| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171 | /*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/#ifndef OPENCV_FLANN_KMEANS_INDEX_H_#define OPENCV_FLANN_KMEANS_INDEX_H_#include <algorithm>#include <map>#include <cassert>#include <limits>#include <cmath>#include "general.h"#include "nn_index.h"#include "dist.h"#include "matrix.h"#include "result_set.h"#include "heap.h"#include "allocator.h"#include "random.h"#include "saving.h"#include "logger.h"namespace cvflann{struct KMeansIndexParams : public IndexParams{    KMeansIndexParams(int branching = 32, int iterations = 11,                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )    {        (*this)["algorithm"] = FLANN_INDEX_KMEANS;        // branching factor        (*this)["branching"] = branching;        // max iterations to perform in one kmeans clustering (kmeans tree)        (*this)["iterations"] = iterations;        // algorithm used for picking the initial cluster centers for kmeans tree        (*this)["centers_init"] = centers_init;        // cluster boundary index. Used when searching the kmeans tree        (*this)["cb_index"] = cb_index;    }};/** * Hierarchical kmeans index * * Contains a tree constructed through a hierarchical kmeans clustering * and other information for indexing a set of points for nearest-neighbour matching. */template <typename Distance>class KMeansIndex : public NNIndex<Distance>{public:    typedef typename Distance::ElementType ElementType;    typedef typename Distance::ResultType DistanceType;    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);    /**     * The function used for choosing the cluster centers.     */    centersAlgFunction chooseCenters;    /**     * Chooses the initial centers in the k-means clustering in a random manner.     *     * Params:     *     k = number of centers     *     vecs = the dataset of points     *     indices = indices in the dataset     *     indices_length = length of indices vector     *     */    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)    {        UniqueRandom r(indices_length);        int index;        for (index=0; index<k; ++index) {            bool duplicate = true;            int rnd;            while (duplicate) {                duplicate = false;                rnd = r.next();                if (rnd<0) {                    centers_length = index;                    return;                }                centers[index] = indices[rnd];                for (int j=0; j<index; ++j) {                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);                    if (sq<1e-16) {                        duplicate = true;                    }                }            }        }        centers_length = index;    }    /**     * Chooses the initial centers in the k-means using Gonzales' algorithm     * so that the centers are spaced apart from each other.     *     * Params:     *     k = number of centers     *     vecs = the dataset of points     *     indices = indices in the dataset     * Returns:     */    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)    {        int n = indices_length;        int rnd = rand_int(n);        assert(rnd >=0 && rnd < n);        centers[0] = indices[rnd];        int index;        for (index=1; index<k; ++index) {            int best_index = -1;            DistanceType best_val = 0;            for (int j=0; j<n; ++j) {                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);                for (int i=1; i<index; ++i) {                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);                    if (tmp_dist<dist) {                        dist = tmp_dist;                    }                }                if (dist>best_val) {                    best_val = dist;                    best_index = j;                }            }            if (best_index!=-1) {                centers[index] = indices[best_index];            }            else {                break;            }        }        centers_length = index;    }    /**     * Chooses the initial centers in the k-means using the algorithm     * proposed in the KMeans++ paper:     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding     *     * Implementation of this function was converted from the one provided in Arthur's code.     *     * Params:     *     k = number of centers     *     vecs = the dataset of points     *     indices = indices in the dataset     * Returns:     */    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)    {        int n = indices_length;        double currentPot = 0;        DistanceType* closestDistSq = new DistanceType[n];        // Choose one random center and set the closestDistSq values        int index = rand_int(n);        assert(index >=0 && index < n);        centers[0] = indices[index];        for (int i = 0; i < n; i++) {            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );            currentPot += closestDistSq[i];        }        const int numLocalTries = 1;        // Choose each center        int centerCount;        for (centerCount = 1; centerCount < k; centerCount++) {            // Repeat several trials            double bestNewPot = -1;            int bestNewIndex = -1;            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {                // Choose our center - have to be slightly careful to return a valid answer even accounting                // for possible rounding errors                double randVal = rand_double(currentPot);                for (index = 0; index < n-1; index++) {                    if (randVal <= closestDistSq[index]) break;                    else randVal -= closestDistSq[index];                }                // Compute the new potential                double newPot = 0;                for (int i = 0; i < n; i++) {                    DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );                }                // Store the best result                if ((bestNewPot < 0)||(newPot < bestNewPot)) {                    bestNewPot = newPot;                    bestNewIndex = index;                }            }            // Add the appropriate center            centers[centerCount] = indices[bestNewIndex];            currentPot = bestNewPot;            for (int i = 0; i < n; i++) {                DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );            }        }        centers_length = centerCount;        delete[] closestDistSq;    }public:    flann_algorithm_t getType() const    {        return FLANN_INDEX_KMEANS;    }    class KMeansDistanceComputer : public cv::ParallelLoopBody    {    public:        KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,            const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen,            int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)            : distance(_distance)            , dataset(_dataset)            , branching(_branching)            , indices(_indices)            , dcenters(_dcenters)            , veclen(_veclen)            , count(_count)            , belongs_to(_belongs_to)            , radiuses(_radiuses)            , converged(_converged)            , mtx(_mtx)        {        }        void operator()(const cv::Range& range) const        {            const int begin = range.start;            const int end = range.end;            for( int i = begin; i<end; ++i)            {                DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);                int new_centroid = 0;                for (int j=1; j<branching; ++j) {                    DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);                    if (sq_dist>new_sq_dist) {                        new_centroid = j;                        sq_dist = new_sq_dist;                    }                }                if (sq_dist > radiuses[new_centroid]) {                    radiuses[new_centroid] = sq_dist;                }                if (new_centroid != belongs_to[i]) {                    count[belongs_to[i]]--;                    count[new_centroid]++;                    belongs_to[i] = new_centroid;                    mtx.lock();                    converged = false;                    mtx.unlock();                }            }        }    private:        Distance distance;        const Matrix<ElementType>& dataset;        const int branching;        const int* indices;        const Matrix<double>& dcenters;        const size_t veclen;        int* count;        int* belongs_to;        std::vector<DistanceType>& radiuses;        bool& converged;        cv::Mutex& mtx;        KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }    };    /**     * Index constructor     *     * Params:     *          inputData = dataset with the input features     *          params = parameters passed to the hierarchical k-means algorithm     */    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),                Distance d = Distance())        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)    {        memoryCounter_ = 0;        size_ = dataset_.rows;        veclen_ = dataset_.cols;        branching_ = get_param(params,"branching",32);        iterations_ = get_param(params,"iterations",11);        if (iterations_<0) {            iterations_ = (std::numeric_limits<int>::max)();        }        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);        if (centers_init_==FLANN_CENTERS_RANDOM) {            chooseCenters = &KMeansIndex::chooseCentersRandom;        }        else if (centers_init_==FLANN_CENTERS_GONZALES) {            chooseCenters = &KMeansIndex::chooseCentersGonzales;        }        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;        }        else {            throw FLANNException("Unknown algorithm for choosing initial centers.");        }        cb_index_ = 0.4f;    }    KMeansIndex(const KMeansIndex&);    KMeansIndex& operator=(const KMeansIndex&);    /**     * Index destructor.     *     * Release the memory used by the index.     */    virtual ~KMeansIndex()    {        if (root_ != NULL) {            free_centers(root_);        }        if (indices_!=NULL) {            delete[] indices_;        }    }    /**     *  Returns size of index.     */    size_t size() const    {        return size_;    }    /**     * Returns the length of an index feature.     */    size_t veclen() const    {        return veclen_;    }    void set_cb_index( float index)    {        cb_index_ = index;    }    /**     * Computes the inde memory usage     * Returns: memory used by the index     */    int usedMemory() const    {        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;    }    /**     * Builds the index     */    void buildIndex()    {        if (branching_<2) {            throw FLANNException("Branching factor must be at least 2");        }        indices_ = new int[size_];        for (size_t i=0; i<size_; ++i) {            indices_[i] = int(i);        }        root_ = pool_.allocate<KMeansNode>();        std::memset(root_, 0, sizeof(KMeansNode));        computeNodeStatistics(root_, indices_, (int)size_);        computeClustering(root_, indices_, (int)size_, branching_,0);    }    void saveIndex(FILE* stream)    {        save_value(stream, branching_);        save_value(stream, iterations_);        save_value(stream, memoryCounter_);        save_value(stream, cb_index_);        save_value(stream, *indices_, (int)size_);        save_tree(stream, root_);    }    void loadIndex(FILE* stream)    {        load_value(stream, branching_);        load_value(stream, iterations_);        load_value(stream, memoryCounter_);        load_value(stream, cb_index_);        if (indices_!=NULL) {            delete[] indices_;        }        indices_ = new int[size_];        load_value(stream, *indices_, size_);        if (root_!=NULL) {            free_centers(root_);        }        load_tree(stream, root_);        index_params_["algorithm"] = getType();        index_params_["branching"] = branching_;        index_params_["iterations"] = iterations_;        index_params_["centers_init"] = centers_init_;        index_params_["cb_index"] = cb_index_;    }    /**     * Find set of nearest neighbors to vec. Their indices are stored inside     * the result object.     *     * Params:     *     result = the result object in which the indices of the nearest-neighbors are stored     *     vec = the vector for which to search the nearest neighbors     *     searchParams = parameters that influence the search algorithm (checks, cb_index)     */    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)    {        int maxChecks = get_param(searchParams,"checks",32);        if (maxChecks==FLANN_CHECKS_UNLIMITED) {            findExactNN(root_, result, vec);        }        else {            // Priority queue storing intermediate branches in the best-bin-first search            Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);            int checks = 0;            findNN(root_, result, vec, checks, maxChecks, heap);            BranchSt branch;            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {                KMeansNodePtr node = branch.node;                findNN(node, result, vec, checks, maxChecks, heap);            }            assert(result.full());            delete heap;        }    }    /**     * Clustering function that takes a cut in the hierarchical k-means     * tree and return the clusters centers of that clustering.     * Params:     *     numClusters = number of clusters to have in the clustering computed     * Returns: number of cluster centers     */    int getClusterCenters(Matrix<DistanceType>& centers)    {        int numClusters = centers.rows;        if (numClusters<1) {            throw FLANNException("Number of clusters must be at least 1");        }        DistanceType variance;        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);        for (int i=0; i<clusterCount; ++i) {            DistanceType* center = clusters[i]->pivot;            for (size_t j=0; j<veclen_; ++j) {                centers[i][j] = center[j];            }        }        delete[] clusters;        return clusterCount;    }    IndexParams getParameters() const    {        return index_params_;    }private:    /**     * Struture representing a node in the hierarchical k-means tree.     */    struct KMeansNode    {        /**         * The cluster center.         */        DistanceType* pivot;        /**         * The cluster radius.         */        DistanceType radius;        /**         * The cluster mean radius.         */        DistanceType mean_radius;        /**         * The cluster variance.         */        DistanceType variance;        /**         * The cluster size (number of points in the cluster)         */        int size;        /**         * Child nodes (only for non-terminal nodes)         */        KMeansNode** childs;        /**         * Node points (only for terminal nodes)         */        int* indices;        /**         * Level         */        int level;    };    typedef KMeansNode* KMeansNodePtr;    /**     * Alias definition for a nicer syntax.     */    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;    void save_tree(FILE* stream, KMeansNodePtr node)    {        save_value(stream, *node);        save_value(stream, *(node->pivot), (int)veclen_);        if (node->childs==NULL) {            int indices_offset = (int)(node->indices - indices_);            save_value(stream, indices_offset);        }        else {            for(int i=0; i<branching_; ++i) {                save_tree(stream, node->childs[i]);            }        }    }    void load_tree(FILE* stream, KMeansNodePtr& node)    {        node = pool_.allocate<KMeansNode>();        load_value(stream, *node);        node->pivot = new DistanceType[veclen_];        load_value(stream, *(node->pivot), (int)veclen_);        if (node->childs==NULL) {            int indices_offset;            load_value(stream, indices_offset);            node->indices = indices_ + indices_offset;        }        else {            node->childs = pool_.allocate<KMeansNodePtr>(branching_);            for(int i=0; i<branching_; ++i) {                load_tree(stream, node->childs[i]);            }        }    }    /**     * Helper function     */    void free_centers(KMeansNodePtr node)    {        delete[] node->pivot;        if (node->childs!=NULL) {            for (int k=0; k<branching_; ++k) {                free_centers(node->childs[k]);            }        }    }    /**     * Computes the statistics of a node (mean, radius, variance).     *     * Params:     *     node = the node to use     *     indices = the indices of the points belonging to the node     */    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)    {        DistanceType radius = 0;        DistanceType variance = 0;        DistanceType* mean = new DistanceType[veclen_];        memoryCounter_ += int(veclen_*sizeof(DistanceType));        memset(mean,0,veclen_*sizeof(DistanceType));        for (size_t i=0; i<size_; ++i) {            ElementType* vec = dataset_[indices[i]];            for (size_t j=0; j<veclen_; ++j) {                mean[j] += vec[j];            }            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);        }        for (size_t j=0; j<veclen_; ++j) {            mean[j] /= size_;        }        variance /= size_;        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);        DistanceType tmp = 0;        for (int i=0; i<indices_length; ++i) {            tmp = distance_(mean, dataset_[indices[i]], veclen_);            if (tmp>radius) {                radius = tmp;            }        }        node->variance = variance;        node->radius = radius;        node->pivot = mean;    }    /**     * The method responsible with actually doing the recursive hierarchical     * clustering     *     * Params:     *     node = the node to cluster     *     indices = indices of the points belonging to the current node     *     branching = the branching factor to use in the clustering     *     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)     */    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)    {        node->size = indices_length;        node->level = level;        if (indices_length < branching) {            node->indices = indices;            std::sort(node->indices,node->indices+indices_length);            node->childs = NULL;            return;        }        cv::AutoBuffer<int> centers_idx_buf(branching);        int* centers_idx = (int*)centers_idx_buf;        int centers_length;        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);        if (centers_length<branching) {            node->indices = indices;            std::sort(node->indices,node->indices+indices_length);            node->childs = NULL;            return;        }        cv::AutoBuffer<double> dcenters_buf(branching*veclen_);        Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);        for (int i=0; i<centers_length; ++i) {            ElementType* vec = dataset_[centers_idx[i]];            for (size_t k=0; k<veclen_; ++k) {                dcenters[i][k] = double(vec[k]);            }        }        std::vector<DistanceType> radiuses(branching);        cv::AutoBuffer<int> count_buf(branching);        int* count = (int*)count_buf;        for (int i=0; i<branching; ++i) {            radiuses[i] = 0;            count[i] = 0;        }        //	assign points to clusters        cv::AutoBuffer<int> belongs_to_buf(indices_length);        int* belongs_to = (int*)belongs_to_buf;        for (int i=0; i<indices_length; ++i) {            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);            belongs_to[i] = 0;            for (int j=1; j<branching; ++j) {                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);                if (sq_dist>new_sq_dist) {                    belongs_to[i] = j;                    sq_dist = new_sq_dist;                }            }            if (sq_dist>radiuses[belongs_to[i]]) {                radiuses[belongs_to[i]] = sq_dist;            }            count[belongs_to[i]]++;        }        bool converged = false;        int iteration = 0;        while (!converged && iteration<iterations_) {            converged = true;            iteration++;            // compute the new cluster centers            for (int i=0; i<branching; ++i) {                memset(dcenters[i],0,sizeof(double)*veclen_);                radiuses[i] = 0;            }            for (int i=0; i<indices_length; ++i) {                ElementType* vec = dataset_[indices[i]];                double* center = dcenters[belongs_to[i]];                for (size_t k=0; k<veclen_; ++k) {                    center[k] += vec[k];                }            }            for (int i=0; i<branching; ++i) {                int cnt = count[i];                for (size_t k=0; k<veclen_; ++k) {                    dcenters[i][k] /= cnt;                }            }            // reassign points to clusters            cv::Mutex mtx;            KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);            parallel_for_(cv::Range(0, (int)indices_length), invoker);            for (int i=0; i<branching; ++i) {                // if one cluster converges to an empty cluster,                // move an element into that cluster                if (count[i]==0) {                    int j = (i+1)%branching;                    while (count[j]<=1) {                        j = (j+1)%branching;                    }                    for (int k=0; k<indices_length; ++k) {                        if (belongs_to[k]==j) {                            // for cluster j, we move the furthest element from the center to the empty cluster i                            if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {                                belongs_to[k] = i;                                count[j]--;                                count[i]++;                                break;                            }                        }                    }                    converged = false;                }            }        }        DistanceType** centers = new DistanceType*[branching];        for (int i=0; i<branching; ++i) {            centers[i] = new DistanceType[veclen_];            memoryCounter_ += (int)(veclen_*sizeof(DistanceType));            for (size_t k=0; k<veclen_; ++k) {                centers[i][k] = (DistanceType)dcenters[i][k];            }        }        // compute kmeans clustering for each of the resulting clusters        node->childs = pool_.allocate<KMeansNodePtr>(branching);        int start = 0;        int end = start;        for (int c=0; c<branching; ++c) {            int s = count[c];            DistanceType variance = 0;            DistanceType mean_radius =0;            for (int i=0; i<indices_length; ++i) {                if (belongs_to[i]==c) {                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);                    variance += d;                    mean_radius += sqrt(d);                    std::swap(indices[i],indices[end]);                    std::swap(belongs_to[i],belongs_to[end]);                    end++;                }            }            variance /= s;            mean_radius /= s;            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);            node->childs[c] = pool_.allocate<KMeansNode>();            std::memset(node->childs[c], 0, sizeof(KMeansNode));            node->childs[c]->radius = radiuses[c];            node->childs[c]->pivot = centers[c];            node->childs[c]->variance = variance;            node->childs[c]->mean_radius = mean_radius;            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);            start=end;        }        delete[] centers;    }    /**     * Performs one descent in the hierarchical k-means tree. The branches not     * visited are stored in a priority queue.     *     * Params:     *      node = node to explore     *      result = container for the k-nearest neighbors found     *      vec = query points     *      checks = how many points in the dataset have been checked so far     *      maxChecks = maximum dataset points to checks     */    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,                Heap<BranchSt>* heap)    {        // Ignore those clusters that are too far away        {            DistanceType bsq = distance_(vec, node->pivot, veclen_);            DistanceType rsq = node->radius;            DistanceType wsq = result.worstDist();            DistanceType val = bsq-rsq-wsq;            DistanceType val2 = val*val-4*rsq*wsq;            //if (val>0) {            if ((val>0)&&(val2>0)) {                return;            }        }        if (node->childs==NULL) {            if (checks>=maxChecks) {                if (result.full()) return;            }            checks += node->size;            for (int i=0; i<node->size; ++i) {                int index = node->indices[i];                DistanceType dist = distance_(dataset_[index], vec, veclen_);                result.addPoint(dist, index);            }        }        else {            DistanceType* domain_distances = new DistanceType[branching_];            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);            delete[] domain_distances;            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);        }    }    /**     * Helper function that computes the nearest childs of a node to a given query point.     * Params:     *     node = the node     *     q = the query point     *     distances = array with the distances to each child node.     * Returns:     */    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)    {        int best_index = 0;        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);        for (int i=1; i<branching_; ++i) {            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);            if (domain_distances[i]<domain_distances[best_index]) {                best_index = i;            }        }        //		float* best_center = node->childs[best_index]->pivot;        for (int i=0; i<branching_; ++i) {            if (i != best_index) {                domain_distances[i] -= cb_index_*node->childs[i]->variance;                //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);                //				if (domain_distances[i]<dist_to_border) {                //					domain_distances[i] = dist_to_border;                //				}                heap->insert(BranchSt(node->childs[i],domain_distances[i]));            }        }        return best_index;    }    /**     * Function the performs exact nearest neighbor search by traversing the entire tree.     */    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)    {        // Ignore those clusters that are too far away        {            DistanceType bsq = distance_(vec, node->pivot, veclen_);            DistanceType rsq = node->radius;            DistanceType wsq = result.worstDist();            DistanceType val = bsq-rsq-wsq;            DistanceType val2 = val*val-4*rsq*wsq;            //                  if (val>0) {            if ((val>0)&&(val2>0)) {                return;            }        }        if (node->childs==NULL) {            for (int i=0; i<node->size; ++i) {                int index = node->indices[i];                DistanceType dist = distance_(dataset_[index], vec, veclen_);                result.addPoint(dist, index);            }        }        else {            int* sort_indices = new int[branching_];            getCenterOrdering(node, vec, sort_indices);            for (int i=0; i<branching_; ++i) {                findExactNN(node->childs[sort_indices[i]],result,vec);            }            delete[] sort_indices;        }    }    /**     * Helper function.     *     * I computes the order in which to traverse the child nodes of a particular node.     */    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)    {        DistanceType* domain_distances = new DistanceType[branching_];        for (int i=0; i<branching_; ++i) {            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);            int j=0;            while (domain_distances[j]<dist && j<i) j++;            for (int k=i; k>j; --k) {                domain_distances[k] = domain_distances[k-1];                sort_indices[k] = sort_indices[k-1];            }            domain_distances[j] = dist;            sort_indices[j] = i;        }        delete[] domain_distances;    }    /**     * Method that computes the squared distance from the query point q     * from inside region with center c to the border between this     * region and the region with center p     */    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)    {        DistanceType sum = 0;        DistanceType sum2 = 0;        for (int i=0; i<veclen_; ++i) {            DistanceType t = c[i]-p[i];            sum += t*(q[i]-(c[i]+p[i])/2);            sum2 += t*t;        }        return sum*sum/sum2;    }    /**     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize     * the overall variance of the clustering.     * Params:     *     root = root node     *     clusters = array with clusters centers (return value)     *     varianceValue = variance of the clustering (return value)     * Returns:     */    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)    {        int clusterCount = 1;        clusters[0] = root;        DistanceType meanVariance = root->variance*root->size;        while (clusterCount<clusters_length) {            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();            int splitIndex = -1;            for (int i=0; i<clusterCount; ++i) {                if (clusters[i]->childs != NULL) {                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;                    for (int j=0; j<branching_; ++j) {                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;                    }                    if (variance<minVariance) {                        minVariance = variance;                        splitIndex = i;                    }                }            }            if (splitIndex==-1) break;            if ( (branching_+clusterCount-1) > clusters_length) break;            meanVariance = minVariance;            // split node            KMeansNodePtr toSplit = clusters[splitIndex];            clusters[splitIndex] = toSplit->childs[0];            for (int i=1; i<branching_; ++i) {                clusters[clusterCount++] = toSplit->childs[i];            }        }        varianceValue = meanVariance/root->size;        return clusterCount;    }private:    /** The branching factor used in the hierarchical k-means clustering */    int branching_;    /** Maximum number of iterations to use when performing k-means clustering */    int iterations_;    /** Algorithm for choosing the cluster centers */    flann_centers_init_t centers_init_;    /**     * Cluster border index. This is used in the tree search phase when determining     * the closest cluster to explore next. A zero value takes into account only     * the cluster centres, a value greater then zero also take into account the size     * of the cluster.     */    float cb_index_;    /**     * The dataset used by this index     */    const Matrix<ElementType> dataset_;    /** Index parameters */    IndexParams index_params_;    /**     * Number of features in the dataset.     */    size_t size_;    /**     * Length of each feature.     */    size_t veclen_;    /**     * The root node in the tree.     */    KMeansNodePtr root_;    /**     *  Array of indices to vectors in the dataset.     */    int* indices_;    /**     * The distance     */    Distance distance_;    /**     * Pooled memory allocator.     */    PooledAllocator pool_;    /**     * Memory occupied by the index.     */    int memoryCounter_;};}#endif //OPENCV_FLANN_KMEANS_INDEX_H_
 |