| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
-  //
 
-  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
-  //
 
-  //  By downloading, copying, installing or using the software you agree to this license.
 
-  //  If you do not agree to this license, do not download, install,
 
-  //  copy or use the software.
 
-  //
 
-  //
 
-  //                           License Agreement
 
-  //                For Open Source Computer Vision Library
 
-  //
 
-  // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 
-  // Third party copyrights are property of their respective owners.
 
-  //
 
-  // Redistribution and use in source and binary forms, with or without modification,
 
-  // are permitted provided that the following conditions are met:
 
-  //
 
-  //   * Redistribution's of source code must retain the above copyright notice,
 
-  //     this list of conditions and the following disclaimer.
 
-  //
 
-  //   * Redistribution's in binary form must reproduce the above copyright notice,
 
-  //     this list of conditions and the following disclaimer in the documentation
 
-  //     and/or other materials provided with the distribution.
 
-  //
 
-  //   * The name of the copyright holders may not be used to endorse or promote products
 
-  //     derived from this software without specific prior written permission.
 
-  //
 
-  // This software is provided by the copyright holders and contributors "as is" and
 
-  // any express or implied warranties, including, but not limited to, the implied
 
-  // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
-  // In no event shall the Intel Corporation or contributors be liable for any direct,
 
-  // indirect, incidental, special, exemplary, or consequential damages
 
-  // (including, but not limited to, procurement of substitute goods or services;
 
-  // loss of use, data, or profits; or business interruption) however caused
 
-  // and on any theory of liability, whether in contract, strict liability,
 
-  // or tort (including negligence or otherwise) arising in any way out of
 
-  // the use of this software, even if advised of the possibility of such damage.
 
-  //
 
-  //M*/
 
- #ifndef __OPENCV_ONLINEBOOSTING_HPP__
 
- #define __OPENCV_ONLINEBOOSTING_HPP__
 
- #include "opencv2/core.hpp"
 
- namespace cv
 
- {
 
- //! @addtogroup tracking
 
- //! @{
 
- //TODO based on the original implementation
 
- //http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
 
- class BaseClassifier;
 
- class WeakClassifierHaarFeature;
 
- class EstimatedGaussDistribution;
 
- class ClassifierThreshold;
 
- class Detector;
 
- class StrongClassifierDirectSelection
 
- {
 
-  public:
 
-   StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit =
 
-                                        0 );
 
-   virtual ~StrongClassifierDirectSelection();
 
-   void initBaseClassifier();
 
-   bool update( const Mat& image, int target, float importance = 1.0 );
 
-   float eval( const Mat& response );
 
-   std::vector<int> getSelectedWeakClassifier();
 
-   float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx );
 
-   int getNumBaseClassifier();
 
-   Size getPatchSize() const;
 
-   Rect getROI() const;
 
-   bool getUseFeatureExchange() const;
 
-   int getReplacedClassifier() const;
 
-   void replaceWeakClassifier( int idx );
 
-   int getSwappedClassifier() const;
 
-  private:
 
-   //StrongClassifier
 
-   int numBaseClassifier;
 
-   int numAllWeakClassifier;
 
-   int numWeakClassifier;
 
-   int iterInit;
 
-   BaseClassifier** baseClassifier;
 
-   std::vector<float> alpha;
 
-   cv::Size patchSize;
 
-   bool useFeatureExchange;
 
-   //StrongClassifierDirectSelection
 
-   std::vector<bool> m_errorMask;
 
-   std::vector<float> m_errors;
 
-   std::vector<float> m_sumErrors;
 
-   Detector* detector;
 
-   Rect ROI;
 
-   int replacedClassifier;
 
-   int swappedClassifier;
 
- };
 
- class BaseClassifier
 
- {
 
-  public:
 
-   BaseClassifier( int numWeakClassifier, int iterationInit );
 
-   BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls );
 
-   WeakClassifierHaarFeature** getReferenceWeakClassifier()
 
-   {
 
-     return weakClassifier;
 
-   }
 
-   ;
 
-   void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask );
 
-   int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors );
 
-   int computeReplaceWeakestClassifier( const std::vector<float> & errors );
 
-   void replaceClassifierStatistic( int sourceIndex, int targetIndex );
 
-   int getIdxOfNewWeakClassifier()
 
-   {
 
-     return m_idxOfNewWeakClassifier;
 
-   }
 
-   ;
 
-   int eval( const Mat& image );
 
-   virtual ~BaseClassifier();
 
-   float getError( int curWeakClassifier );
 
-   void getErrors( float* errors );
 
-   int getSelectedClassifier() const;
 
-   void replaceWeakClassifier( int index );
 
-  protected:
 
-   void generateRandomClassifier();
 
-   WeakClassifierHaarFeature** weakClassifier;
 
-   bool m_referenceWeakClassifier;
 
-   int m_numWeakClassifier;
 
-   int m_selectedClassifier;
 
-   int m_idxOfNewWeakClassifier;
 
-   std::vector<float> m_wCorrect;
 
-   std::vector<float> m_wWrong;
 
-   int m_iterationInit;
 
- };
 
- class EstimatedGaussDistribution
 
- {
 
-  public:
 
-   EstimatedGaussDistribution();
 
-   EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma );
 
-   virtual ~EstimatedGaussDistribution();
 
-   void update( float value );  //, float timeConstant = -1.0);
 
-   float getMean();
 
-   float getSigma();
 
-   void setValues( float mean, float sigma );
 
-  private:
 
-   float m_mean;
 
-   float m_sigma;
 
-   float m_P_mean;
 
-   float m_P_sigma;
 
-   float m_R_mean;
 
-   float m_R_sigma;
 
- };
 
- class WeakClassifierHaarFeature
 
- {
 
-  public:
 
-   WeakClassifierHaarFeature();
 
-   virtual ~WeakClassifierHaarFeature();
 
-   bool update( float value, int target );
 
-   int eval( float value );
 
-  private:
 
-   float sigma;
 
-   float mean;
 
-   ClassifierThreshold* m_classifier;
 
-   void getInitialDistribution( EstimatedGaussDistribution *distribution );
 
-   void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples );
 
- };
 
- class Detector
 
- {
 
-  public:
 
-   Detector( StrongClassifierDirectSelection* classifier );
 
-   virtual
 
-   ~Detector( void );
 
-   void
 
-   classifySmooth( const std::vector<Mat>& image, float minMargin = 0 );
 
-   int
 
-   getNumDetections();
 
-   float
 
-   getConfidence( int patchIdx );
 
-   float
 
-   getConfidenceOfDetection( int detectionIdx );
 
-   float getConfidenceOfBestDetection()
 
-   {
 
-     return m_maxConfidence;
 
-   }
 
-   ;
 
-   int
 
-   getPatchIdxOfBestDetection();
 
-   int
 
-   getPatchIdxOfDetection( int detectionIdx );
 
-   const std::vector<int> &
 
-   getIdxDetections() const
 
-   {
 
-     return m_idxDetections;
 
-   }
 
-   ;
 
-   const std::vector<float> &
 
-   getConfidences() const
 
-   {
 
-     return m_confidences;
 
-   }
 
-   ;
 
-   const cv::Mat &
 
-   getConfImageDisplay() const
 
-   {
 
-     return m_confImageDisplay;
 
-   }
 
-  private:
 
-   void
 
-   prepareConfidencesMemory( int numPatches );
 
-   void
 
-   prepareDetectionsMemory( int numDetections );
 
-   StrongClassifierDirectSelection* m_classifier;
 
-   std::vector<float> m_confidences;
 
-   int m_sizeConfidences;
 
-   int m_numDetections;
 
-   std::vector<int> m_idxDetections;
 
-   int m_sizeDetections;
 
-   int m_idxBestDetection;
 
-   float m_maxConfidence;
 
-   cv::Mat_<float> m_confMatrix;
 
-   cv::Mat_<float> m_confMatrixSmooth;
 
-   cv::Mat_<unsigned char> m_confImageDisplay;
 
- };
 
- class ClassifierThreshold
 
- {
 
-  public:
 
-   ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples );
 
-   virtual ~ClassifierThreshold();
 
-   void update( float value, int target );
 
-   int eval( float value );
 
-   void* getDistribution( int target );
 
-  private:
 
-   EstimatedGaussDistribution* m_posSamples;
 
-   EstimatedGaussDistribution* m_negSamples;
 
-   float m_threshold;
 
-   int m_parity;
 
- };
 
- //! @}
 
- } /* namespace cv */
 
- #endif
 
 
  |