| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 | //By downloading, copying, installing or using the software you agree to this license.//If you do not agree to this license, do not download, install,//copy or use the software.//////                          License Agreement//               For Open Source Computer Vision Library//                       (3-clause BSD License)////Copyright (C) 2000-2015, Intel Corporation, all rights reserved.//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.//Copyright (C) 2015, OpenCV Foundation, all rights reserved.//Copyright (C) 2015, Itseez Inc., all rights reserved.//Third party copyrights are property of their respective owners.////Redistribution and use in source and binary forms, with or without modification,//are permitted provided that the following conditions are met:////  * Redistributions of source code must retain the above copyright notice,//    this list of conditions and the following disclaimer.////  * Redistributions in binary form must reproduce the above copyright notice,//    this list of conditions and the following disclaimer in the documentation//    and/or other materials provided with the distribution.////  * Neither the names of the copyright holders nor the names of the contributors//    may be used to endorse or promote products derived from this software//    without specific prior written permission.////This software is provided by the copyright holders and contributors "as is" and//any express or implied warranties, including, but not limited to, the implied//warranties of merchantability and fitness for a particular purpose are disclaimed.//In no event shall copyright holders or contributors be liable for any direct,//indirect, incidental, special, exemplary, or consequential damages//(including, but not limited to, procurement of substitute goods or services;//loss of use, data, or profits; or business interruption) however caused//and on any theory of liability, whether in contract, strict liability,//or tort (including negligence or otherwise) arising in any way out of//the use of this software, even if advised of the possibility of such damage./*****************************************************************************************************************\*   The interface contains the main descriptors that will be implemented in the descriptor class                  *\*****************************************************************************************************************/#include <stdint.h>#ifndef _OPENCV_DESCRIPTOR_HPP_#define _OPENCV_DESCRIPTOR_HPP_#ifdef __cplusplusnamespace cv{    namespace stereo    {        //types of supported kernels        enum {            CV_DENSE_CENSUS, CV_SPARSE_CENSUS,            CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,            CV_MEAN_VARIATION, CV_STAR_KERNEL        };        //!Mean Variation is a robust kernel that compares a pixel        //!not just with the center but also with the mean of the window        template<int num_images>        struct MVKernel        {            uint8_t *image[num_images];            int *integralImage[num_images];            int stop;            MVKernel(){}            MVKernel(uint8_t **images, int **integral)            {                for(int i = 0; i < num_images; i++)                {                    image[i] = images[i];                    integralImage[i] = integral[i];                }                stop = num_images;            }            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const            {                (void)w2;                for (int i = 0; i < stop; i++)                {                    if (image[i][rrWidth + jj] > image[i][rWidth + j])                    {                        c[i] = c[i] + 1;                    }                    c[i] = c[i] << 1;                    if (integralImage[i][rrWidth + jj] > image[i][rWidth + j])                    {                        c[i] = c[i] + 1;                    }                    c[i] = c[i] << 1;                }            }        };        //!Compares pixels from a patch giving high weights to pixels in which        //!the intensity is higher. The other pixels receive a lower weight        template <int num_images>        struct MCTKernel        {            uint8_t *image[num_images];            int t,imageStop;            MCTKernel(){}            MCTKernel(uint8_t ** images, int threshold)            {                for(int i = 0; i < num_images; i++)                {                    image[i] = images[i];                }                imageStop = num_images;                t = threshold;            }            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const            {                (void)w2;                for(int i = 0; i < imageStop; i++)                {                    if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)                    {                        c[i] = c[i] << 1;                        c[i] = c[i] + 1;                        c[i] = c[i] << 1;                        c[i] = c[i] + 1;                    }                    else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj])                    {                        c[i] = c[i] << 2;                        c[i] = c[i] + 1;                    }                    else                    {                        c[i] <<= 2;                    }                }            }        };        //!A madified cs census that compares a pixel with the imediat neightbour starting        //!from the center        template<int num_images>        struct ModifiedCsCensus        {            uint8_t *image[num_images];            int n2;            int imageStop;            ModifiedCsCensus(){}            ModifiedCsCensus(uint8_t **images, int ker)            {                for(int i = 0; i < num_images; i++)                    image[i] = images[i];                imageStop = num_images;                n2 = ker;            }            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const            {                (void)j;                (void)rWidth;                for(int i = 0; i < imageStop; i++)                {                    if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])                    {                        c[i] = c[i] + 1;                    }                    c[i] = c[i] * 2;                }            }        };        //!A kernel in which a pixel is compared with the center of the window        template<int num_images>        struct CensusKernel        {            uint8_t *image[num_images];            int imageStop;            CensusKernel(){}            CensusKernel(uint8_t **images)            {                for(int i = 0; i < num_images; i++)                    image[i] = images[i];                imageStop = num_images;            }            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const            {                (void)w2;                for(int i = 0; i < imageStop; i++)                {                    ////compare a pixel with the center from the kernel                    if (image[i][rrWidth + jj] > image[i][rWidth + j])                    {                        c[i] += 1;                    }                    c[i] <<= 1;                }            }        };        //template clas which efficiently combines the descriptors        template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel>        class CombinedDescriptor:public ParallelLoopBody        {        private:            int width, height,n2;            int stride_;            int *dst[nr_img];            Kernel kernel_;            int n2_stop;        public:            CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop)            {                width = w;                height = h;                n2 = k2;                stride_ = stride;                for(int i = 0; i < nr_img; i++)                    dst[i] = distance[i];                kernel_ = kernel;                n2_stop = k2Stop;            }            void operator()(const cv::Range &r) const {                for (int i = r.start; i <= r.end ; i++)                {                    int rWidth = i * stride_;                    for (int j = n2 + 2; j <= width - n2 - 2; j++)                    {                        int c[nr_img];                        memset(c,0,nr_img);                        for(int step = step_start; step <= step_end; step += step_inc)                        {                            for (int ii = - n2; ii <= + n2_stop; ii += step)                            {                                int rrWidth = (ii + i) * stride_;                                int rrWidthC = (ii + i + n2) * stride_;                                for (int jj = j - n2; jj <= j + n2; jj += step)                                {                                    if (ii != i || jj != j)                                    {                                        kernel_(rrWidth,rrWidthC, rWidth, jj, j,c);                                    }                                }                            }                        }                        for(int l = 0; l < nr_img; l++)                            dst[l][rWidth + j] = c[l];                    }                }            }        };        //!calculate the mean of every windowSizexWindwoSize block from the integral Image        //!this is a preprocessing for MV kernel        class MeanKernelIntegralImage : public ParallelLoopBody        {        private:            int *img;            int windowSize,width;            float scalling;            int *c;        public:            MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost):                img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){};            void operator()(const cv::Range &r) const{                for (int i = r.start; i <= r.end; i++)                {                    int iw = i * width;                    for (int j = windowSize + 1; j <= width - windowSize - 1; j++)                    {                        c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1]                        - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling);                    }                }            }        };        //!implementation for the star kernel descriptor        template<int num_images>        class StarKernelCensus:public ParallelLoopBody        {        private:            uint8_t *image[num_images];            int *dst[num_images];            int n2, width, height, im_num,stride_;        public:            StarKernelCensus(const cv::Mat *img, int k2, int **distance)            {                for(int i = 0; i < num_images; i++)                {                    image[i] = img[i].data;                    dst[i] = distance[i];                }                n2 = k2;                width = img[0].cols;                height = img[0].rows;                im_num = num_images;                stride_ = (int)img[0].step;            }            void operator()(const cv::Range &r) const {                for (int i = r.start; i <= r.end ; i++)                {                    int rWidth = i * stride_;                    for (int j = n2; j <= width - n2; j++)                    {                        for(int d = 0 ; d < im_num; d++)                        {                            int c = 0;                            for(int step = 4; step > 0; step--)                            {                                for (int ii = i - step; ii <= i + step; ii += step)                                {                                    int rrWidth = ii * stride_;                                    for (int jj = j - step; jj <= j + step; jj += step)                                    {                                        if (image[d][rrWidth + jj] > image[d][rWidth + j])                                        {                                            c = c + 1;                                        }                                        c = c * 2;                                    }                                }                            }                            for (int ii = -1; ii <= +1; ii++)                            {                                int rrWidth = (ii + i) * stride_;                                if (i == -1)                                {                                    if (ii + i != i)                                    {                                        if (image[d][rrWidth + j] > image[d][rWidth + j])                                        {                                            c = c + 1;                                        }                                        c = c * 2;                                    }                                }                                else if (i == 0)                                {                                    for (int j2 = -1; j2 <= 1; j2 += 2)                                    {                                        if (ii + i != i)                                        {                                            if (image[d][rrWidth + j + j2] > image[d][rWidth + j])                                            {                                                c = c + 1;                                            }                                            c = c * 2;                                        }                                    }                                }                                else                                {                                    if (ii + i != i)                                    {                                        if (image[d][rrWidth + j] > image[d][rWidth + j])                                        {                                            c = c + 1;                                        }                                        c = c * 2;                                    }                                }                            }                            dst[d][rWidth + j] = c;                        }                    }                }            }        };        //!paralel implementation of the center symetric census        template <int num_images>        class SymetricCensus:public ParallelLoopBody        {        private:            uint8_t *image[num_images];            int *dst[num_images];            int n2, width, height, im_num,stride_;        public:            SymetricCensus(const cv::Mat *img, int k2, int **distance)            {                for(int i = 0; i < num_images; i++)                {                    image[i] = img[i].data;                    dst[i] = distance[i];                }                n2 = k2;                width = img[0].cols;                height = img[0].rows;                im_num = num_images;                stride_ = (int)img[0].step;            }            void operator()(const cv::Range &r) const {                for (int i = r.start; i <= r.end ; i++)                {                    int distV = i*stride_;                    for (int j = n2; j <= width - n2; j++)                    {                        for(int d = 0; d < im_num; d++)                        {                            int c = 0;                            //the classic center symetric census which compares the curent pixel with its symetric not its center.                            for (int ii = -n2; ii <= 0; ii++)                            {                                int rrWidth = (ii + i) * stride_;                                for (int jj = -n2; jj <= +n2; jj++)                                {                                    if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)])                                    {                                        c = c + 1;                                    }                                    c = c * 2;                                    if(ii == 0 && jj < 0)                                    {                                        if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)])                                        {                                            c = c + 1;                                        }                                        c = c * 2;                                    }                                }                            }                            dst[d][(distV + j)] = c;                        }                    }                }            }        };        /**        Two variations of census applied on input images        Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes        **/        //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type);        CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);        //single image census transform        CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type);        /**        STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison        MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel        **/        CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1));        //single version of modified census transform descriptor        CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1));        /**The classical center symetric census        A modified version of cs census which is comparing a pixel with its correspondent after the center        **/        CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);        //single version of census transform        CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type);        //in a 9x9 kernel only certain positions are choosen        CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2);        //single image version of star kernel        CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist);        //integral image computation used in the Mean Variation Census Transform        void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c);    }}#endif#endif/*End of file*/
 |