| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_BASE_HPP_#define OPENCV_FLANN_BASE_HPP_#include <vector>#include <cassert>#include <cstdio>#include "general.h"#include "matrix.h"#include "params.h"#include "saving.h"#include "all_indices.h"namespace cvflann{/** * Sets the log level used for all flann functions * @param level Verbosity level */inline void log_verbosity(int level){    if (level >= 0) {        Logger::setLevel(level);    }}/** * (Deprecated) Index parameters for creating a saved index. */struct SavedIndexParams : public IndexParams{    SavedIndexParams(cv::String filename)    {        (* this)["algorithm"] = FLANN_INDEX_SAVED;        (*this)["filename"] = filename;    }};template<typename Distance>NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance){    typedef typename Distance::ElementType ElementType;    FILE* fin = fopen(filename.c_str(), "rb");    if (fin == NULL) {        return NULL;    }    IndexHeader header = load_header(fin);    if (header.data_type != Datatype<ElementType>::type()) {        fclose(fin);        throw FLANNException("Datatype of saved index is different than of the one to be created.");    }    if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {        fclose(fin);        throw FLANNException("The index saved belongs to a different dataset");    }    IndexParams params;    params["algorithm"] = header.index_type;    NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);    nnIndex->loadIndex(fin);    fclose(fin);    return nnIndex;}template<typename Distance>class Index : public NNIndex<Distance>{public:    typedef typename Distance::ElementType ElementType;    typedef typename Distance::ResultType DistanceType;    Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )        : index_params_(params)    {        flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");        loaded_ = false;        if (index_type == FLANN_INDEX_SAVED) {            nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);            loaded_ = true;        }        else {            nnIndex_ = create_index_by_type<Distance>(features, params, distance);        }    }    ~Index()    {        delete nnIndex_;    }    /**     * Builds the index.     */    void buildIndex()    {        if (!loaded_) {            nnIndex_->buildIndex();        }    }    void save(cv::String filename)    {        FILE* fout = fopen(filename.c_str(), "wb");        if (fout == NULL) {            throw FLANNException("Cannot open file");        }        save_header(fout, *nnIndex_);        saveIndex(fout);        fclose(fout);    }    /**     * \brief Saves the index to a stream     * \param stream The stream to save the index to     */    virtual void saveIndex(FILE* stream)    {        nnIndex_->saveIndex(stream);    }    /**     * \brief Loads the index from a stream     * \param stream The stream from which the index is loaded     */    virtual void loadIndex(FILE* stream)    {        nnIndex_->loadIndex(stream);    }    /**     * \returns number of features in this index.     */    size_t veclen() const    {        return nnIndex_->veclen();    }    /**     * \returns The dimensionality of the features in this index.     */    size_t size() const    {        return nnIndex_->size();    }    /**     * \returns The index type (kdtree, kmeans,...)     */    flann_algorithm_t getType() const    {        return nnIndex_->getType();    }    /**     * \returns The amount of memory (in bytes) used by the index.     */    virtual int usedMemory() const    {        return nnIndex_->usedMemory();    }    /**     * \returns The index parameters     */    IndexParams getParameters() const    {        return nnIndex_->getParameters();    }    /**     * \brief Perform k-nearest neighbor search     * \param[in] queries The query points for which to find the nearest neighbors     * \param[out] indices The indices of the nearest neighbors found     * \param[out] dists Distances to the nearest neighbors found     * \param[in] knn Number of nearest neighbors to return     * \param[in] params Search parameters     */    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)    {        nnIndex_->knnSearch(queries, indices, dists, knn, params);    }    /**     * \brief Perform radius search     * \param[in] query The query point     * \param[out] indices The indinces of the neighbors found within the given radius     * \param[out] dists The distances to the nearest neighbors found     * \param[in] radius The radius used for search     * \param[in] params Search parameters     * \returns Number of neighbors found     */    int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)    {        return nnIndex_->radiusSearch(query, indices, dists, radius, params);    }    /**     * \brief Method that searches for nearest-neighbours     */    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)    {        nnIndex_->findNeighbors(result, vec, searchParams);    }    /**     * \brief Returns actual index     */    CV_DEPRECATED NNIndex<Distance>* getIndex()    {        return nnIndex_;    }    /**     * \brief Returns index parameters.     * \deprecated use getParameters() instead.     */    CV_DEPRECATED  const IndexParams* getIndexParameters()    {        return &index_params_;    }private:    /** Pointer to actual index class */    NNIndex<Distance>* nnIndex_;    /** Indices if the index was loaded from a file */    bool loaded_;    /** Parameters passed to the index */    IndexParams index_params_;    Index(const Index &); // copy disabled    Index& operator=(const Index &); // assign disabled};/** * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the * the clustering tree to return a flat clustering. * @param[in] points Points to be clustered * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the *  number of clusters requested. * @param params Clustering parameters (The same as for cvflann::KMeansIndex) * @param d Distance to be used for clustering (eg: cvflann::L2) * @return number of clusters computed (can be different than clusters.rows and is the highest number * of the form (branching-1)*K+1 smaller than clusters.rows). */template <typename Distance>int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,                           const KMeansIndexParams& params, Distance d = Distance()){    KMeansIndex<Distance> kmeans(points, params, d);    kmeans.buildIndex();    int clusterNum = kmeans.getClusterCenters(centers);    return clusterNum;}}#endif /* OPENCV_FLANN_BASE_HPP_ */
 |