| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 | /*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                          License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.// Copyright (C) 2009, Willow Garage Inc., all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of the copyright holders may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*/#ifndef OPENCV_STITCHING_MATCHERS_HPP#define OPENCV_STITCHING_MATCHERS_HPP#include "opencv2/core.hpp"#include "opencv2/features2d.hpp"#include "opencv2/opencv_modules.hpp"#ifdef HAVE_OPENCV_XFEATURES2D#  include "opencv2/xfeatures2d/cuda.hpp"#endifnamespace cv {namespace detail {//! @addtogroup stitching_match//! @{/** @brief Structure containing image keypoints and descriptors. */struct CV_EXPORTS ImageFeatures{    int img_idx;    Size img_size;    std::vector<KeyPoint> keypoints;    UMat descriptors;};/** @brief Feature finders base class */class CV_EXPORTS FeaturesFinder{public:    virtual ~FeaturesFinder() {}    /** @overload */    void operator ()(InputArray image, ImageFeatures &features);    /** @brief Finds features in the given image.    @param image Source image    @param features Found features    @param rois Regions of interest    @sa detail::ImageFeatures, Rect_    */    void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois);    /** @brief Finds features in the given images in parallel.    @param images Source images    @param features Found features for each image    @param rois Regions of interest for each image    @sa detail::ImageFeatures, Rect_    */    void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features,                     const std::vector<std::vector<cv::Rect> > &rois);    /** @overload */    void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features);    /** @brief Frees unused memory allocated before if there is any. */    virtual void collectGarbage() {}    /* TODO OpenCV ABI 4.x    reimplement this as public method similar to FeaturesMatcher and remove private function hack    @return True, if it's possible to use the same finder instance in parallel, false otherwise    bool isThreadSafe() const { return is_thread_safe_; }    */protected:    /** @brief This method must implement features finding logic in order to make the wrappers    detail::FeaturesFinder::operator()_ work.    @param image Source image    @param features Found features    @sa detail::ImageFeatures */    virtual void find(InputArray image, ImageFeatures &features) = 0;    /** @brief uses dynamic_cast to determine thread-safety    @return True, if it's possible to use the same finder instance in parallel, false otherwise    */    bool isThreadSafe() const;};/** @brief SURF features finder.@sa detail::FeaturesFinder, SURF*/class CV_EXPORTS SurfFeaturesFinder : public FeaturesFinder{public:    SurfFeaturesFinder(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,                       int num_octaves_descr = /*4*/3, int num_layers_descr = /*2*/4);private:    void find(InputArray image, ImageFeatures &features);    Ptr<FeatureDetector> detector_;    Ptr<DescriptorExtractor> extractor_;    Ptr<Feature2D> surf;};/** @brief ORB features finder. :@sa detail::FeaturesFinder, ORB*/class CV_EXPORTS OrbFeaturesFinder : public FeaturesFinder{public:    OrbFeaturesFinder(Size _grid_size = Size(3,1), int nfeatures=1500, float scaleFactor=1.3f, int nlevels=5);private:    void find(InputArray image, ImageFeatures &features);    Ptr<ORB> orb;    Size grid_size;};/** @brief AKAZE features finder. :@sa detail::FeaturesFinder, AKAZE*/class CV_EXPORTS AKAZEFeaturesFinder : public detail::FeaturesFinder{public:    AKAZEFeaturesFinder(int descriptor_type = AKAZE::DESCRIPTOR_MLDB,                        int descriptor_size = 0,                        int descriptor_channels = 3,                        float threshold = 0.001f,                        int nOctaves = 4,                        int nOctaveLayers = 4,                        int diffusivity = KAZE::DIFF_PM_G2);private:    void find(InputArray image, detail::ImageFeatures &features);    Ptr<AKAZE> akaze;};#ifdef HAVE_OPENCV_XFEATURES2Dclass CV_EXPORTS SurfFeaturesFinderGpu : public FeaturesFinder{public:    SurfFeaturesFinderGpu(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,                          int num_octaves_descr = 4, int num_layers_descr = 2);    void collectGarbage();private:    void find(InputArray image, ImageFeatures &features);    cuda::GpuMat image_;    cuda::GpuMat gray_image_;    cuda::SURF_CUDA surf_;    cuda::GpuMat keypoints_;    cuda::GpuMat descriptors_;    int num_octaves_, num_layers_;    int num_octaves_descr_, num_layers_descr_;};#endif/** @brief Structure containing information about matches between two images.It's assumed that there is a transformation between those images. Transformation may behomography or affine transformation based on selected matcher.@sa detail::FeaturesMatcher*/struct CV_EXPORTS MatchesInfo{    MatchesInfo();    MatchesInfo(const MatchesInfo &other);    MatchesInfo& operator =(const MatchesInfo &other);    int src_img_idx, dst_img_idx;       //!< Images indices (optional)    std::vector<DMatch> matches;    std::vector<uchar> inliers_mask;    //!< Geometrically consistent matches mask    int num_inliers;                    //!< Number of geometrically consistent matches    Mat H;                              //!< Estimated transformation    double confidence;                  //!< Confidence two images are from the same panorama};/** @brief Feature matchers base class. */class CV_EXPORTS FeaturesMatcher{public:    virtual ~FeaturesMatcher() {}    /** @overload    @param features1 First image features    @param features2 Second image features    @param matches_info Found matches    */    void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,                     MatchesInfo& matches_info) { match(features1, features2, matches_info); }    /** @brief Performs images matching.    @param features Features of the source images    @param pairwise_matches Found pairwise matches    @param mask Mask indicating which image pairs must be matched    The function is parallelized with the TBB library.    @sa detail::MatchesInfo    */    void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,                     const cv::UMat &mask = cv::UMat());    /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise    */    bool isThreadSafe() const { return is_thread_safe_; }    /** @brief Frees unused memory allocated before if there is any.    */    virtual void collectGarbage() {}protected:    FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}    /** @brief This method must implement matching logic in order to make the wrappers    detail::FeaturesMatcher::operator()_ work.    @param features1 first image features    @param features2 second image features    @param matches_info found matches     */    virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,                       MatchesInfo& matches_info) = 0;    bool is_thread_safe_;};/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if theratio between descriptor distances is greater than the threshold match_conf@sa detail::FeaturesMatcher */class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher{public:    /** @brief Constructs a "best of 2 nearest" matcher.    @param try_use_gpu Should try to use GPU or not    @param match_conf Match distances ration threshold    @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform    estimation used in the inliers classification step    @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform    re-estimation on inliers     */    BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,                          int num_matches_thresh2 = 6);    void collectGarbage();protected:    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);    int num_matches_thresh1_;    int num_matches_thresh2_;    Ptr<FeaturesMatcher> impl_;};class CV_EXPORTS BestOf2NearestRangeMatcher : public BestOf2NearestMatcher{public:    BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,                            int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);    void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,                     const cv::UMat &mask = cv::UMat());protected:    int range_width_;};/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher whichfinds two best matches for each feature and leaves the best one only if theratio between descriptor distances is greater than the threshold match_conf.Unlike cv::detail::BestOf2NearestMatcher this matcher uses affinetransformation (affine trasformation estimate will be placed in matches_info).@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher */class CV_EXPORTS AffineBestOf2NearestMatcher : public BestOf2NearestMatcher{public:    /** @brief Constructs a "best of 2 nearest" matcher that expects affine trasformation    between images    @param full_affine whether to use full affine transformation with 6 degress of freedom or reduced    transformation with 4 degrees of freedom using only rotation, translation and uniform scaling    @param try_use_gpu Should try to use GPU or not    @param match_conf Match distances ration threshold    @param num_matches_thresh1 Minimum number of matches required for the 2D affine transform    estimation used in the inliers classification step    @sa cv::estimateAffine2D cv::estimateAffinePartial2D     */    AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,                                float match_conf = 0.3f, int num_matches_thresh1 = 6) :        BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),        full_affine_(full_affine) {}protected:    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);    bool full_affine_;};//! @} stitching_match} // namespace detail} // namespace cv#endif // OPENCV_STITCHING_MATCHERS_HPP
 |