123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CORE_CUDA_HPP
- #define OPENCV_CORE_CUDA_HPP
- #ifndef __cplusplus
- # error cuda.hpp header must be compiled as C++
- #endif
- #include "opencv2/core.hpp"
- #include "opencv2/core/cuda_types.hpp"
- /**
- @defgroup cuda CUDA-accelerated Computer Vision
- @{
- @defgroup cudacore Core part
- @{
- @defgroup cudacore_init Initalization and Information
- @defgroup cudacore_struct Data Structures
- @}
- @}
- */
- namespace cv { namespace cuda {
- //! @addtogroup cudacore_struct
- //! @{
- //===================================================================================
- // GpuMat
- //===================================================================================
- /** @brief Base storage class for GPU memory with reference counting.
- Its interface matches the Mat interface with the following limitations:
- - no arbitrary dimensions support (only 2D)
- - no functions that return references to their data (because references on GPU are not valid for
- CPU)
- - no expression templates technique support
- Beware that the latter limitation may lead to overloaded matrix operators that cause memory
- allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be
- passed directly to the kernel.
- @note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are
- aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.
- @note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely
- on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory
- release function returns error if the CUDA context has been destroyed before.
- @sa Mat
- */
- class CV_EXPORTS GpuMat
- {
- public:
- class CV_EXPORTS Allocator
- {
- public:
- virtual ~Allocator() {}
- // allocator must fill data, step and refcount fields
- virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0;
- virtual void free(GpuMat* mat) = 0;
- };
- //! default allocator
- static Allocator* defaultAllocator();
- static void setDefaultAllocator(Allocator* allocator);
- //! default constructor
- explicit GpuMat(Allocator* allocator = defaultAllocator());
- //! constructs GpuMat of the specified size and type
- GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator());
- GpuMat(Size size, int type, Allocator* allocator = defaultAllocator());
- //! constucts GpuMat and fills it with the specified value _s
- GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator());
- GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator());
- //! copy constructor
- GpuMat(const GpuMat& m);
- //! constructor for GpuMat headers pointing to user-allocated data
- GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
- GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
- //! creates a GpuMat header for a part of the bigger matrix
- GpuMat(const GpuMat& m, Range rowRange, Range colRange);
- GpuMat(const GpuMat& m, Rect roi);
- //! builds GpuMat from host memory (Blocking call)
- explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator());
- //! destructor - calls release()
- ~GpuMat();
- //! assignment operators
- GpuMat& operator =(const GpuMat& m);
- //! allocates new GpuMat data unless the GpuMat already has specified size and type
- void create(int rows, int cols, int type);
- void create(Size size, int type);
- //! decreases reference counter, deallocate the data when reference counter reaches 0
- void release();
- //! swaps with other smart pointer
- void swap(GpuMat& mat);
- //! pefroms upload data to GpuMat (Blocking call)
- void upload(InputArray arr);
- //! pefroms upload data to GpuMat (Non-Blocking call)
- void upload(InputArray arr, Stream& stream);
- //! pefroms download data from device to host memory (Blocking call)
- void download(OutputArray dst) const;
- //! pefroms download data from device to host memory (Non-Blocking call)
- void download(OutputArray dst, Stream& stream) const;
- //! returns deep copy of the GpuMat, i.e. the data is copied
- GpuMat clone() const;
- //! copies the GpuMat content to device memory (Blocking call)
- void copyTo(OutputArray dst) const;
- //! copies the GpuMat content to device memory (Non-Blocking call)
- void copyTo(OutputArray dst, Stream& stream) const;
- //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
- void copyTo(OutputArray dst, InputArray mask) const;
- //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
- void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
- //! sets some of the GpuMat elements to s (Blocking call)
- GpuMat& setTo(Scalar s);
- //! sets some of the GpuMat elements to s (Non-Blocking call)
- GpuMat& setTo(Scalar s, Stream& stream);
- //! sets some of the GpuMat elements to s, according to the mask (Blocking call)
- GpuMat& setTo(Scalar s, InputArray mask);
- //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)
- GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
- //! converts GpuMat to another datatype (Blocking call)
- void convertTo(OutputArray dst, int rtype) const;
- //! converts GpuMat to another datatype (Non-Blocking call)
- void convertTo(OutputArray dst, int rtype, Stream& stream) const;
- //! converts GpuMat to another datatype with scaling (Blocking call)
- void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;
- //! converts GpuMat to another datatype with scaling (Non-Blocking call)
- void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;
- //! converts GpuMat to another datatype with scaling (Non-Blocking call)
- void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
- void assignTo(GpuMat& m, int type=-1) const;
- //! returns pointer to y-th row
- uchar* ptr(int y = 0);
- const uchar* ptr(int y = 0) const;
- //! template version of the above method
- template<typename _Tp> _Tp* ptr(int y = 0);
- template<typename _Tp> const _Tp* ptr(int y = 0) const;
- template <typename _Tp> operator PtrStepSz<_Tp>() const;
- template <typename _Tp> operator PtrStep<_Tp>() const;
- //! returns a new GpuMat header for the specified row
- GpuMat row(int y) const;
- //! returns a new GpuMat header for the specified column
- GpuMat col(int x) const;
- //! ... for the specified row span
- GpuMat rowRange(int startrow, int endrow) const;
- GpuMat rowRange(Range r) const;
- //! ... for the specified column span
- GpuMat colRange(int startcol, int endcol) const;
- GpuMat colRange(Range r) const;
- //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
- GpuMat operator ()(Range rowRange, Range colRange) const;
- GpuMat operator ()(Rect roi) const;
- //! creates alternative GpuMat header for the same data, with different
- //! number of channels and/or different number of rows
- GpuMat reshape(int cn, int rows = 0) const;
- //! locates GpuMat header within a parent GpuMat
- void locateROI(Size& wholeSize, Point& ofs) const;
- //! moves/resizes the current GpuMat ROI inside the parent GpuMat
- GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
- //! returns true iff the GpuMat data is continuous
- //! (i.e. when there are no gaps between successive rows)
- bool isContinuous() const;
- //! returns element size in bytes
- size_t elemSize() const;
- //! returns the size of element channel in bytes
- size_t elemSize1() const;
- //! returns element type
- int type() const;
- //! returns element type
- int depth() const;
- //! returns number of channels
- int channels() const;
- //! returns step/elemSize1()
- size_t step1() const;
- //! returns GpuMat size : width == number of columns, height == number of rows
- Size size() const;
- //! returns true if GpuMat data is NULL
- bool empty() const;
- /*! includes several bit-fields:
- - the magic signature
- - continuity flag
- - depth
- - number of channels
- */
- int flags;
- //! the number of rows and columns
- int rows, cols;
- //! a distance between successive rows in bytes; includes the gap if any
- size_t step;
- //! pointer to the data
- uchar* data;
- //! pointer to the reference counter;
- //! when GpuMat points to user-allocated data, the pointer is NULL
- int* refcount;
- //! helper fields used in locateROI and adjustROI
- uchar* datastart;
- const uchar* dataend;
- //! allocator
- Allocator* allocator;
- };
- /** @brief Creates a continuous matrix.
- @param rows Row count.
- @param cols Column count.
- @param type Type of the matrix.
- @param arr Destination matrix. This parameter changes only if it has a proper type and area (
- \f$\texttt{rows} \times \texttt{cols}\f$ ).
- Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
- end of each row.
- */
- CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
- /** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
- @param rows Minimum desired number of rows.
- @param cols Minimum desired number of columns.
- @param type Desired matrix type.
- @param arr Destination matrix.
- The function does not reallocate memory if the matrix has proper attributes already.
- */
- CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
- /** @brief BufferPool for use with CUDA streams
- * BufferPool utilizes cuda::Stream's allocator to create new buffers. It is
- * particularly useful when BufferPoolUsage is set to true, or a custom
- * allocator is specified for the cuda::Stream, and you want to implement your
- * own stream based functions utilizing the same underlying GPU memory
- * management.
- */
- class CV_EXPORTS BufferPool
- {
- public:
- //! Gets the BufferPool for the given stream.
- explicit BufferPool(Stream& stream);
- //! Allocates a new GpuMat of given size and type.
- GpuMat getBuffer(int rows, int cols, int type);
- //! Allocates a new GpuMat of given size and type.
- GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
- //! Returns the allocator associated with the stream.
- Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
- private:
- Ptr<GpuMat::Allocator> allocator_;
- };
- //! BufferPool management (must be called before Stream creation)
- CV_EXPORTS void setBufferPoolUsage(bool on);
- CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
- //===================================================================================
- // HostMem
- //===================================================================================
- /** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
- Its interface is also Mat-like but with additional memory type parameters.
- - **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
- uploading/downloading data from/to GPU.
- - **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
- address space, if supported.
- - **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
- used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
- utilization.
- @note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
- Pinned Memory APIs* document or *CUDA C Programming Guide*.
- */
- class CV_EXPORTS HostMem
- {
- public:
- enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
- static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);
- explicit HostMem(AllocType alloc_type = PAGE_LOCKED);
- HostMem(const HostMem& m);
- HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
- HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
- //! creates from host memory with coping data
- explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
- ~HostMem();
- HostMem& operator =(const HostMem& m);
- //! swaps with other smart pointer
- void swap(HostMem& b);
- //! returns deep copy of the matrix, i.e. the data is copied
- HostMem clone() const;
- //! allocates new matrix data unless the matrix already has specified size and type.
- void create(int rows, int cols, int type);
- void create(Size size, int type);
- //! creates alternative HostMem header for the same data, with different
- //! number of channels and/or different number of rows
- HostMem reshape(int cn, int rows = 0) const;
- //! decrements reference counter and released memory if needed.
- void release();
- //! returns matrix header with disabled reference counting for HostMem data.
- Mat createMatHeader() const;
- /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
- for it.
- This can be done only if memory was allocated with the SHARED flag and if it is supported by the
- hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
- eliminates an extra copy.
- */
- GpuMat createGpuMatHeader() const;
- // Please see cv::Mat for descriptions
- bool isContinuous() const;
- size_t elemSize() const;
- size_t elemSize1() const;
- int type() const;
- int depth() const;
- int channels() const;
- size_t step1() const;
- Size size() const;
- bool empty() const;
- // Please see cv::Mat for descriptions
- int flags;
- int rows, cols;
- size_t step;
- uchar* data;
- int* refcount;
- uchar* datastart;
- const uchar* dataend;
- AllocType alloc_type;
- };
- /** @brief Page-locks the memory of matrix and maps it for the device(s).
- @param m Input matrix.
- */
- CV_EXPORTS void registerPageLocked(Mat& m);
- /** @brief Unmaps the memory of matrix and makes it pageable again.
- @param m Input matrix.
- */
- CV_EXPORTS void unregisterPageLocked(Mat& m);
- //===================================================================================
- // Stream
- //===================================================================================
- /** @brief This class encapsulates a queue of asynchronous calls.
- @note Currently, you may face problems if an operation is enqueued twice with different data. Some
- functions use the constant GPU memory, and next call may update the memory before the previous one
- has been finished. But calling different operations asynchronously is safe because each operation
- has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
- also safe.
- @note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads.
- @code
- void thread1()
- {
- cv::cuda::Stream stream1;
- cv::cuda::func1(..., stream1);
- }
- void thread2()
- {
- cv::cuda::Stream stream2;
- cv::cuda::func2(..., stream2);
- }
- @endcode
- @note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.
- In multi-threading environment the stream objects must be passed explicitly (see previous note).
- */
- class CV_EXPORTS Stream
- {
- typedef void (Stream::*bool_type)() const;
- void this_type_does_not_support_comparisons() const {}
- public:
- typedef void (*StreamCallback)(int status, void* userData);
- //! creates a new asynchronous stream
- Stream();
- //! creates a new asynchronous stream with custom allocator
- Stream(const Ptr<GpuMat::Allocator>& allocator);
- /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
- */
- bool queryIfComplete() const;
- /** @brief Blocks the current CPU thread until all operations in the stream are complete.
- */
- void waitForCompletion();
- /** @brief Makes a compute stream wait on an event.
- */
- void waitEvent(const Event& event);
- /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
- completed.
- @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
- that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
- Callbacks without a mandated order (in independent streams) execute in undefined order and may be
- serialized.
- */
- void enqueueHostCallback(StreamCallback callback, void* userData);
- //! return Stream object for default CUDA stream
- static Stream& Null();
- //! returns true if stream object is not default (!= 0)
- operator bool_type() const;
- class Impl;
- private:
- Ptr<Impl> impl_;
- Stream(const Ptr<Impl>& impl);
- friend struct StreamAccessor;
- friend class BufferPool;
- friend class DefaultDeviceInitializer;
- };
- class CV_EXPORTS Event
- {
- public:
- enum CreateFlags
- {
- DEFAULT = 0x00, /**< Default event flag */
- BLOCKING_SYNC = 0x01, /**< Event uses blocking synchronization */
- DISABLE_TIMING = 0x02, /**< Event will not record timing data */
- INTERPROCESS = 0x04 /**< Event is suitable for interprocess use. DisableTiming must be set */
- };
- explicit Event(CreateFlags flags = DEFAULT);
- //! records an event
- void record(Stream& stream = Stream::Null());
- //! queries an event's status
- bool queryIfComplete() const;
- //! waits for an event to complete
- void waitForCompletion();
- //! computes the elapsed time between events
- static float elapsedTime(const Event& start, const Event& end);
- class Impl;
- private:
- Ptr<Impl> impl_;
- Event(const Ptr<Impl>& impl);
- friend struct EventAccessor;
- };
- //! @} cudacore_struct
- //===================================================================================
- // Initialization & Info
- //===================================================================================
- //! @addtogroup cudacore_init
- //! @{
- /** @brief Returns the number of installed CUDA-enabled devices.
- Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
- this function returns 0. If the CUDA driver is not installed, or is incompatible, this function
- returns -1.
- */
- CV_EXPORTS int getCudaEnabledDeviceCount();
- /** @brief Sets a device and initializes it for the current thread.
- @param device System index of a CUDA device starting with 0.
- If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
- */
- CV_EXPORTS void setDevice(int device);
- /** @brief Returns the current device index set by cuda::setDevice or initialized by default.
- */
- CV_EXPORTS int getDevice();
- /** @brief Explicitly destroys and cleans up all resources associated with the current device in the current
- process.
- Any subsequent API call to this device will reinitialize the device.
- */
- CV_EXPORTS void resetDevice();
- /** @brief Enumeration providing CUDA computing features.
- */
- enum FeatureSet
- {
- FEATURE_SET_COMPUTE_10 = 10,
- FEATURE_SET_COMPUTE_11 = 11,
- FEATURE_SET_COMPUTE_12 = 12,
- FEATURE_SET_COMPUTE_13 = 13,
- FEATURE_SET_COMPUTE_20 = 20,
- FEATURE_SET_COMPUTE_21 = 21,
- FEATURE_SET_COMPUTE_30 = 30,
- FEATURE_SET_COMPUTE_32 = 32,
- FEATURE_SET_COMPUTE_35 = 35,
- FEATURE_SET_COMPUTE_50 = 50,
- GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
- SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
- NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,
- WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,
- DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35
- };
- //! checks whether current device supports the given feature
- CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
- /** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was
- built for.
- According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
- capability can always be compiled to binary code of greater or equal compute capability".
- */
- class CV_EXPORTS TargetArchs
- {
- public:
- /** @brief The following method checks whether the module was built with the support of the given feature:
- @param feature_set Features to be checked. See :ocvcuda::FeatureSet.
- */
- static bool builtWith(FeatureSet feature_set);
- /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
- code for the given architecture(s):
- @param major Major compute capability version.
- @param minor Minor compute capability version.
- */
- static bool has(int major, int minor);
- static bool hasPtx(int major, int minor);
- static bool hasBin(int major, int minor);
- static bool hasEqualOrLessPtx(int major, int minor);
- static bool hasEqualOrGreater(int major, int minor);
- static bool hasEqualOrGreaterPtx(int major, int minor);
- static bool hasEqualOrGreaterBin(int major, int minor);
- };
- /** @brief Class providing functionality for querying the specified GPU properties.
- */
- class CV_EXPORTS DeviceInfo
- {
- public:
- //! creates DeviceInfo object for the current GPU
- DeviceInfo();
- /** @brief The constructors.
- @param device_id System index of the CUDA device starting with 0.
- Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
- constructs an object for the current device.
- */
- DeviceInfo(int device_id);
- /** @brief Returns system index of the CUDA device starting with 0.
- */
- int deviceID() const;
- //! ASCII string identifying device
- const char* name() const;
- //! global memory available on device in bytes
- size_t totalGlobalMem() const;
- //! shared memory available per block in bytes
- size_t sharedMemPerBlock() const;
- //! 32-bit registers available per block
- int regsPerBlock() const;
- //! warp size in threads
- int warpSize() const;
- //! maximum pitch in bytes allowed by memory copies
- size_t memPitch() const;
- //! maximum number of threads per block
- int maxThreadsPerBlock() const;
- //! maximum size of each dimension of a block
- Vec3i maxThreadsDim() const;
- //! maximum size of each dimension of a grid
- Vec3i maxGridSize() const;
- //! clock frequency in kilohertz
- int clockRate() const;
- //! constant memory available on device in bytes
- size_t totalConstMem() const;
- //! major compute capability
- int majorVersion() const;
- //! minor compute capability
- int minorVersion() const;
- //! alignment requirement for textures
- size_t textureAlignment() const;
- //! pitch alignment requirement for texture references bound to pitched memory
- size_t texturePitchAlignment() const;
- //! number of multiprocessors on device
- int multiProcessorCount() const;
- //! specified whether there is a run time limit on kernels
- bool kernelExecTimeoutEnabled() const;
- //! device is integrated as opposed to discrete
- bool integrated() const;
- //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
- bool canMapHostMemory() const;
- enum ComputeMode
- {
- ComputeModeDefault, /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */
- ComputeModeExclusive, /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */
- ComputeModeProhibited, /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */
- ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */
- };
- //! compute mode
- ComputeMode computeMode() const;
- //! maximum 1D texture size
- int maxTexture1D() const;
- //! maximum 1D mipmapped texture size
- int maxTexture1DMipmap() const;
- //! maximum size for 1D textures bound to linear memory
- int maxTexture1DLinear() const;
- //! maximum 2D texture dimensions
- Vec2i maxTexture2D() const;
- //! maximum 2D mipmapped texture dimensions
- Vec2i maxTexture2DMipmap() const;
- //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory
- Vec3i maxTexture2DLinear() const;
- //! maximum 2D texture dimensions if texture gather operations have to be performed
- Vec2i maxTexture2DGather() const;
- //! maximum 3D texture dimensions
- Vec3i maxTexture3D() const;
- //! maximum Cubemap texture dimensions
- int maxTextureCubemap() const;
- //! maximum 1D layered texture dimensions
- Vec2i maxTexture1DLayered() const;
- //! maximum 2D layered texture dimensions
- Vec3i maxTexture2DLayered() const;
- //! maximum Cubemap layered texture dimensions
- Vec2i maxTextureCubemapLayered() const;
- //! maximum 1D surface size
- int maxSurface1D() const;
- //! maximum 2D surface dimensions
- Vec2i maxSurface2D() const;
- //! maximum 3D surface dimensions
- Vec3i maxSurface3D() const;
- //! maximum 1D layered surface dimensions
- Vec2i maxSurface1DLayered() const;
- //! maximum 2D layered surface dimensions
- Vec3i maxSurface2DLayered() const;
- //! maximum Cubemap surface dimensions
- int maxSurfaceCubemap() const;
- //! maximum Cubemap layered surface dimensions
- Vec2i maxSurfaceCubemapLayered() const;
- //! alignment requirements for surfaces
- size_t surfaceAlignment() const;
- //! device can possibly execute multiple kernels concurrently
- bool concurrentKernels() const;
- //! device has ECC support enabled
- bool ECCEnabled() const;
- //! PCI bus ID of the device
- int pciBusID() const;
- //! PCI device ID of the device
- int pciDeviceID() const;
- //! PCI domain ID of the device
- int pciDomainID() const;
- //! true if device is a Tesla device using TCC driver, false otherwise
- bool tccDriver() const;
- //! number of asynchronous engines
- int asyncEngineCount() const;
- //! device shares a unified address space with the host
- bool unifiedAddressing() const;
- //! peak memory clock frequency in kilohertz
- int memoryClockRate() const;
- //! global memory bus width in bits
- int memoryBusWidth() const;
- //! size of L2 cache in bytes
- int l2CacheSize() const;
- //! maximum resident threads per multiprocessor
- int maxThreadsPerMultiProcessor() const;
- //! gets free and total device memory
- void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
- size_t freeMemory() const;
- size_t totalMemory() const;
- /** @brief Provides information on CUDA feature support.
- @param feature_set Features to be checked. See cuda::FeatureSet.
- This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
- */
- bool supports(FeatureSet feature_set) const;
- /** @brief Checks the CUDA module and device compatibility.
- This function returns true if the CUDA module can be run on the specified device. Otherwise, it
- returns false .
- */
- bool isCompatible() const;
- private:
- int device_id_;
- };
- CV_EXPORTS void printCudaDeviceInfo(int device);
- CV_EXPORTS void printShortCudaDeviceInfo(int device);
- /** @brief Converts an array to half precision floating number.
- @param _src input array.
- @param _dst output array.
- @param stream Stream for the asynchronous version.
- @sa convertFp16
- */
- CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null());
- //! @} cudacore_init
- }} // namespace cv { namespace cuda {
- #include "opencv2/core/cuda.inl.hpp"
- #endif /* OPENCV_CORE_CUDA_HPP */
|