| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | /*M/////////////////////////////////////////////////////////////////////////////////////// // //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // //  By downloading, copying, installing or using the software you agree to this license. //  If you do not agree to this license, do not download, install, //  copy or use the software. // // //                           License Agreement //                For Open Source Computer Vision Library // // Copyright (C) 2014, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // //   * Redistribution's of source code must retain the above copyright notice, //     this list of conditions and the following disclaimer. // //   * Redistribution's in binary form must reproduce the above copyright notice, //     this list of conditions and the following disclaimer in the documentation //     and/or other materials provided with the distribution. // //   * The name of the copyright holders may not be used to endorse or promote products //     derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/#ifndef __OPENCV_SALIENCY_BASE_CLASSES_HPP__#define __OPENCV_SALIENCY_BASE_CLASSES_HPP__#include "opencv2/core.hpp"#include <opencv2/core/persistence.hpp>#include "opencv2/imgproc.hpp"#include <iostream>#include <sstream>#include <complex>namespace cv{namespace saliency{//! @addtogroup saliency//! @{/************************************ Saliency Base Class ************************************/class CV_EXPORTS_W Saliency : public virtual Algorithm{ public:  /**   * \brief Destructor   */  virtual ~Saliency();  /**   * \brief Compute the saliency   * \param image        The image.   * \param saliencyMap      The computed saliency map.   * \return true if the saliency map is computed, false otherwise   */  CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap ); protected:  virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;  String className;};/************************************ Static Saliency Base Class ************************************/class CV_EXPORTS_W StaticSaliency : public virtual Saliency{ public:    /** @brief This function perform a binary map of given saliency map. This is obtained in this    way:    In a first step, to improve the definition of interest areas and facilitate identification of    targets, a segmentation by clustering is performed, using *K-means algorithm*. Then, to gain a    binary representation of clustered saliency map, since values of the map can vary according to    the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,    *Otsu’s algorithm* is used, which assumes that the image to be thresholded contains two classes    of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the    algorithm calculates the optimal threshold separating those two classes, so that their    intra-class variance is minimal.    @param _saliencyMap the saliency map obtained through one of the specialized algorithms    @param _binaryMap the binary map     */  CV_WRAP bool computeBinaryMap( InputArray _saliencyMap, OutputArray _binaryMap ); protected:  virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;};/************************************ Motion Saliency Base Class ************************************/class CV_EXPORTS_W MotionSaliency : public virtual Saliency{ protected:  virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;};/************************************ Objectness Base Class ************************************/class CV_EXPORTS_W Objectness : public virtual Saliency{ protected:  virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;};//! @}} /* namespace saliency */} /* namespace cv */#endif
 |