| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_DIST_H_#define OPENCV_FLANN_DIST_H_#include <cmath>#include <cstdlib>#include <string.h>#ifdef _MSC_VERtypedef unsigned __int32 uint32_t;typedef unsigned __int64 uint64_t;#else#include <stdint.h>#endif#include "defines.h"#if defined _WIN32 && defined(_M_ARM)# include <Intrin.h>#endif#ifdef __ARM_NEON__# include "arm_neon.h"#endifnamespace cvflann{template<typename T>inline T abs(T x) { return (x<0) ? -x : x; }template<>inline int abs<int>(int x) { return ::abs(x); }template<>inline float abs<float>(float x) { return fabsf(x); }template<>inline double abs<double>(double x) { return fabs(x); }template<typename T>struct Accumulator { typedef T Type; };template<>struct Accumulator<unsigned char>  { typedef float Type; };template<>struct Accumulator<unsigned short> { typedef float Type; };template<>struct Accumulator<unsigned int> { typedef float Type; };template<>struct Accumulator<char>   { typedef float Type; };template<>struct Accumulator<short>  { typedef float Type; };template<>struct Accumulator<int> { typedef float Type; };#undef True#undef Falseclass True{};class False{};/** * Squared Euclidean distance functor. * * This is the simpler, unrolled version. This is preferable for * very low dimensionality data (eg 3D points) */template<class T>struct L2_Simple{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const    {        ResultType result = ResultType();        ResultType diff;        for(size_t i = 0; i < size; ++i ) {            diff = *a++ - *b++;            result += diff*diff;        }        return result;    }    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        return (a-b)*(a-b);    }};/** * Squared Euclidean distance functor, optimized version */template<class T>struct L2{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the squared Euclidean distance between two vectors.     *     *	This is highly optimised, with loop unrolling, as it is one     *	of the most expensive inner loops.     *     *	The computation of squared root at the end is omitted for     *	efficiency.     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType diff0, diff1, diff2, diff3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            diff0 = (ResultType)(a[0] - b[0]);            diff1 = (ResultType)(a[1] - b[1]);            diff2 = (ResultType)(a[2] - b[2]);            diff3 = (ResultType)(a[3] - b[3]);            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;            a += 4;            b += 4;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */        while (a < last) {            diff0 = (ResultType)(*a++ - *b++);            result += diff0 * diff0;        }        return result;    }    /**     *	Partial euclidean distance, using just one dimension. This is used by the     *	kd-tree when computing partial distances while traversing the tree.     *     *	Squared root is omitted for efficiency.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        return (a-b)*(a-b);    }};/* * Manhattan distance functor, optimized version */template<class T>struct L1{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the Manhattan (L_1) distance between two vectors.     *     *	This is highly optimised, with loop unrolling, as it is one     *	of the most expensive inner loops.     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType diff0, diff1, diff2, diff3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            diff0 = (ResultType)abs(a[0] - b[0]);            diff1 = (ResultType)abs(a[1] - b[1]);            diff2 = (ResultType)abs(a[2] - b[2]);            diff3 = (ResultType)abs(a[3] - b[3]);            result += diff0 + diff1 + diff2 + diff3;            a += 4;            b += 4;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */        while (a < last) {            diff0 = (ResultType)abs(*a++ - *b++);            result += diff0;        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        return abs(a-b);    }};template<class T>struct MinkowskiDistance{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    int order;    MinkowskiDistance(int order_) : order(order_) {}    /**     *  Compute the Minkowsky (L_p) distance between two vectors.     *     *	This is highly optimised, with loop unrolling, as it is one     *	of the most expensive inner loops.     *     *	The computation of squared root at the end is omitted for     *	efficiency.     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType diff0, diff1, diff2, diff3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            diff0 = (ResultType)abs(a[0] - b[0]);            diff1 = (ResultType)abs(a[1] - b[1]);            diff2 = (ResultType)abs(a[2] - b[2]);            diff3 = (ResultType)abs(a[3] - b[3]);            result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);            a += 4;            b += 4;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */        while (a < last) {            diff0 = (ResultType)abs(*a++ - *b++);            result += pow(diff0,order);        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        return pow(static_cast<ResultType>(abs(a-b)),order);    }};template<class T>struct MaxDistance{    typedef False is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the max distance (L_infinity) between two vectors.     *     *  This distance is not a valid kdtree distance, it's not dimensionwise additive.     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType diff0, diff1, diff2, diff3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            diff0 = abs(a[0] - b[0]);            diff1 = abs(a[1] - b[1]);            diff2 = abs(a[2] - b[2]);            diff3 = abs(a[3] - b[3]);            if (diff0>result) {result = diff0; }            if (diff1>result) {result = diff1; }            if (diff2>result) {result = diff2; }            if (diff3>result) {result = diff3; }            a += 4;            b += 4;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */        while (a < last) {            diff0 = abs(*a++ - *b++);            result = (diff0>result) ? diff0 : result;        }        return result;    }    /* This distance functor is not dimension-wise additive, which     * makes it an invalid kd-tree distance, not implementing the accum_dist method */};/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////** * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor * bit count of A exclusive XOR'ed with B */struct HammingLUT{    typedef False is_kdtree_distance;    typedef False is_vector_space_distance;    typedef unsigned char ElementType;    typedef int ResultType;    /** this will count the bits in a ^ b     */    ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const    {        static const uchar popCountTable[] =        {            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8        };        ResultType result = 0;        for (size_t i = 0; i < size; i++) {            result += popCountTable[a[i] ^ b[i]];        }        return result;    }};/** * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set) * That code was taken from brief.cpp in OpenCV */template<class T>struct Hamming{    typedef False is_kdtree_distance;    typedef False is_vector_space_distance;    typedef T ElementType;    typedef int ResultType;    template<typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const    {        ResultType result = 0;#ifdef __ARM_NEON__        {            uint32x4_t bits = vmovq_n_u32(0);            for (size_t i = 0; i < size; i += 16) {                uint8x16_t A_vec = vld1q_u8 (a + i);                uint8x16_t B_vec = vld1q_u8 (b + i);                uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);                uint8x16_t bitsSet = vcntq_u8 (AxorB);                uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);                uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);                bits = vaddq_u32(bits, bitSet4);            }            uint64x2_t bitSet2 = vpaddlq_u32 (bits);            result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);            result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);        }#elif __GNUC__        {            //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)            typedef unsigned long long pop_t;            const size_t modulo = size % sizeof(pop_t);            const pop_t* a2 = reinterpret_cast<const pop_t*> (a);            const pop_t* b2 = reinterpret_cast<const pop_t*> (b);            const pop_t* a2_end = a2 + (size / sizeof(pop_t));            for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));            if (modulo) {                //in the case where size is not dividable by sizeof(size_t)                //need to mask off the bits at the end                pop_t a_final = 0, b_final = 0;                memcpy(&a_final, a2, modulo);                memcpy(&b_final, b2, modulo);                result += __builtin_popcountll(a_final ^ b_final);            }        }#else // NO NEON and NOT GNUC        typedef unsigned long long pop_t;        HammingLUT lut;        result = lut(reinterpret_cast<const unsigned char*> (a),                     reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));#endif        return result;    }};template<typename T>struct Hamming2{    typedef False is_kdtree_distance;    typedef False is_vector_space_distance;    typedef T ElementType;    typedef int ResultType;    /** This is popcount_3() from:     * http://en.wikipedia.org/wiki/Hamming_weight */    unsigned int popcnt32(uint32_t n) const    {        n -= ((n >> 1) & 0x55555555);        n = (n & 0x33333333) + ((n >> 2) & 0x33333333);        return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;    }#ifdef FLANN_PLATFORM_64_BIT    unsigned int popcnt64(uint64_t n) const    {        n -= ((n >> 1) & 0x5555555555555555);        n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);        return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;    }#endif    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const    {#ifdef FLANN_PLATFORM_64_BIT        const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);        const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);        ResultType result = 0;        size /= (sizeof(uint64_t)/sizeof(unsigned char));        for(size_t i = 0; i < size; ++i ) {            result += popcnt64(*pa ^ *pb);            ++pa;            ++pb;        }#else        const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);        const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);        ResultType result = 0;        size /= (sizeof(uint32_t)/sizeof(unsigned char));        for(size_t i = 0; i < size; ++i ) {            result += popcnt32(*pa ^ *pb);            ++pa;            ++pb;        }#endif        return result;    }};////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////template<class T>struct HistIntersectionDistance{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the histogram intersection distance     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType min0, min1, min2, min3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);            min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);            min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);            min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);            result += min0 + min1 + min2 + min3;            a += 4;            b += 4;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */        while (a < last) {            min0 = (ResultType)(*a < *b ? *a : *b);            result += min0;            ++a;            ++b;        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        return a<b ? a : b;    }};template<class T>struct HellingerDistance{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the Hellinger distance     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const    {        ResultType result = ResultType();        ResultType diff0, diff1, diff2, diff3;        Iterator1 last = a + size;        Iterator1 lastgroup = last - 3;        /* Process 4 items with each loop for efficiency. */        while (a < lastgroup) {            diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));            diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));            diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));            diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;            a += 4;            b += 4;        }        while (a < last) {            diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));            result += diff0 * diff0;        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));        return diff * diff;    }};template<class T>struct ChiSquareDistance{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the chi-square distance     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        ResultType sum, diff;        Iterator1 last = a + size;        while (a < last) {            sum = (ResultType)(*a + *b);            if (sum>0) {                diff = (ResultType)(*a - *b);                result += diff*diff/sum;            }            ++a;            ++b;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        ResultType result = ResultType();        ResultType sum, diff;        sum = (ResultType)(a+b);        if (sum>0) {            diff = (ResultType)(a-b);            result = diff*diff/sum;        }        return result;    }};template<class T>struct KL_Divergence{    typedef True is_kdtree_distance;    typedef True is_vector_space_distance;    typedef T ElementType;    typedef typename Accumulator<T>::Type ResultType;    /**     *  Compute the Kullback-Leibler divergence     */    template <typename Iterator1, typename Iterator2>    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const    {        ResultType result = ResultType();        Iterator1 last = a + size;        while (a < last) {            if (* b != 0) {                ResultType ratio = (ResultType)(*a / *b);                if (ratio>0) {                    result += *a * log(ratio);                }            }            ++a;            ++b;            if ((worst_dist>0)&&(result>worst_dist)) {                return result;            }        }        return result;    }    /**     * Partial distance, used by the kd-tree.     */    template <typename U, typename V>    inline ResultType accum_dist(const U& a, const V& b, int) const    {        ResultType result = ResultType();        if( *b != 0 ) {            ResultType ratio = (ResultType)(a / b);            if (ratio>0) {                result = a * log(ratio);            }        }        return result;    }};/* * This is a "zero iterator". It basically behaves like a zero filled * array to all algorithms that use arrays as iterators (STL style). * It's useful when there's a need to compute the distance between feature * and origin it and allows for better compiler optimisation than using a * zero-filled array. */template <typename T>struct ZeroIterator{    T operator*()    {        return 0;    }    T operator[](int)    {        return 0;    }    const ZeroIterator<T>& operator ++()    {        return *this;    }    ZeroIterator<T> operator ++(int)    {        return *this;    }    ZeroIterator<T>& operator+=(int)    {        return *this;    }};/* * Depending on processed distances, some of them are already squared (e.g. L2) * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure * we are working on ^2 distances, thus following templates to ensure that. */template <typename Distance, typename ElementType>struct squareDistance{    typedef typename Distance::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist*dist; }};template <typename ElementType>struct squareDistance<L2_Simple<ElementType>, ElementType>{    typedef typename L2_Simple<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename ElementType>struct squareDistance<L2<ElementType>, ElementType>{    typedef typename L2<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename ElementType>struct squareDistance<MinkowskiDistance<ElementType>, ElementType>{    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename ElementType>struct squareDistance<HellingerDistance<ElementType>, ElementType>{    typedef typename HellingerDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename ElementType>struct squareDistance<ChiSquareDistance<ElementType>, ElementType>{    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename Distance>typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist ){    typedef typename Distance::ElementType ElementType;    squareDistance<Distance, ElementType> dummy;    return dummy( dist );}/* * ...and a template to ensure the user that he will process the normal distance, * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance) * that will result in doing actually sqrt(dist*dist) for L1 distance for instance. */template <typename Distance, typename ElementType>struct simpleDistance{    typedef typename Distance::ResultType ResultType;    ResultType operator()( ResultType dist ) { return dist; }};template <typename ElementType>struct simpleDistance<L2_Simple<ElementType>, ElementType>{    typedef typename L2_Simple<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return sqrt(dist); }};template <typename ElementType>struct simpleDistance<L2<ElementType>, ElementType>{    typedef typename L2<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return sqrt(dist); }};template <typename ElementType>struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>{    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return sqrt(dist); }};template <typename ElementType>struct simpleDistance<HellingerDistance<ElementType>, ElementType>{    typedef typename HellingerDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return sqrt(dist); }};template <typename ElementType>struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>{    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;    ResultType operator()( ResultType dist ) { return sqrt(dist); }};template <typename Distance>typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist ){    typedef typename Distance::ElementType ElementType;    simpleDistance<Distance, ElementType> dummy;    return dummy( dist );}}#endif //OPENCV_FLANN_DIST_H_
 |