| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_#define OPENCV_FLANN_COMPOSITE_INDEX_H_#include "general.h"#include "nn_index.h"#include "kdtree_index.h"#include "kmeans_index.h"namespace cvflann{/** * Index parameters for the CompositeIndex. */struct CompositeIndexParams : public IndexParams{    CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,                         flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )    {        (*this)["algorithm"] = FLANN_INDEX_KMEANS;        // number of randomized trees to use (for kdtree)        (*this)["trees"] = trees;        // branching factor        (*this)["branching"] = branching;        // max iterations to perform in one kmeans clustering (kmeans tree)        (*this)["iterations"] = iterations;        // algorithm used for picking the initial cluster centers for kmeans tree        (*this)["centers_init"] = centers_init;        // cluster boundary index. Used when searching the kmeans tree        (*this)["cb_index"] = cb_index;    }};/** * This index builds a kd-tree index and a k-means index and performs nearest * neighbour search both indexes. This gives a slight boost in search performance * as some of the neighbours that are missed by one index are found by the other. */template <typename Distance>class CompositeIndex : public NNIndex<Distance>{public:    typedef typename Distance::ElementType ElementType;    typedef typename Distance::ResultType DistanceType;    /**     * Index constructor     * @param inputData dataset containing the points to index     * @param params Index parameters     * @param d Distance functor     * @return     */    CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),                   Distance d = Distance()) : index_params_(params)    {        kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);        kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);    }    CompositeIndex(const CompositeIndex&);    CompositeIndex& operator=(const CompositeIndex&);    virtual ~CompositeIndex()    {        delete kdtree_index_;        delete kmeans_index_;    }    /**     * @return The index type     */    flann_algorithm_t getType() const    {        return FLANN_INDEX_COMPOSITE;    }    /**     * @return Size of the index     */    size_t size() const    {        return kdtree_index_->size();    }    /**     * \returns The dimensionality of the features in this index.     */    size_t veclen() const    {        return kdtree_index_->veclen();    }    /**     * \returns The amount of memory (in bytes) used by the index.     */    int usedMemory() const    {        return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();    }    /**     * \brief Builds the index     */    void buildIndex()    {        Logger::info("Building kmeans tree...\n");        kmeans_index_->buildIndex();        Logger::info("Building kdtree tree...\n");        kdtree_index_->buildIndex();    }    /**     * \brief Saves the index to a stream     * \param stream The stream to save the index to     */    void saveIndex(FILE* stream)    {        kmeans_index_->saveIndex(stream);        kdtree_index_->saveIndex(stream);    }    /**     * \brief Loads the index from a stream     * \param stream The stream from which the index is loaded     */    void loadIndex(FILE* stream)    {        kmeans_index_->loadIndex(stream);        kdtree_index_->loadIndex(stream);    }    /**     * \returns The index parameters     */    IndexParams getParameters() const    {        return index_params_;    }    /**     * \brief Method that searches for nearest-neighbours     */    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)    {        kmeans_index_->findNeighbors(result, vec, searchParams);        kdtree_index_->findNeighbors(result, vec, searchParams);    }private:    /** The k-means index */    KMeansIndex<Distance>* kmeans_index_;    /** The kd-tree index */    KDTreeIndex<Distance>* kdtree_index_;    /** The index parameters */    const IndexParams index_params_;};}#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
 |