| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                          License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009, Willow Garage Inc., all rights reserved.// Copyright (C) 2013, OpenCV Foundation, all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef OPENCV_CALIB3D_C_H#define OPENCV_CALIB3D_C_H#include "opencv2/core/core_c.h"#ifdef __cplusplusextern "C" {#endif/** @addtogroup calib3d_c  @{  *//****************************************************************************************\*                      Camera Calibration, Pose Estimation and Stereo                    *\****************************************************************************************/typedef struct CvPOSITObject CvPOSITObject;/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */CVAPI(CvPOSITObject*)  cvCreatePOSITObject( CvPoint3D32f* points, int point_count );/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of   an object given its model and projection in a weak-perspective case */CVAPI(void)  cvPOSIT(  CvPOSITObject* posit_object, CvPoint2D32f* image_points,                       double focal_length, CvTermCriteria criteria,                       float* rotation_matrix, float* translation_vector);/* Releases CvPOSITObject structure */CVAPI(void)  cvReleasePOSITObject( CvPOSITObject**  posit_object );/* updates the number of RANSAC iterations */CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,                                   int model_points, int max_iters );CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );/* Calculates fundamental matrix given a set of corresponding points */#define CV_FM_7POINT 1#define CV_FM_8POINT 2#define CV_LMEDS 4#define CV_RANSAC 8#define CV_FM_LMEDS_ONLY  CV_LMEDS#define CV_FM_RANSAC_ONLY CV_RANSAC#define CV_FM_LMEDS CV_LMEDS#define CV_FM_RANSAC CV_RANSACenum{    CV_ITERATIVE = 0,    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"    CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"    CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"};CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,                                 CvMat* fundamental_matrix,                                 int method CV_DEFAULT(CV_FM_RANSAC),                                 double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),                                 CvMat* status CV_DEFAULT(NULL) );/* For each input point on one of images   computes parameters of the corresponding   epipolar line on the other image */CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,                                         int which_image,                                         const CvMat* fundamental_matrix,                                         CvMat* correspondent_lines );/* Triangulation functions */CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,                                CvMat* projPoints1, CvMat* projPoints2,                                CvMat* points4D);CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,                             CvMat* new_points1, CvMat* new_points2);/* Computes the optimal new camera matrix according to the free scaling parameter alpha:   alpha=0 - only valid pixels will be retained in the undistorted image   alpha=1 - all the source image pixels will be retained in the undistorted image*/CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,                                         const CvMat* dist_coeffs,                                         CvSize image_size, double alpha,                                         CvMat* new_camera_matrix,                                         CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),                                         CvRect* valid_pixel_ROI CV_DEFAULT(0),                                         int center_principal_point CV_DEFAULT(0));/* Converts rotation vector to rotation matrix or vice versa */CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,                         CvMat* jacobian CV_DEFAULT(0) );/* Finds perspective transformation between the object plane and image (view) plane */CVAPI(int) cvFindHomography( const CvMat* src_points,                             const CvMat* dst_points,                             CvMat* homography,                             int method CV_DEFAULT(0),                             double ransacReprojThreshold CV_DEFAULT(3),                             CvMat* mask CV_DEFAULT(0),                             int maxIters CV_DEFAULT(2000),                             double confidence CV_DEFAULT(0.995));/* Computes RQ decomposition for 3x3 matrices */CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,                           CvMat *matrixQx CV_DEFAULT(NULL),                           CvMat *matrixQy CV_DEFAULT(NULL),                           CvMat *matrixQz CV_DEFAULT(NULL),                           CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));/* Computes projection matrix decomposition */CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,                                         CvMat *rotMatr, CvMat *posVect,                                         CvMat *rotMatrX CV_DEFAULT(NULL),                                         CvMat *rotMatrY CV_DEFAULT(NULL),                                         CvMat *rotMatrZ CV_DEFAULT(NULL),                                         CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));/* Computes d(AB)/dA and d(AB)/dB */CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),   t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,                         const CvMat* _rvec2, const CvMat* _tvec2,                         CvMat* _rvec3, CvMat* _tvec3,                         CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),                         CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),                         CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),                         CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );/* Projects object points to the view plane using   the specified extrinsic and intrinsic camera parameters */CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,                              const CvMat* translation_vector, const CvMat* camera_matrix,                              const CvMat* distortion_coeffs, CvMat* image_points,                              CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),                              CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),                              CvMat* dpddist CV_DEFAULT(NULL),                              double aspect_ratio CV_DEFAULT(0));/* Finds extrinsic camera parameters from   a few known corresponding point pairs and intrinsic parameters */CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,                                          const CvMat* image_points,                                          const CvMat* camera_matrix,                                          const CvMat* distortion_coeffs,                                          CvMat* rotation_vector,                                          CvMat* translation_vector,                                          int use_extrinsic_guess CV_DEFAULT(0) );/* Computes initial estimate of the intrinsic camera parameters   in case of planar calibration target (e.g. chessboard) */CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,                                     const CvMat* image_points,                                     const CvMat* npoints, CvSize image_size,                                     CvMat* camera_matrix,                                     double aspect_ratio CV_DEFAULT(1.) );#define CV_CALIB_CB_ADAPTIVE_THRESH  1#define CV_CALIB_CB_NORMALIZE_IMAGE  2#define CV_CALIB_CB_FILTER_QUADS     4#define CV_CALIB_CB_FAST_CHECK       8// Performs a fast check if a chessboard is in the input image. This is a workaround to// a problem of cvFindChessboardCorners being slow on images with no chessboard// - src: input image// - size: chessboard size// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,// 0 if there is no chessboard, -1 in case of errorCVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);    /* Detects corners on a chessboard calibration pattern */CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,                                    CvPoint2D32f* corners,                                    int* corner_count CV_DEFAULT(NULL),                                    int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );/* Draws individual chessboard corners or the whole chessboard detected */CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,                                     CvPoint2D32f* corners,                                     int count, int pattern_was_found );#define CV_CALIB_USE_INTRINSIC_GUESS  1#define CV_CALIB_FIX_ASPECT_RATIO     2#define CV_CALIB_FIX_PRINCIPAL_POINT  4#define CV_CALIB_ZERO_TANGENT_DIST    8#define CV_CALIB_FIX_FOCAL_LENGTH 16#define CV_CALIB_FIX_K1  32#define CV_CALIB_FIX_K2  64#define CV_CALIB_FIX_K3  128#define CV_CALIB_FIX_K4  2048#define CV_CALIB_FIX_K5  4096#define CV_CALIB_FIX_K6  8192#define CV_CALIB_RATIONAL_MODEL 16384#define CV_CALIB_THIN_PRISM_MODEL 32768#define CV_CALIB_FIX_S1_S2_S3_S4  65536#define CV_CALIB_TILTED_MODEL  262144#define CV_CALIB_FIX_TAUX_TAUY  524288#define CV_CALIB_FIX_TANGENT_DIST 2097152#define CV_CALIB_NINTRINSIC 18/* Finds intrinsic and extrinsic camera parameters   from a few views of known calibration pattern */CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,                                const CvMat* image_points,                                const CvMat* point_counts,                                CvSize image_size,                                CvMat* camera_matrix,                                CvMat* distortion_coeffs,                                CvMat* rotation_vectors CV_DEFAULT(NULL),                                CvMat* translation_vectors CV_DEFAULT(NULL),                                int flags CV_DEFAULT(0),                                CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(                                    CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );/* Computes various useful characteristics of the camera from the data computed by   cvCalibrateCamera2 */CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,                                CvSize image_size,                                double aperture_width CV_DEFAULT(0),                                double aperture_height CV_DEFAULT(0),                                double *fovx CV_DEFAULT(NULL),                                double *fovy CV_DEFAULT(NULL),                                double *focal_length CV_DEFAULT(NULL),                                CvPoint2D64f *principal_point CV_DEFAULT(NULL),                                double *pixel_aspect_ratio CV_DEFAULT(NULL));#define CV_CALIB_FIX_INTRINSIC  256#define CV_CALIB_SAME_FOCAL_LENGTH 512/* Computes the transformation from one camera coordinate system to another one   from a few correspondent views of the same calibration target. Optionally, calibrates   both cameras */CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,                               const CvMat* image_points2, const CvMat* npoints,                               CvMat* camera_matrix1, CvMat* dist_coeffs1,                               CvMat* camera_matrix2, CvMat* dist_coeffs2,                               CvSize image_size, CvMat* R, CvMat* T,                               CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),                               int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC),                               CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(                                   CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) );#define CV_CALIB_ZERO_DISPARITY 1024/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both   views parallel (=> to make all the epipolar lines horizontal or vertical) */CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,                             const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,                             CvSize image_size, const CvMat* R, const CvMat* T,                             CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,                             CvMat* Q CV_DEFAULT(0),                             int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),                             double alpha CV_DEFAULT(-1),                             CvSize new_image_size CV_DEFAULT(cvSize(0,0)),                             CvRect* valid_pix_ROI1 CV_DEFAULT(0),                             CvRect* valid_pix_ROI2 CV_DEFAULT(0));/* Computes rectification transformations for uncalibrated pair of images using a set   of point correspondences */CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,                                        const CvMat* F, CvSize img_size,                                        CvMat* H1, CvMat* H2,                                        double threshold CV_DEFAULT(5));/* stereo correspondence parameters and functions */#define CV_STEREO_BM_NORMALIZED_RESPONSE  0#define CV_STEREO_BM_XSOBEL               1/* Block matching algorithm structure */typedef struct CvStereoBMState{    // pre-filtering (normalization of input images)    int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now    int preFilterSize; // averaging window size: ~5x5..21x21    int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]    // correspondence using Sum of Absolute Difference (SAD)    int SADWindowSize; // ~5x5..21x21    int minDisparity;  // minimum disparity (can be negative)    int numberOfDisparities; // maximum disparity - minimum disparity (> 0)    // post-filtering    int textureThreshold;  // the disparity is only computed for pixels                           // with textured enough neighborhood    int uniquenessRatio;   // accept the computed disparity d* only if                           // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)                           // for any d != d*+/-1 within the search range.    int speckleWindowSize; // disparity variation window    int speckleRange; // acceptable range of variation in window    int trySmallerWindows; // if 1, the results may be more accurate,                           // at the expense of slower processing    CvRect roi1, roi2;    int disp12MaxDiff;    // temporary buffers    CvMat* preFilteredImg0;    CvMat* preFilteredImg1;    CvMat* slidingSumBuf;    CvMat* cost;    CvMat* disp;} CvStereoBMState;#define CV_STEREO_BM_BASIC 0#define CV_STEREO_BM_FISH_EYE 1#define CV_STEREO_BM_NARROW 2CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),                                              int numberOfDisparities CV_DEFAULT(0));CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,                                          CvArr* disparity, CvStereoBMState* state );CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,                                      int numberOfDisparities, int SADWindowSize );CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,                                 int minDisparity, int numberOfDisparities,                                 int disp12MaxDiff CV_DEFAULT(1) );/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */CVAPI(void)  cvReprojectImageTo3D( const CvArr* disparityImage,                                   CvArr* _3dImage, const CvMat* Q,                                   int handleMissingValues CV_DEFAULT(0) );/** @} calib3d_c */#ifdef __cplusplus} // extern "C"//////////////////////////////////////////////////////////////////////////////////////////class CV_EXPORTS CvLevMarq{public:    CvLevMarq();    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),              bool completeSymmFlag=false );    ~CvLevMarq();    void init( int nparams, int nerrs, CvTermCriteria criteria=              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),              bool completeSymmFlag=false );    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );    void clear();    void step();    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };    cv::Ptr<CvMat> mask;    cv::Ptr<CvMat> prevParam;    cv::Ptr<CvMat> param;    cv::Ptr<CvMat> J;    cv::Ptr<CvMat> err;    cv::Ptr<CvMat> JtJ;    cv::Ptr<CvMat> JtJN;    cv::Ptr<CvMat> JtErr;    cv::Ptr<CvMat> JtJV;    cv::Ptr<CvMat> JtJW;    double prevErrNorm, errNorm;    int lambdaLg10;    CvTermCriteria criteria;    int state;    int iters;    bool completeSymmFlag;    int solveMethod;};#endif#endif /* OPENCV_CALIB3D_C_H */
 |