| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_INDEX_TESTING_H_#define OPENCV_FLANN_INDEX_TESTING_H_#include <cstring>#include <cassert>#include <cmath>#include "matrix.h"#include "nn_index.h"#include "result_set.h"#include "logger.h"#include "timer.h"namespace cvflann{inline int countCorrectMatches(int* neighbors, int* groundTruth, int n){    int count = 0;    for (int i=0; i<n; ++i) {        for (int k=0; k<n; ++k) {            if (neighbors[i]==groundTruth[k]) {                count++;                break;            }        }    }    return count;}template <typename Distance>typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,                                                    int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance){    typedef typename Distance::ResultType DistanceType;    DistanceType ret = 0;    for (int i=0; i<n; ++i) {        DistanceType den = distance(inputData[groundTruth[i]], target, veclen);        DistanceType num = distance(inputData[neighbors[i]], target, veclen);        if ((den==0)&&(num==0)) {            ret += 1;        }        else {            ret += num/den;        }    }    return ret;}template <typename Distance>float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,                               const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,                               float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches){    typedef typename Distance::ResultType DistanceType;    if (matches.cols<size_t(nn)) {        Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);        throw FLANNException("Ground truth is not computed for as many neighbors as requested");    }    KNNResultSet<DistanceType> resultSet(nn+skipMatches);    SearchParams searchParams(checks);    std::vector<int> indices(nn+skipMatches);    std::vector<DistanceType> dists(nn+skipMatches);    int* neighbors = &indices[skipMatches];    int correct = 0;    DistanceType distR = 0;    StartStopTimer t;    int repeats = 0;    while (t.value<0.2) {        repeats++;        t.start();        correct = 0;        distR = 0;        for (size_t i = 0; i < testData.rows; i++) {            resultSet.init(&indices[0], &dists[0]);            index.findNeighbors(resultSet, testData[i], searchParams);            correct += countCorrectMatches(neighbors,matches[i], nn);            distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);        }        t.stop();    }    time = float(t.value/repeats);    float precicion = (float)correct/(nn*testData.rows);    dist = distR/(testData.rows*nn);    Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",                 checks, precicion, time, 1000.0 * time / testData.rows, dist);    return precicion;}template <typename Distance>float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,                        const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,                        int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0){    typedef typename Distance::ResultType DistanceType;    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");    Logger::info("---------------------------------------------------------\n");    float time = 0;    DistanceType dist = 0;    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);    return time;}template <typename Distance>float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,                           float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0){    typedef typename Distance::ResultType DistanceType;    const float SEARCH_EPS = 0.001f;    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");    Logger::info("---------------------------------------------------------\n");    int c2 = 1;    float p2;    int c1 = 1;    //float p1;    float time;    DistanceType dist;    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);    if (p2>precision) {        Logger::info("Got as close as I can\n");        checks = c2;        return time;    }    while (p2<precision) {        c1 = c2;        //p1 = p2;        c2 *=2;        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);    }    int cx;    float realPrecision;    if (fabs(p2-precision)>SEARCH_EPS) {        Logger::info("Start linear estimation\n");        // after we got to values in the vecinity of the desired precision        // use linear approximation get a better estimation        cx = (c1+c2)/2;        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);        while (fabs(realPrecision-precision)>SEARCH_EPS) {            if (realPrecision<precision) {                c1 = cx;            }            else {                c2 = cx;            }            cx = (c1+c2)/2;            if (cx==c1) {                Logger::info("Got as close as I can\n");                break;            }            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);        }        c2 = cx;        p2 = realPrecision;    }    else {        Logger::info("No need for linear estimation\n");        cx = c2;        realPrecision = p2;    }    checks = cx;    return time;}template <typename Distance>void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,                           float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0){    typedef typename Distance::ResultType DistanceType;    const float SEARCH_EPS = 0.001;    // make sure precisions array is sorted    std::sort(precisions, precisions+precisions_length);    int pindex = 0;    float precision = precisions[pindex];    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");    Logger::info("---------------------------------------------------------\n");    int c2 = 1;    float p2;    int c1 = 1;    float p1;    float time;    DistanceType dist;    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);    // if precision for 1 run down the tree is already    // better then some of the requested precisions, then    // skip those    while (precisions[pindex]<p2 && pindex<precisions_length) {        pindex++;    }    if (pindex==precisions_length) {        Logger::info("Got as close as I can\n");        return;    }    for (int i=pindex; i<precisions_length; ++i) {        precision = precisions[i];        while (p2<precision) {            c1 = c2;            p1 = p2;            c2 *=2;            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);            if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;        }        int cx;        float realPrecision;        if (fabs(p2-precision)>SEARCH_EPS) {            Logger::info("Start linear estimation\n");            // after we got to values in the vecinity of the desired precision            // use linear approximation get a better estimation            cx = (c1+c2)/2;            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);            while (fabs(realPrecision-precision)>SEARCH_EPS) {                if (realPrecision<precision) {                    c1 = cx;                }                else {                    c2 = cx;                }                cx = (c1+c2)/2;                if (cx==c1) {                    Logger::info("Got as close as I can\n");                    break;                }                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);            }            c2 = cx;            p2 = realPrecision;        }        else {            Logger::info("No need for linear estimation\n");            cx = c2;            realPrecision = p2;        }    }}}#endif //OPENCV_FLANN_INDEX_TESTING_H_
 |