| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                           License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef __OPENCV_XFEATURES2D_CUDA_HPP__
 
- #define __OPENCV_XFEATURES2D_CUDA_HPP__
 
- #include "opencv2/core/cuda.hpp"
 
- namespace cv { namespace cuda {
 
- //! @addtogroup xfeatures2d_nonfree
 
- //! @{
 
- /** @brief Class used for extracting Speeded Up Robust Features (SURF) from an image. :
 
- The class SURF_CUDA implements Speeded Up Robust Features descriptor. There is a fast multi-scale
 
- Hessian keypoint detector that can be used to find the keypoints (which is the default option). But
 
- the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images
 
- are supported.
 
- The class SURF_CUDA can store results in the GPU and CPU memory. It provides functions to convert
 
- results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The
 
- format of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypoints
 
- matrix is \f$\texttt{nFeatures} \times 7\f$ matrix with the CV_32FC1 type.
 
- -   keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i-th feature.
 
- -   keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i-th feature.
 
- -   keypoints.ptr\<float\>(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature.
 
- -   keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i-th feature.
 
- -   keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i-th feature.
 
- -   keypoints.ptr\<float\>(ANGLE_ROW)[i] contain orientation of the i-th feature.
 
- -   keypoints.ptr\<float\>(HESSIAN_ROW)[i] contains the response of the i-th feature.
 
- The descriptors matrix is \f$\texttt{nFeatures} \times \texttt{descriptorSize}\f$ matrix with the
 
- CV_32FC1 type.
 
- The class SURF_CUDA uses some buffers and provides access to it. All buffers can be safely released
 
- between function calls.
 
- @sa SURF
 
- @note
 
-    -   An example for using the SURF keypoint matcher on GPU can be found at
 
-         opencv_source_code/samples/gpu/surf_keypoint_matcher.cpp
 
-  */
 
- class CV_EXPORTS SURF_CUDA
 
- {
 
- public:
 
-     enum KeypointLayout
 
-     {
 
-         X_ROW = 0,
 
-         Y_ROW,
 
-         LAPLACIAN_ROW,
 
-         OCTAVE_ROW,
 
-         SIZE_ROW,
 
-         ANGLE_ROW,
 
-         HESSIAN_ROW,
 
-         ROWS_COUNT
 
-     };
 
-     //! the default constructor
 
-     SURF_CUDA();
 
-     //! the full constructor taking all the necessary parameters
 
-     explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4,
 
-          int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
 
-     //! returns the descriptor size in float's (64 or 128)
 
-     int descriptorSize() const;
 
-     //! returns the default norm type
 
-     int defaultNorm() const;
 
-     //! upload host keypoints to device memory
 
-     void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
 
-     //! download keypoints from device to host memory
 
-     void downloadKeypoints(const GpuMat& keypointsGPU, std::vector<KeyPoint>& keypoints);
 
-     //! download descriptors from device to host memory
 
-     void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector<float>& descriptors);
 
-     //! finds the keypoints using fast hessian detector used in SURF
 
-     //! supports CV_8UC1 images
 
-     //! keypoints will have nFeature cols and 6 rows
 
-     //! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature
 
-     //! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature
 
-     //! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature
 
-     //! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature
 
-     //! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature
 
-     //! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature
 
-     //! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature
 
-     void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
 
-     //! finds the keypoints and computes their descriptors.
 
-     //! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
 
-     void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
 
-         bool useProvidedKeypoints = false);
 
-     void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
 
-     void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
 
-         bool useProvidedKeypoints = false);
 
-     void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
 
-         bool useProvidedKeypoints = false);
 
-     void releaseMemory();
 
-     // SURF parameters
 
-     double hessianThreshold;
 
-     int nOctaves;
 
-     int nOctaveLayers;
 
-     bool extended;
 
-     bool upright;
 
-     //! max keypoints = min(keypointsRatio * img.size().area(), 65535)
 
-     float keypointsRatio;
 
-     GpuMat sum, mask1, maskSum;
 
-     GpuMat det, trace;
 
-     GpuMat maxPosBuffer;
 
- };
 
- //! @}
 
- }} // namespace cv { namespace cuda {
 
- #endif // __OPENCV_XFEATURES2D_CUDA_HPP__
 
 
  |