Ainc;// Activity Incrementation;
 
-   int Bmax;// Upper-bound value for pixel activity
 
-   int Bth;// Max activity threshold
 
-   int Binc, Bdec;// Threshold for pixel-level decision threshold (epslon) adaptation
 
-   float deltaINC, deltaDEC;// Increment-decrement value for epslon adaptation
 
-   int epslonMIN, epslonMAX;// Range values for epslon threshold
 
- };
 
- /************************************ Specific Objectness Specialized Classes ************************************/
 
- /**
 
-  * \brief Objectness algorithms based on [3]
 
-  * [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
 
-  */
 
- /** @brief the Binarized normed gradients algorithm from @cite BING
 
-  */
 
- class CV_EXPORTS_W ObjectnessBING : public Objectness
 
- {
 
- public:
 
-   ObjectnessBING();
 
-   virtual ~ObjectnessBING();
 
-   CV_WRAP static Ptr<ObjectnessBING> create()
 
-   {
 
-     return makePtr<ObjectnessBING>();
 
-   }
 
-   CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
 
-   {
 
-     if( image.empty() )
 
-       return false;
 
-     return computeSaliencyImpl( image, saliencyMap );
 
-   }
 
-   CV_WRAP void read();
 
-   CV_WRAP void write() const;
 
-   /** @brief Return the list of the rectangles' objectness value,
 
-     in the same order as the *vector\<Vec4i\> objectnessBoundingBox* returned by the algorithm (in
 
-     computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an
 
-     object window.
 
-      */
 
-   CV_WRAP std::vector<float> getobjectnessValues();
 
-   /** @brief This is a utility function that allows to set the correct path from which the algorithm will load
 
-     the trained model.
 
-     @param trainingPath trained model path
 
-      */
 
-   CV_WRAP void setTrainingPath( const String& trainingPath );
 
-   /** @brief This is a utility function that allows to set an arbitrary path in which the algorithm will save the
 
-     optional results
 
-     (ie writing on file the total number and the list of rectangles returned by objectess, one for
 
-     each row).
 
-     @param resultsDir results' folder path
 
-      */
 
-   CV_WRAP void setBBResDir( const String& resultsDir );
 
-   CV_WRAP double getBase() const
 
-   {
 
-     return _base;
 
-   }
 
-   CV_WRAP inline void setBase(double val)
 
-   {
 
-     _base = val;
 
-   }
 
-   CV_WRAP int getNSS() const
 
-   {
 
-     return _NSS;
 
-   }
 
-   CV_WRAP void setNSS(int val)
 
-   {
 
-     _NSS = val;
 
-   }
 
-   CV_WRAP int getW() const
 
-   {
 
-     return _W;
 
-   }
 
-   CV_WRAP void setW(int val)
 
-   {
 
-     _W = val;
 
-   }
 
- protected:
 
-   /** @brief Performs all the operations and calls all internal functions necessary for the
 
-   accomplishment of the Binarized normed gradients algorithm.
 
-     @param image input image. According to the needs of this specialized algorithm, the param image is a
 
-     single *Mat*
 
-     @param objectnessBoundingBox objectness Bounding Box vector. According to the result given by this
 
-     specialized algorithm, the objectnessBoundingBox is a *vector\<Vec4i\>*. Each bounding box is
 
-     represented by a *Vec4i* for (minX, minY, maxX, maxY).
 
-      */
 
-   bool computeSaliencyImpl( InputArray image, OutputArray objectnessBoundingBox );
 
- private:
 
-   class FilterTIG
 
-   {
 
-   public:
 
-     void update( Mat &w );
 
-     // For a W by H gradient magnitude map, find a W-7 by H-7 CV_32F matching score map
 
-     Mat matchTemplate( const Mat &mag1u );
 
-     float dot( int64_t tig1, int64_t tig2, int64_t tig4, int64_t tig8 );
 
-     void reconstruct( Mat &w );// For illustration purpose
 
-   private:
 
-     static const int NUM_COMP = 2;// Number of components
 
-     static const int D = 64;// Dimension of TIG
 
-     int64_t _bTIGs[NUM_COMP];// Binary TIG features
 
-     float _coeffs1[NUM_COMP];// Coefficients of binary TIG features
 
-     // For efficiently deals with different bits in CV_8U gradient map
 
-     float _coeffs2[NUM_COMP], _coeffs4[NUM_COMP], _coeffs8[NUM_COMP];
 
-   };
 
-   template<typename VT, typename ST>
 
-   struct ValStructVec
 
-   {
 
-     ValStructVec();
 
-     int size() const;
 
-     void clear();
 
-     void reserve( int resSz );
 
-     void pushBack( const VT& val, const ST& structVal );
 
-     const VT& operator ()( int i ) const;
 
-     const ST& operator []( int i ) const;
 
-     VT& operator ()( int i );
 
-     ST& operator []( int i );
 
-     void sort( bool descendOrder = true );
 
-     const std::vector<ST> &getSortedStructVal();
 
-     std::vector<std::pair<VT, int> > getvalIdxes();
 
-     void append( const ValStructVec<VT, ST> &newVals, int startV = 0 );
 
-     std::vector<ST> structVals;  // struct values
 
-     int sz;// size of the value struct vector
 
-     std::vector<std::pair<VT, int> > valIdxes;// Indexes after sort
 
-     bool smaller()
 
-     {
 
-       return true;
 
-     }
 
-     std::vector<ST> sortedStructVals;
 
-   };
 
-   enum
 
-   {
 
-     MAXBGR,
 
-     HSV,
 
-     G
 
-   };
 
-   double _base, _logBase;  // base for window size quantization
 
-   int _W;// As described in the paper: #Size, Size(_W, _H) of feature window.
 
-   int _NSS;// Size for non-maximal suppress
 
-   int _maxT, _minT, _numT;// The minimal and maximal dimensions of the template
 
-   int _Clr;//
 
-   static const char* _clrName[3];
 
- // Names and paths to read model and to store results
 
-   std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
 
-   std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
 
-   Mat _svmFilter;// Filters learned at stage I, each is a _H by _W CV_32F matrix
 
-   FilterTIG _tigF;// TIG filter
 
-   Mat _svmReW1f;// Re-weight parameters learned at stage II.
 
- // List of the rectangles' objectness value, in the same order as
 
- // the  vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
 
-   std::vector<float> objectnessValues;
 
- private:
 
- // functions
 
-   inline static float LoG( float x, float y, float delta )
 
-   {
 
-     float d = - ( x * x + y * y ) / ( 2 * delta * delta );
 
-     return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
 
-   }  // Laplacian of Gaussian
 
- // Read matrix from binary file
 
-   static bool matRead( const std::string& filename, Mat& M );
 
-   void setColorSpace( int clr = MAXBGR );
 
- // Load trained model.
 
-   int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded
 
- // Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
 
- // The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
 
- // Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
 
-   void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
 
-   void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
 
-   bool filtersLoaded()
 
-   {
 
-     int n = (int) _svmSzIdxs.size();
 
-     return n > 0 && _svmReW1f.size() == Size( 2, n ) && _svmFilter.size() == Size( _W, _W );
 
-   }
 
-   void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
 
-   void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
 
- // Calculate the image gradient: center option as in VLFeat
 
-   void gradientMag( Mat &imgBGR3u, Mat &mag1u );
 
-   static void gradientRGB( Mat &bgr3u, Mat &mag1u );
 
-   static void gradientGray( Mat &bgr3u, Mat &mag1u );
 
-   static void gradientHSV( Mat &bgr3u, Mat &mag1u );
 
-   static void gradientXY( Mat &x1i, Mat &y1i, Mat &mag1u );
 
-   static inline int bgrMaxDist( const Vec3b &u, const Vec3b &v )
 
-   {
 
-     int b = abs( u[0] - v[0] ), g = abs( u[1] - v[1] ), r = abs( u[2] - v[2] );
 
-     b = max( b, g );
 
-     return max( b, r );
 
-   }
 
-   static inline int vecDist3b( const Vec3b &u, const Vec3b &v )
 
-   {
 
-     return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
 
-   }
 
- //Non-maximal suppress
 
-   static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
 
- };
 
- //! @}
 
- }
 
- /* namespace saliency */
 
- } /* namespace cv */
 
- #endif
 
 
  |