| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | /* *  By downloading, copying, installing or using the software you agree to this license. *  If you do not agree to this license, do not download, install, *  copy or use the software. * * *  License Agreement *  For Open Source Computer Vision Library *  (3 - clause BSD License) * *  Redistribution and use in source and binary forms, with or without modification, *  are permitted provided that the following conditions are met : * *  * Redistributions of source code must retain the above copyright notice, *  this list of conditions and the following disclaimer. * *  * Redistributions in binary form must reproduce the above copyright notice, *  this list of conditions and the following disclaimer in the documentation *  and / or other materials provided with the distribution. * *  * Neither the names of the copyright holders nor the names of the contributors *  may be used to endorse or promote products derived from this software *  without specific prior written permission. * *  This software is provided by the copyright holders and contributors "as is" and *  any express or implied warranties, including, but not limited to, the implied *  warranties of merchantability and fitness for a particular purpose are disclaimed. *  In no event shall copyright holders or contributors be liable for any direct, *  indirect, incidental, special, exemplary, or consequential damages *  (including, but not limited to, procurement of substitute goods or services; *  loss of use, data, or profits; or business interruption) however caused *  and on any theory of liability, whether in contract, strict liability, *  or tort(including negligence or otherwise) arising in any way out of *  the use of this software, even if advised of the possibility of such damage. */#ifndef __OPENCV_XIMGPROC_HPP__#define __OPENCV_XIMGPROC_HPP__#include "ximgproc/edge_filter.hpp"#include "ximgproc/disparity_filter.hpp"#include "ximgproc/sparse_match_interpolator.hpp"#include "ximgproc/structured_edge_detection.hpp"#include "ximgproc/seeds.hpp"#include "ximgproc/segmentation.hpp"#include "ximgproc/fast_hough_transform.hpp"#include "ximgproc/estimated_covariance.hpp"#include "ximgproc/weighted_median_filter.hpp"#include "ximgproc/slic.hpp"#include "ximgproc/lsc.hpp"#include "ximgproc/paillou_filter.hpp"#include "ximgproc/fast_line_detector.hpp"#include "ximgproc/deriche_filter.hpp"#include "ximgproc/peilin.hpp"/** @defgroup ximgproc Extended Image Processing  @{    @defgroup ximgproc_edge Structured forests for fast edge detectionThis module contains implementations of modern structured edge detection algorithms,i.e. algorithms which somehow takes into account pixel affinities in natural images.    @defgroup ximgproc_filters Filters    @defgroup ximgproc_superpixel Superpixels    @defgroup ximgproc_segmentation Image segmentation    @defgroup ximgproc_fast_line_detector Fast line detector  @}*/namespace cv{namespace ximgproc{enum ThinningTypes{    THINNING_ZHANGSUEN    = 0, // Thinning technique of Zhang-Suen    THINNING_GUOHALL      = 1  // Thinning technique of Guo-Hall};/*** @brief Specifies the binarization method to use in cv::ximgproc::niBlackThreshold*/enum LocalBinarizationMethods{	BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .	BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .	BINARIZATION_WOLF = 2,    //!< Wolf's technique. See @cite Wolf2004 .	BINARIZATION_NICK = 3     //!< NICK technique. See @cite Khurshid2009 .};//! @addtogroup ximgproc//! @{/** @brief Performs thresholding on input images using Niblack's technique or some of thepopular variations it inspired.The function transforms a grayscale image to a binary image according to the formulae:-   **THRESH_BINARY**    \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]-   **THRESH_BINARY_INV**    \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]where \f$T(x,y)\f$ is a threshold calculated individually for each pixel.The threshold value \f$T(x, y)\f$ is determined based on the binarization method chosen. Forclassic Niblack, it is the mean minus \f$ k \f$ times standard deviation of\f$\texttt{blockSize} \times\texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$.The function can't process the image in-place.@param _src Source 8-bit single-channel image.@param _dst Destination image of the same size and the same type as src.@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.@param type Thresholding type, see cv::ThresholdTypes.@param blockSize Size of a pixel neighborhood that is used to calculate a threshold valuefor the pixel: 3, 5, 7, and so on.@param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this isnormally a value between 0 and 1 that is multiplied with the standard deviation and subtracted fromthe mean.@param binarizationMethod Binarization method to use. By default, Niblack's technique is used.Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.@sa  threshold, adaptiveThreshold */CV_EXPORTS_W void niBlackThreshold( InputArray _src, OutputArray _dst,                                    double maxValue, int type,                                    int blockSize, double k, int binarizationMethod = BINARIZATION_NIBLACK );/** @brief Applies a binary blob thinning operation, to achieve a skeletization of the input image.The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.@param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.@param dst Destination image of the same size and the same type as src. The function can work in-place.@param thinningType Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes */CV_EXPORTS_W void thinning( InputArray src, OutputArray dst, int thinningType = THINNING_ZHANGSUEN);/** @brief Performs anisotropic diffusian on an image. The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation: \f[{\frac  {\partial I}{\partial t}}={\mathrm  {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\f] Suggested functions for c(x,y,t) are: \f[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\f] or \f[ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac  {\|\nabla I\|}{K}}\right)^{2}}} \f] @param src Grayscale Source image. @param dst Destination image of the same size and the same number of channels as src . @param alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1). @param K sensitivity to the edges @param niters The number of iterations*/CV_EXPORTS_W void anisotropicDiffusion(InputArray src, OutputArray dst, float alpha, float K, int niters );//! @}}}#endif // __OPENCV_XIMGPROC_HPP__
 |